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Zusammenfassung

Gewitterstürme zählen in Deutschland zu denjenigen Wetterereignissen mit einem erheblichen

Schadenspotential. Besonders im Sommerhalbjahr können sich Gewitter zu großen Komplexen

ausbilden, die von starkem Regen, Windböen, Tornados oder Hagel begleitet werden. Gewitter

und deren Begleiterscheinungen ereignen sich mehrmals pro Jahr in Deutschland und verursa-

chen Schäden an Autos, Gebäuden und anderen Besitztümern. In Baden-Württemberg können

fast 40% aller witterungsbedingter Schäden an Gebäuden auf Hagel zurückgeführt werden (Pus-

keiler, 2009).

In den vergangenen Jahren konnte die SV SparkassenVersicherung AG eine Zunahme der Tage

beobachten, an denen Hagelschäden auftraten. Eine solche Zunahme führt zu Problemen beson-

ders für Versicherungen, das Baugewerbe und die Landwirtschaft.Laut des vierten Sachstands-

berichtes des „Intergovernmental Panel on Climate Change“ (IPCC; IPCC, 2007) konnte im letz-

ten Jahrhundert (1906-2005) auch eine Zunahme der globalen Mitteltemperatur um ca. 0,74° C

(±0.18° C) beobachtet werden. Dies wirft die Fragen auf, ob die Änderung der Temperatur mit

den Änderungen der Häufigkeit von Hagelereignissen zusammenhängtund welche zukünftigen

Entwicklungen zu erwarten sind.

Problematisch ist allerdings, dass Gewitter nur lokal begrenzt auftreten.Die typische horizontale

Ausdehnung liegt häufig bei weniger als einigen Kilometern. Daher können Gewitter von meteo-

rologischen Bodenstationen oft nicht erfasst werden. Auch Fernerkundungsmessgeräte, wie z. B.

das Radar, sind noch nicht in der Lage Hagel zu registrieren, da bisher kein eindeutiger Zusam-

menhang zwischen Radarreflektivität und Hagel bzw. Regen gefunden werden konnte (Kunz and

Puskeiler, 2010; Sauvageot, 1992). Zudem können Gewitter von Klimamodellen nicht abgebil-

det werden, da deren horizontale Auflösung meist geringer ist als die räumliche Ausdehnung der

Gewitterzellen. Aufgrund der Problematik bei der Erfassung von Gewitterstürmen stehen daher

keine ausreichend lange Zeitreihen zur Verfügung um mögliche Änderungen der Hageltage über

einen langen Zeitraum zu untersuchen.

Um dieses Problem zu umgehen werden im Folgenden für die Auslösung von hochreichender

Konvektion wichtige Parameter untersucht. Die Prozesse der Auslösung sind zum einen gut ver-

standen und zum anderen besser messbar. Parameter die die Auslösungbeschreiben sind die ther-

mische Schichtung der Atmosphäre, der Feuchtegehalt und die großräumige Hebung. Es wird

angenommen, dass Änderungen dieser Parameter die Wahrscheinlichkeit,mit der Gewitter auf-

treten, beeinflussen. Unter Verwendung dieser Parameter lassen sich Großwetterlagen definieren,

welche dann zu einer gewissen Wahrscheinlichkeit auch Informationen über das Hagelpotential

liefern.

Arbeiten von Bissolli et al. (2007) haben gezeigt, dass Wetterlagen basierend auf den genannten

Parametern in engem Zusammenhang mit dem Auftreten von Tornados in Deutschland stehen.

Ähnliche Ergebnisse erzielten Bardossy and Filiz (2005) in Bezug auf Hochwasserereignisse und

Ehmann (2009) bezüglich Hagelschäden. Diese Untersuchungen bildendie Grundlage dieser Di-

plomarbeit.



In der vorliegenden Arbeit wird die langzeitliche Variabilität der Wetterlagenanalysiert, die häu-

fig mit Hagelschäden in Verbindung stehen (hagelrelevant) und solcher die nur selten zusammen

mit Hagel auftreten (hagelirrelevant). Um langzeitliche Trends und möglichePeriodizitäten zu

detektieren, werden Daten verschiedener Klimamodelle verwendet. Der Fokus bei der Analyse

liegt auf der Klärung zwei wichtiger Punkte: Zum einen muss die verwendete Methode der Wet-

terlagenklassifikation (oWLK) des Deutschen Wetterdienstes (DWD) auf ihre Anwendbarkeit auf

unterschiedliche Modelldaten untersucht werden. Zum anderen muss sichergestellt werden, dass

Klimamodelle in der Lage sind die Wetterlagen hinreichend gut wieder zu geben.

Zur Klärung stehen Reanalysedaten des ECMWF (ERA40 und ERA-Interim) sowie Daten des

regionalen Klimamodells CCLM-ERA40 für den Kontrollzeitraum C20 (1971 bis2000) zur Ver-

fügung. Die CCLM-ERA40-Daten werden angetrieben von ERA40-Reanalysen, die als Anfangs-

und Randbedingungen genutzt wurden. Für denselben Zeitraum sowieverschiedene Projektions-

zeiträume (2001-2048/2050 bzw. 2011-2050) liegen außerdem Daten acht verschiedener Realisa-

tionen des regionalen Klimamodells COSMO-CLM vor. Diese unterschieden sich in der Version

des Regionalmodells COSMO-CLM (3.1 und 4.8), den antreibenden Globalmodellen (ECHAM5-

MPI/OM, CCCma3), den Anfangsbedingungen- und zeiten der Globalmodelle (Lauf 1 bis 3)

sowie den Emissionsszenarien (A1B und B1). Auf alle Daten wird die oWLK für das Untersu-

chungsgebiet Deutschland (ca. 4°E bis 16°E und 45°N bis 57°N) angewendet und die Wetterlagen

bestimmt. Die oWLK berücksichtigt die drei Parameter Advektionsrichtung (Windindex) als in-

direktes Maß für die thermische Stabilität, Zyklonalität in zwei Höhenschichten(1000 hPa und

500 hPa) als Index für großräumige Hebung und Feuchte (niederschlagsfähiges Wasser).

Mittels Hagelschadensdaten der SV und kategorischer Verifikation werden anschließend Wetter-

lagen mit Hagelereignissen verknüpft. Damit kann zwischen Lagen hagelrelevanten und hagelir-

relevanten Lagen unterschieden werden. Diese bilden die Grundlage für die Variabilitätsanalyse.

Die Anwendbarkeit der Methode wird durch einen Vergleich der absoluten Anzahl der einzelnen

Wetterlagen aus ERA40, ERA-Interim und CLM-ERA40 für den Kontrollzeitraum C20 über-

prüft. Geringe Abweichungen zwischen den absoluten Anzahlen implizieren, dass die oWLK auf

verschiedene Reanalysedaten anwendbar ist und dass eine unterschiedliche Modellauflösung von

ERA40 (≈ 125 km), ERA-Interim (≈ 80 km) und CCLM-ERA40 (≈ 50 km) nur einen geringen

Einfluss auf die Klassifikationsergebnisse hat. Unterschiede der Häufigkeiten zwischen den Mo-

dellen (<8%) können auf Unterschiede in der Windrichtungsbestimmungen zurückgeführt wer-

den. Außerdem stößt die oWLK vor allem bei indifferenten Wetterlagen anihre Grenzen, wenn

zum Beispiel die Zyklonalität Werte nahe Null annimmt.

Weiterführend werden hagelrelevante Lagen und hagelirrelevante Wetterlagen mittels Heidke Skill

Score (HSS) unterteilt. Es können vier verschiedene hagelrelevante und fünf hagelirrelevante La-

gen identifiziert werden. Drei dieser vier hagelrelevanten Wetterlagen sind auf denselben meteo-

rologischen Prozess zurück zu führen („Spanish Plume“). Durch einen Trog über dem Nordat-

lantik und einem Rücken über Mitteleuropa kommt es zur Advektion feucht-warmer Luft aus

dem Mittelmeerraum oder vom Atlantik. Die Advektion dieser energiereichen Luftmassen erhöht



das Potential für hochreichende Konvektion und erklärt, warum es beiden genannten Wetterla-

gen häufig zur Entwicklung kräftiger Gewitter und damit einhergehend Hagel kommt. Dies zeigt,

dass die oWLK nicht zwischen einzelnen meteorologischen Prozessen unterscheiden kann bestä-

tigt aber, dass die klassifizierten Wetterlagen durchaus realistisch sind. Die oWLK ist damit eine

geeignete Methode für die Untersuchung hagelrelevanter Wetterlagen.

Um zu zeigen, dass auch die jährliche Variabilität der hagelrelevanten Wetterlagen unabhängig

vom Modell und der Modellauflösung ist, wird die jährliche Anzahl der hagelrelevanten Wetterla-

gen aus Reanalysedaten und CCLM-ERA40-Daten verglichen. Die Abweichungen dieser Anzahl

zwischen den Modellen für den Kontrollzeitraum sind - ausgenommen für einzelne Jahre - relativ

klein (<5%). Für die hagelirrelevanten Lagen sind sie etwas größer (<10%). Dies zeigt, dass die

Modellauflösung nur geringe Auswirkungen auf die Variabilität hat.

Im Folgenden wird die oWLK durch Anwendung auf ein Ensemble aus achtverschiedenen Rea-

lisationen des regionalen Klimamodells COSMO-CLM dazu benutzt um festzustellen ob die Kli-

mamodelle in der Lage sind Wetterlagen hinreichend gut wieder zu geben. Zur Validierung der

Modelle werden die aus den Klimamodellen errechneten Häufigkeitsverteilungen der Wetterla-

gen mit denen des Referenzmodells CCLM-ERA40 für den KontrollzeitraumC20 verglichen.

Die Ergebnisse sind überraschend: Obwohl keine Initialisierung der Klimamodelldaten mit Beob-

achtungen stattfindet, sind die Wetterlagenverteilungen zwischen Klimamodellrealisationen und

CCLM-ERA40 fast identisch. Abweichungen werden hauptsächlich durch den Zyklonalitätsindex

in 500 hPa verursacht, der wie oben erwähnt bei Werten um seinen Grenzwert häufig zu Unter-

schieden in den Modellergebnissen führt. Die geringen Unterschiede zwischen Referenzmodell

und den Klimamodellen zeigen, dass die Klimamodelle in der Lage sind Wetterlagen hinreichend

abzubilden. Dies ist eine wichtige Grundlage für die Untersuchung der langzeitlichen Variabilität

der hagelrelevanten Wetterlagen.

Lineare Trends von Zeitreihen der hagelrelevanten Wetterlagen wurdenmit Hilfe von Trendmatri-

zen analysiert, bei welchen Start- und Endzeiten der Zeitreihen sukzessiv verschoben wurden. Die

Signifikanz (80% Signifikanzniveau) wird mit Hilfe des Mann-Kendall-Tests bestimmt. Signifi-

kante positive Trends von ca. neun Tagen können während des Kontrollzeitraums für Zeitreihen

der hagelrelevanten Wetterlagen von zwei Klimamodellen festgestellt werden. Für den Projek-

tionszeitraum zeigen drei der acht Klimamodelle statistisch signifikante positiveTrends von bis

zu ca. 11 Tagen. Außerdem kann in fast allen Modellrealisationen durchAnwendung einer Fast-

Fourier-Transformation eine Periodizität von 12-16 sowie 2-5 Jahren ermittelt werden. Dies deutet

darauf hin, dass das Potential für Hagel harmonisch schwankt. Es ist zu bemerken, dass die er-

mittelten Trends sehr stark von Initialisierungszeit und -bedingungen des antreibenden Globalm-

odells abhängen, welche auch die größten Unterschiede in der absolutenHäufigkeit der Wetter-

lagen verursachen. Weiterhin werden Unterschiede vom antreibendenGlobalmodell (ECHAM5,

CCCma3) selbst hervorgerufen, wohingegen die Version des Regionalmodells (3.1 und 4.8) so-

wie die verschiedenen Emissionsszenarien (A1B und B1) nur wenig Einfluss auf die ermittelten

Trends haben. Diese Unterschiede deuten auf große Unsicherheiten inden Klimaszenarien hin.



Aufgrunddessen sollten die acht verschiedenen Modellrealisationen nicht als Klimavorhersage,

sondern eher als mögliche Entwicklung der hagelrelevanten Wetterlagen gedeutet werden.

Um die potentielle Entwicklung der hagelrelevanten Wetterlagen der verschiedenen Realisationen

zusammenzufassen und die epistemischen Unsicherheiten (Unsicherheitendie bekannt, aber nicht

Messbar sind) zu berücksichtigen, wurden die Zeitreihen der Wetterlagen zu einem Ensemble ge-

bündelt (Mittelwert und Standardabweichung). Signifikante Langzeittrends sind sowohl für den

Kontrollzeitraum (von 35 auf 47 Tage), als auch für den Projektionszeitraum (von 39 auf 46 Tage)

zu erkennen. Die Zunahme der Tage mit hagelrelevanten Wetterlagen erklärt vermutlich zum Teil

die Häufung der Hagelschäden, welche von der SV beobachtet werden konnten (≈ 15 days). Dies

impliziert, dass die Ergebnisse durchaus repräsentabel sind.

Um die Ergebnisse verifizieren zu können wird die Anzahl der Hagelschadentage mit Hilfe eines

statistischen Modells modelliert, welches die Wetterlagen als Eingabegröße benutzt. Der Vorteil

dieser Methode besteht darin, dass alle 40 möglichen Wetterlagen bei der Berechnung der Tage

berücksichtigt werden und nicht, wie vorher erörtert, nur die vier hagelrelevanten Lagen. Die Er-

gebnisse auf Grundlage der Wetterlagen von CCLM-ERA40, ERA40 undERA-Interim stimmen

sehr gut mit der Anzahl der Schadenstage der SV überein. Für den Zeitraum 1986 bis 2000 wurden

an durchschnittlich 15 Tagen pro Sommerhalbjahr Hagelschäden an die Versicherung gemeldet,

welche vom Modell bestätigt werden. Die Wahrscheinlichkeitsverteilung des Modells zeigt, dass

es auf Grundlage der Wetterlagen mit einer Wahrscheinlichkeit von über 90% mindestens 13 und

höchstens 17 Hagelschadenstage gab.

Durch Anwendung des Modells auf die Klimamodelldaten kann auch die Anzahl der Hagelscha-

denstage für den Projektionszeitraum analysiert werden. Dazu werden die Klimamodelle für den

Zeitraum 1986 bis 2000 mit der Verteilung der Hageltage von CCLM-ERA40 fehlerkorrigiert.

Auch mit dieser Methode kann eine Zunahme der Tage mit Hagelschäden beobachtet werden. Für

drei der Modellrealisationen liegt die Wahrscheinlichkeit für mehr als 15 Hageltage pro Sommer-

halbjahr für die Jahre 2031-2045 über 90% und für drei weitere Modellrealisationen sind es min-

destens 14 Tage. Es sollte bedacht werden, dass dies die minimale Anzahl der Hageltage darstellt

und daher oft eine höhere Anzahl zu erwarten ist. Andererseits zeigen einige der Modellrealisa-

tionen trotz Fehlerkorrektur eine Abnahme der Hagelschadenstage zwischen 1986 bis 2000 und

2001 bis 2015, was auf mehrjährige Extrema in den Zeitreihen zurückzuführen ist. Diese haben

einen starken Einfluss auf die Trends. Ob die Extrema auf Periodizitäten beruhen sollte weiter

untersucht werden.

Es kann gezeigt werden, dass es möglich ist die oWLK auf verschiedeneDatensätze anzuwenden.

Auch die regionalen Klimamodelle sind in der Lage Wetterlagen hinreichend gutdarzustellen, um

sie für langzeitliche Analysen zu verwenden. Die Anwendung verschiedener statistischer Metho-

den macht es möglich die zukünftigen Entwicklungen von schadensträchtigen Gewitterstürmen

abzuschätzen. Daher könnten diese Methoden benutzt werden, um weitere meteorologische Phä-

nomene [wie z.B. Tornados (Bissolli et al., 2007) oder Hochwasser (Bardossy and Filiz, 2005)]

mit Wetterlagen zu untersuchen und die Wahrscheinlichkeit dieser Extremereignisse für die Zu-



kunft abzuschätzen. Für solche Studien sollten weitere regionale Klimamodelle mit einbezogen

werden um die epistemische Unsicherheit zu minimieren. Dies stellt sicher, dass die natürliche

Variabilität untersucht wird und nicht nur die Modellphysik eines einzelnenregionalen Klimamo-

dells. Ein Ensemble sollte daher eine große Anzahl von verschiedenen regionalen Klimamodellen

und unterschiedliche antreibende Globalmodelle berücksichtigen.
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1. Introduction

Thunderstorms are one of the major natural hazards affecting Germany.Especially during the

summer months, thunderstorms can develop to severe complexes that are associated with heavy

rainfall, gusts, tornadoes or hail. These events, which occur severaltimes each year in Germany,

pose a significant threat to humans and their assets. In the federal state of Baden-Württemberg,

almost 40% of all damage to buildings can be attributed to large hailstones (Kunzand Puskeiler,

2010).

In recent years, the number of days with hail damage occurrence determined by the number of

settled claims of the SparkassenVersicherung AG insurance company hassignificantly increased

(Fig. 1.1). This poses problems especially to insurance companies, the construction industry and

agriculture.

According to the fourth assessment report conducted by the Intergovernmental Panel on Climate

Change (IPCC; IPCC, 2007), the global mean temperature increased in the last century (1906-

2005) by about 0.74◦C (±0.18◦C). This raises the question whether there is a link between tem-
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Figure 1.1: Number of hail damage days per year according to reports ofthe SV building insur-
ance company in Baden-Württemberg. A hail damage day is defined as a daywith more than 10
settled claims (Kunz et al., 2009). Indicated are the linear trend (solid) and the 95% confidence
intervals (dashed).
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4 Chapter 1. Introduction

perature and changes in the hail frequency, as well as what can expected for the future.

However, estimating the hazard associated with hailstorms is very difficult. As thunderstorms and

related hail streaks are often limited to a typical horizontal extent of only a few kilometers, they

are regularly not captured by current surface observations systems. Additionally, remote sensing

instruments, such as radars, are not yet able to detect hail, as no uniquerelationship between radar

reflectivity and hail is established (Sauvageot, 1992; Kunz and Puskeiler, 2010). Furthermore,

thunderstorms are mainly not captured in climate models because their horizontal extent is less

than the spatial resolution of the model data. Hence, single- or multi-cells cannot be resolved by

most models at all. Thus, there are basically no available time series of thunderstorm and hail

observations that would allow to analyze their changes over an adequatelylong time period.

To overcome this problem, the parameters that are important for convectiveinitiation, which are

better understood and better measurable, can be used to determine the potential of thunderstorm

development. These parameters describe thermal stratification of the atmosphere, moisture con-

tent and meso-scale uplift. Changes in these parameters are assumed to impact the probability

of thunderstorm occurrence. Furthermore, these parameters can be linked to different large-scale

weather patterns, which then favor to a certain extent the development of hailstorms.

Bissolli et al. (2007) found, for example, a strong relationship between some large-scale weather

patterns, classified by the Deutscher Wetterdienst (DWD), and tornado occurrence in Germany.

Furthermore, Bardossy and Filiz (2005) found similar relations to flooding and Ehmann (2009) to

hail damage days in the recent decades. This diploma thesis builds up on those studies. The over-

all goal is to examine to what extent specific weather patterns can be relatedto damage-causing

hailstorms as well as to study the natural long-term variability and periodicity ofthese specific

patterns in the past and in future decades. Two different classification routines are used to catego-

rize weather patterns determined by the relevant synoptic systems. The first one is invented by the

DWD, while the second one is a modified version that is adjusted to hailstorm occurrence. Both

routines are applied to reanalysis data and a small ensemble of eight different regional climate

model realizations.

There are several questions to face in order to reach the objectives. One is the robustness of

the classification method when applied to different data sets with a special focus on hailstorms.

Reanalysis data (ERA40 and ERA-Interim) of the European Center for Medium-Range Weather

Forecast (ECMWF) and data of a regional climate model CCLM-ERA40, initialized by ERA40

reanalyses, are used to investigate whether these similar data sets (all include observations) ob-

tain similar distributions of the weather type frequency. The weather types are categorized into

a subset that is frequently accompanied by hail damage (hail-related). For this examination, two

different statistical methods were used. Likewise, it is possible to detect weather types that are

only rarely accompanied by hail damage (hail-unrelated). The annual frequency of these weather-

type groups derived from the three reanalysis data sets are compared toeach other in order to

determine if the method is applicable in terms of temporal variability. This kind of validation is

fundamental as the indirect analysis regarding changes of damaging hailstorms is more prone to
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errors with regard to the realistic number of hail damage. However, it might be a good approach

since no hail observations are available for long time periods.

To investigate the temporal variability of the potential for hailstorm occurrence and to identify

possible periodic behavior, data sets from different climate models are used. In doing so, the un-

certainty of the results with regard to future reality is investigated. Data of eight different realiza-

tions of the regional climate model (RCM) COSMO-CLM for the time period 1971-2050 are used

to account for uncertainty. On the one hand, there is an uncertainty due toprocesses or develop-

ments we cannot measure but know about (epistemic), for example, changes in human population

or economy. On the other hand, there is uncertainty due to events that happen only randomly

and cannot be quantified (aleatory). Thus, different realizations of CCLM are used, differing by

the COSMO-CLM version (3.1 and 4.8), the driving global climate model (ECHAM5-MPI/OM,

CCCma3), initialization times and initial conditions (Run 1 to 3) and the emission scenarios (A1B

and B1). These data sets provide the basis for the analysis of natural variability, periodicity and

trends of weather patterns that favor or inhibit thunderstorm occurrence.

This thesis is organized as follows: Chapter 2 focuses on the theory of thunderstorm develop-

ment including the different organization forms and explains the development of hailstones. The

following Chapter 3 gives an overview of the data sets and methods used. In Chapter 4, the clas-

sified weather types derived from results of different climate models are evaluated against reanal-

ysis data and hail-relevant weather types are identified. Additionally, a modified classification

method, which aims at finding a better relationship between weather types and damaging hail-

storm occurrence, is introduced and applied. The analysis of temporal variability of hail-relevant

and hail-irrelevant weather types is discussed in Chapter 5. Initially, the model realizations are

analyzed separately to determine model related differences of temporal variability. Afterwards,

the whole ensemble is considered. In Chapter 6, a statistical probabilistic model to identify the

number of hail damage days from specific weather types is introduced andapplied to verify results

gained from previous chapters. Moreover, it is used to predict the number of hail damage days

and to determine differences between various time periods. Finally, a summarywith conclusions

and a brief outlook is given in Chapter 7.





2. Theoretical Background

Thunderstorms develop in a convective atmosphere, where the motion is predominantly vertical

and driven by buoyancy forces arising from static instability. This chapter is split into three

sections. The first section of this chapter introduces the principal mechanisms and characteristics

of the atmosphere that are relevant for vertical motions. The second section gives an overview

about the different types of thunderstorms, while the third section explainshow hail develops

within a cumulus cloud.

2.1 Static Stability

Whether convection can develop is dependent upon the vertical stratification of the atmosphere.

Distinction is made between three different types of stratification: stable, indifferent (neutral) or

unstable. If the atmosphere is stable, an air parcel that gets vertically displaced will return to its

initial position. If the atmosphere is neutral or indifferent, the air parcel stays in the position where

it got moved to, while the atmosphere is called unstable when the displaced air parcel is further

accelerated in the direction of the initial displacement and does not return to itsinitial position.

These three mechanisms can be explained by the first law of thermodynamics.Considering an

homogeneous system without irreversible processes like friction or diffusion, the change of the

internal energydu is given by:

du = δq + δa (2.1)

with δq representing the rate of heat exchange andδa the rate of work on the system. These

are incomplete differentials and are therefore written withδ instead of ad. In the case of an air

parcel, this work is directly related to volume changes (δa = −pdα with α = 1/ρ for the specific

volume). Internal energy changes are proportional to changes in the temperature,du = cvdT ,

with cv as the specific heat capacity for a constant volume of air. With the enthalpyh = u+ pα,

the first law can be converted to

δq = dh− αdp. (2.2)

Considering the change of the enthalpydh = cpdT with cp as the specific heat capacity for

constant pressure and an adiabatic system, whereδq = 0 (Eq. 2.2) gives:

dh = cpdT = αdp. (2.3)

7
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To quantify changes in the temperature associated with vertical motion in an heterogeneous sys-

tem, that exhibits a vertical pressure gradient, the hydrostatic approximation

∂p

∂z
= −ρg (2.4)

is inserted into Eq. (2.3). If an air parcel is lifted and experiences a lowerpressure, it expands

and, consequently, cools according to the dry adiabatic temperature gradient

∂T

∂z

∣

∣

∣

∣

dry
= −Γd = − g

cp
= 0.0098 K m−1. (2.5)

This gradient is valid for dry and also moist air with the specific heat capacity

cpm = xvcpv + xvcpd, (2.6)

with the indexesm for moist air,v for water vapor,d for dry air andxv for the mass fraction of

water vapor, ifcpv ≈ cpd and as long as condensation does not occur.

The relation between temperature gradient and upwards acceleration of an air parcel follows from

the vertical component of the Eulerian equations of motion:

dw

dt
= −g − 1

ρ

∂p

∂z
. (2.7)

w is the vertical wind component,ρ the density of the air parcel andp the air pressure. With the

equation of state

p = ρRLT (2.8)

with RL = 287 J kg−1 K−1 = gas constant for dry air, the hydrostatic approximation for the envi-

ronment (indexe) and the quasi-static assumption thatp = pe, Eq. (2.7) yields

dw

dt
= −g +

1

ρ
ρeg = g

(

ρe − ρ

ρ

)

. (2.9)

Insertion of the equation of state (Eq. 2.8) results in

dw

dt
= g

(

T − Te

Te

)

. (2.10)

This equation shows that an air parcel is accelerated upwards if its temperatureT is higher than

the environment temperature (T > Te).

If the decrease in temperature of the environment is less than the dry adiabatic temperature gra-

dient, the lifted parcel will be colder than the environment. Due to its’ higher density, the parcel

experiences a negative acceleration according to Eq. (2.9) and returns to the initial position, indi-

cating that the atmosphere is stable. If the temperature gradient of the environment is equal to the
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dry adiabatic gradient, the air parcel stays in the displaced position and the stratification is neutral.

If the temperature of the environment decreases more than the dry adiabatictemperature gradient,

the lifted air parcel will become warmer than the environment with a lower density. Consequently

it becomes positively accelerated. The atmosphere is unstable and the ongoing lift can result into

convective activity.

For saturated air masses the examination of static stability is equivalent, but the pseudo-adiabatic

lapse rate has to be considered instead of the dry adiabatic one. If a saturated air parcel is lifted,

the cooling rate is much lower compared to an unsaturated air parcel due to therelease of latent

heat through condensation. In this case the change in enthalpy is also controlled by the rate of the

change in the saturation mixing ratiors:

dh = cpdT + ldrs (2.11)

wherel = 2.5 × 106 J kg−1 is the specific latent heat of vaporization. Hence, the temperature

gradient is highly dependent on the humidity of the air volume and typically varies between 0.4

and 0.98 K per 100 meter. In general, the pseudo adiabatic lapse rate is lower than the dry adiabatic

lapse rate, reaching
∂T

∂z

∣

∣

∣

∣

ps
= −Γdαs (2.12)

with αs = factor ranging between 0.3 and 1, ifdrs converges against zero at low temperatures

(Kraus, 2004). The pseudo adiabatic lapse rate depends on the temperature of the air parcel and

the prevailing air pressure because there is more condensation of water vapor in a warmer air

parcel than it is in a colder one, according to the Clausius-Clapeyron equation. At very low tem-

perature and pressure, the dry and pseudo adiabatic temperature gradient converge.

It is obvious that there is a thermal stratification which is stable without condensation and unstable

with condensation. In this case the temperature gradient of the environmentis between the dry

adiabatic and pseudo adiabatic temperature gradient. This case is called conditional instability

and stability/instability depends on whether condensation sets in. There is a high potential during

these conditions that thunderstorms develop.

Triggering mechanisms of vertical air motion

Vertical motion can be triggered by several different processes within the atmosphere. All these

processes are a result of the differential heating of the ground or lowermost layers in the atmo-

sphere (e.g. in the boundary layer), due to the terrestrial orbit and the declination of the axis of the

earth (e.g. depending on the season). One region, where these differences are most pronounced,

is the temperate zone between 50-60°N, where the polar air mass and the sub-tropical air mass

converge. The resulting temperature and density gradients can lead to baroclinic instability and

the formation of high- or low pressure systems.
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The characteristics affecting vertical motion can be explained by the omega equation Eq. (2.13). It

is a diagnostic equation, specifying the distribution of large-scale vertical motion. In a system with

the pressure as vertical coordinate (p-system) it can be written as following (cf. quasigeostrophic

theory):

(

σ∇2
p + f2

0

∂2

∂p2

)

ω = −f0
∂

∂p
[(vg · ∇p) (ζg + f)] +∇2

p

[

(vg · ∇p)

(

−∂φ

∂p

)]

= (1) + (2) ,

(2.13)

whereω is the vertical wind velocity in the p-system,σ is a stability parameter,f0 the Coriolis pa-

rameter assumed to be constant,p the pressure,vg the geostrophic wind vector,ζg the geostrophic

vorticity, f the planetary vorticity assumed to vary linearly along longitudes andφ the geopoten-

tial. It is emphasized that diabatic effects are not depicted in Eq. (2.13) butare referred to in the

text.

The omega equation (2.13) is a result of the difference between the vorticityequation, which was

differentiated with respect top ( ∂
∂p ) and the Laplace operator (∇2) of the geostrophic approx-

imated heat equation. These assumptions are based on the experience thatthe geostropic and

hydrostatic balance are good approximations for both the averaged hydro- and thermodynamic

conditions of the atmosphere (Beheng, 2007). According to Eq. (2.13) the large-scale uplift is

controlled by two mechanisms, given by the two terms on the right side of the equation. The first

term (1) controllingω is the differential vorticity advection and the second term (2) describes the

advection of the thickness of the atmospheric layer, equivalent to the mean temperature advection.

Note thatω can be put in relation to the vertical component of the velocity vectorw in the z-system

by:

dp

dt
= ω =

∂p

∂t
+ v · ∇p ≈ ω

∂p

∂z
= −ρgw (2.14)

This approximation is made on the basis of an order of magnitude suggestion. Hence, in case of

lifting, ω is negative, whilew is positive.

According to Eq. (2.13) lifting can be expected in a region with positive vorticity advection

increasing with height (or decreasing negative vorticity advection), which can occur downstream

of a trough. Or in an area with a maximum layer thickness advection due to warmair advection,

for example, in front of a warm front. Moreover, latent warming (Holton,1972) can lead to lifting

as well. Hence, lifting is highest in the vicinity of a short-wave pressure system because of the

higher relative vorticity (ζg) advection compared to the planetary vorticity (f ) advection.
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2.2 Condensation levels

If an air parcel is accelerating, as described in the previous section, it can reach a certain level

where condensation sets in. The different condensation levels, dependent on the trigger mech-

anism, will be explained in this section and an overview of the detection of theselevels on the

thermodynamic diagram by Stüve will be given.

Lifting condensation level

If an air parcel is lifted dry adiabatically, for example when flowing over anorographic obstacle

or a front, the level where condensation starts is called the lifting condensation level (LCL). Since

clouds can develop at this level, it is equivalent to the lowermost cloud level.On thermodynamic

charts (e.g. tephigram, skewT-logp or Stüve) this level is located where thedry adiabatic curve,

based on the near-surface temperature, and the line of constant saturation mixing ratio, based on

the dew-point at the surface, intersect (see Stüve diagram in Fig. 2.1).

pκ

T

LCL

LFC

τ0 T0

CT

Figure 2.1: Schematic of the lifting condensation level (LCL), the level of free convection (LFC)
and the cloud top (CT) on the Stüve diagram. Green: dry adiabats; Red: moist adiabats; Red
dotted: saturation mixing ratio.T0 is the temperature andτ0 the dew-point at the ground (Kunz
et al., 2006).

Convective condensation level

In contrast to the passive uplift, an air parcel can also actively become buoyant, by surface warm-

ing due to intensive solar irradiation or cooling aloft. This process can proceed as follows. In

the morning, the atmosphere nearest to the surface is usually stably stratifieddue to long-wave

emissions. If the stratification close to the ground becomes adiabatic or superadiabatic, air parcels

can rise upwards resulting in vertical exchange of heat and humidity. Thebuoyancy of the air

parcels will continue until the air parcel and the surrounding have the sametemperature. This is

the case when a slightly superadiabatic air parcel reaches a level whereit has the same tempera-

ture as the environment. This level is termed convective condensation level(CCL) and indicates
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the possibility of further ascent.

On the Stüve diagram this level is the point where the line of constant saturation mixing ratio

(based on the dew-point temperature at the ground) intersects with the vertical temperature profile.

Following this level dry adiabatically to the ground gives the convective temperature, which is the

minimum temperature that has to be reached on the ground for triggering convection.

Level of free convection

If the stratification of the atmosphere is conditional unstable and a volume of airis lifted by

external forces, it may reach a certain height, where it is warmer than the environment and thus

becomes positively accelerated. This height is called the level of free convection (LFC). It is the

height where the moist adiabatic curve from the LCL and the vertical temperature profile intersect

in the Stüve diagram (Fig. 2.1).

Equilibrium level

The equilibrium level (EL) or cloud top (CT) is defined as the level where the temperature and

density of the air parcel become identical and, thus, the upwards acceleration is zero.

The EL is located where the moist adiabatic curve, based on the CCL, LCL orLFC, intersects

with the temp curve. For deep convection this level is usually near the tropopause. Because of

the inertia of the air parcels, the actual CT can be a few hundred meters higher than the EL, for

example when clouds overshoot into the tropopause. This is a characteristic feature of intense

cumulonimbus clouds.

2.3 Stability and thunderstorm measures

The stability of the atmosphere can be described by various energy parameters and convective

indices. They are calculated from temperature and moisture, sometimes complemented by kinetic

parameters, and give an idea about the atmospheric potential for thunderstorm development ac-

cording to the properties of the prevailing air mass. For example, Kunz (2007a) evaluated which

of these indices and parameters are the best to predict isolated and severe thunderstorms. This

chapter will introduce convective indices considered in this thesis (cf. Chapter 3).

Potential temperature

The potential temperature is defined as the temperature of an air parcel thatis moved dry adiabat-

ically from the pressure levelp to the levelp0 = 1000 hPa. It is a conserved quantity for adiabatic

processes and proportional to the entropy of an air parcel:

θ = T

(

p0
p

)κ

(2.15)

with p0 = 1000 hPa andκ = R/cp = 0.286.
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Equivalent potential temperature

The equivalent potential temperature, defined by

θe = θ exp

(

lrs
cpT

)

, (2.16)

is the temperature of an air parcel that is lifted dry adiabatically until it reaches the level of

condensation and pseudo adiabatically afterwards, until the whole water vapor is condensated

assuming that all water instantaneously leaves the volume. Thereafter it is moved dry adiabatically

down to the levelp0 = 1000 hPa. Consequently, this temperature reflects the latent energy of the

condensation process. During a moist adiabatic process,θe is constant with height.

Convective Available Potential Energy

The convective available potential energy (CAPE; Moncrieff and Miller,1976) is the potential

energy a parcel would have, if lifted pseudo adiabatically from the LFC orCCL to the EL. It

measures the energy that is available for convection and describes the ability of an air parcel to

become buoyant. The CAPE can be calculated as:

CAPE = Rl

∫ EL

LFC
(Tv − Tve)d ln p (2.17)

with Tv for the virtual temperature of the air parcel andTve for the virtual temperature of the

environment.

If an air parcel is lifting CAPE values are high and indicate a higher potentialfor severe weather.

As CAPE transforms to kinetic energy, the vertical wind velocity can be determined as

w =
√
2CAPE. (2.18)

In the skewT-logp thermodynamic diagram the CAEP is proportional to the area between the

moist adiabatic lifting curve of an air parcel and the temp curve above the LFC. In Table 2.1

characteristic values for the CAPE with respect to the thunderstorm development are presented.

Table 2.1: CAPE values and thunderstorm probabilities for southern Germany according to Kunz
(2007a).

CAPE in J kg−1 Thunderstorm probability

< 400 Thunderstorms unlikely
400 - 1500 Thunderstorms likely

> 1500 Severe thunderstorms with hail likely
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Lifted Index

The Lifted Index (LI; Galway, 1956) is the difference between the air temperature in 500 hPa and

the temperature of an air parcel that was lifted dry adiabatically from the surface to the LCL and

from there moist adiabatically to 500 hPa:

LI = T500hPa − Tsurface→500hPa. (2.19)

If the equation yields a negative temperature, the air parcel in 500 hPa is warmer than the envi-

ronment and the atmosphere is assumed to be unstable. If LI is positive, the atmosphere is stable

and thunderstorms are unlikely (cf. Table 2.2).

Table 2.2: LI values and thunderstorm probabilities for southern Germanyaccording to Kunz
(2007a).

LI in K Thunderstorm probability

> - 1 Thunderstorms unlikely
(-1) - (-4) Thunderstorms likely

< -4 Severe thunderstorms with hail likely

Showalter Index

The Showalter Index (SI; Showalter, 1953) is similar to the LI but refers tothe temperature dif-

ference between 500 hPa and of an air parcel lifted from 850 hPa to 500hPa:

SI = T500hPa − T850hPa→500hPa. (2.20)

The advantage of this index is that it is less dependent on the surface properties, compared to the

LI. Negative values indicate that the lifted air parcel is warmer than the environment and becomes

positively accelerated (cf. Table 2.3).

Table 2.3: SI values and thunderstorm probabilities for southern Germanyaccording to Kunz
(2007a).

SI in K Thunderstorm probability

> 2 Thunderstorms unlikely
2 - 0 Thunderstorms likely
< 0 Severe thunderstorms with hail likely

Potential Instability Index

Van Delden (2001) introduced another thunderstorm index which is based on the fact that thun-

derstorm development is related to the potential instability of the atmosphere. Ifthe atmosphere



2.3. Stability and thunderstorm measures 15

is unstable,θe decreases with increasing height. This characteristic is used to define the Potential

Instability Index (PII)

PII = (θe925hPa − θe500hPa) / (Z500hPa − Z925hPa) . (2.21)

Z is the height of the pressure levels, the unit of PII is K km−1. The values of PII for southern

Germany can be seen in Table 2.4 (Kunz, 2007a).

Table 2.4: PII values and thunderstorm probabilities for southern Germany according to Kunz
(2007a).

PII in K km −1 Thunderstorm probability

< 0 Thunderstorms unlikely
0 - 1 Thunderstorms likely
> 1 Severe thunderstorms with hail likely

Deep convective Index

This convective parameter, introduced by Barlow (1993), is based on the LI and combines the

properties of equivalent potential temperature at 850 hPa with the latent instability at the surface

(Haklander and Delden, 2003). The Deep convective Index (DCI) designed to predict severe

thunderstorms is defined by:

DCI = (T + τ0)850hPa − LI (2.22)

with τ0 as dew-point temperature. The higher the values of DCI the higher is the probability for

deep convection to occur (cf. Table 2.5).

Table 2.5: DCI values and thunderstorm probabilities for southern Germany according to Kunz
(2007a).

DCI in K Thunderstorm probability

< 21 Thunderstorms unlikely
22 - 24 Thunderstorms likely
> 24 Severe thunderstorms with hail likely

Vertical Totals

The Vertical Totals (VT; Miller, 1972) is defined as the vertical temperaturedifference between

850 and 500 hPa

V T = T850hPa − T500hPa. (2.23)
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If the temperature difference is higher than 28 K, thunderstorms are likely.If the VT in south-

ern Germany reaches values larger than 30 K, the potential for thunderstorm development is high

(Kunz, 2007a).

2.4 Development and characteristics of thunderstorms

Severe thunderstorms occur above all during the summer months in Central Europe. They are

often accompanied by weather phenomena such as wind gusts, heavy rainfall, lightning or even

hail and tornadoes. They are a manifestation of deep convection and, thus, strongly rely on condi-

tional instability, the moisture content (especially in the lowermost layers of the atmosphere) and

a triggering mechanism that lifts an air parcel to the LFC or CCL (cf. Sec. 2.1). Triggering mech-

anisms may comprise buoyancy related to solar radiation at surface level, synoptic-scale uplift in

front of a trough (cf. omega equation), forced uplift due to flow over mountains, uplift on frontal

zones (cf. Eq. 2.13) or convergence zones developing in the contextof thermal direct circulations

like land sea circulations or mountain and valley winds. Furthermore, anotherimportant factor

controlling the kind of storm organization is the vertical shear of the horizontal wind (Weisman

and Klemp, 1986). Depending on the strength of the vertical wind shear in terms of speed and

directional shear and the amount of convective energy, some types of thunderstorms may exist for

several hours.

Single-cell thunderstorms

Single-cells thunderstorms are the most frequent types of thunderstorms that occur in Central

Europe during the summer months. They usually develop during calm conditions due to a weak

pressure gradient and weak vertical wind shear. When solar radiationheats the ground and accord-

ingly the adjacent atmospheric layers up to higher levels, the stratification may become unstable

and single-cells may develop. In the mean, the horizontal extent of a cell ranges from one to ten

kilometer and the lifetime is between 30 minutes and one hour. Because of their short lifetime

they are usually not associated with considerable damage.

Conceptually, a single-cell thunderstorm passes through three stages of development. In the first

stage, (cumulus or developing stage; Fig. 2.2) a bubble of moist and warm air is ascending until

it reaches the CCL or LFC, where clouds of the cumulus type can develop.In this process,

latent heat of condensation is released and the air parcel is able to ascend further. Hence, the

cloud is growing vertically. If the air parcel crosses the 0◦-isotherm, cloud droplets can freeze

and effectively grow, for example due to collision with supercooled liquid water drops forming

graupel and eventually hail particles.

During the mature stage (Fig. 2.2), ice particles and rain drops descend due to their mass and

induce a downdraft through frictional forces. This downdraft gets further accelerated by additional

cooling due to melting/evaporation processes during sedimentation of the hydrometeors.

After some time, the downdraft cuts off the cell from the warm and moist inflowof air at lower
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levels. This is the stage of dissipation (Fig. 2.2) when the development of the cell is finished and

the single-cell dissolves.

Figure 2.2: Life cycle of a single-cell including cumulus stage, mature stage and dissipating stage.
Red arrows show the updraft areas, blue arrows the downdraft andthe black dotted line the 0◦-
isotherm (http://www.atmos.albany.edu).

Multi-cell thunderstorms

A multi-cell thunderstorm is a cluster of short-living single-cell thunderstorms that are in different

stages of development. Multi-cells have a horizontal extent of more than ten kilometers and a

lifetime of several hours. They develop in an environment with considerable vertical wind shear,

in particular speed shear. The vertical shear of the horizontal wind velocity leads to a separation

between the areas of up- and downdraft. Hence, the downdraft doesnot cut off the updraft and the

cell complex can develop further. Due to this process, the downdraft induced on the rear side of

the cell complex stretches underneath the warm and moist air on the ground (labeled as gust front)

and, hence, triggers a new updraft in front of the multi-cell, where new single-cells can develop

(Fig. 2.3). Because of these characteristics, multi-cells are usually accompanied by heavy rain,

hail and gusts.

Squall lines

Squall lines are lines of severe thunderstorms that usually form in connection with a cold front

or convergence line. The mechanism maintaining this system is similar to that of themulti-cells

with a strong gust front several kilometers ahead of the system. Squall lineshave a high length-to-

width ratio with a horizontal extent of more than 100 km; they may exist for several hours. They

are characterized by a narrow region with heavy convective precipitation, maybe hail and a broad

stratiform precipitation area in the rear.
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Figure 2.3: Life cycle of individual cells as part of a multi-cell complex. Cellone is in the cumulus
stage, cell two and three are in the mature stage and cell four in the dissipatingstage. The inflow
of moist and warm air leads to an updraft (red arrow) while there is a separated downdraft in the
back of the cell (blue arrow). The dotted line indicates the gust front at the ground (from Kunz
et al., 2006).

Mesoscale convective systems and complexes

A meso-scale convective system (MCS) usually develops in front of the warm sector of a low

pressure system downstream of a mid-level trough, where synoptic-scale lifting prevails. Houze

(1993) defined a mesoscale convective system as an ensemble of thunderstorms with a horizontal

precipitation area of at least 100 km2, which also comprises squall lines. In contrast, a meso-scale

convective complex (MCC) is defined after Maddox (1980) by a cloud shield with a horizontal

extent of more than 100,000 km2 on the≤ -32°C temperature level. In addition, the interior

cold cloud region with a temperature of≤ -52°C must have an area larger than 50,000 km2 and

must persist for more than six hours. Both, MCS and MCC, are characterized by widespread

precipitation areas with embedded convection cells and can exist for several hours.

Super-cell thunderstorms

A super-cell thunderstorm develops in connection with meso-scale lifting downstream of an

upper-air trough in an environment with strong vertical wind shear of bothspeed and directional

shear. It can be interpreted as a very large and strong single-cell with two downdraft regions that

additionally rotates (Fig. 2.4). The rotation is triggered by the directional shear of the horizontal

wind that induces vorticity to the flow, such that air in the updraft is vertically tilted, with the

consequence that the horizontal axis of the vorticity component related to the wind speed shear

becomes vertically orientated (i.e. tilting). Due to the strong acceleration in the updraft, the air

parcels are vertically stretched, further increasing the horizontal components of the vorticity (with

a vertical axis) due to the conservation of angular momentum (i.e. stretching). According to the

vorticity equation (e.g., Dutton, 1986), these two mechanisms lead to a significant increase of
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horizontal vorticity on a local scale, a feature that may also lead to the formation of a tornado.

The wind shear separates the regions of up- and downdraft allowing anpermanent energy supply.

Thus, super-cells may exist for several hours. A lifted inversion, forexample, favors the devel-

opment of super-cells, as it acts to block the triggering during lower temperatures initially. Only

when the heating reaches its maximum triggering of convection sets in, leading toan ascent of

very warm energetic air. The development is forced by a low level jet in thelower troposphere

(up to 700 hPa) that transports moist and warm air into the thunderstorm cell.

Super-cells are the most dangerous thunderstorms and always occur with high wind gusts, large

hail, heavy precipitation and sometimes a tornado (Weisman and Klemp, 1986).

Figure 2.4: Vertical cross-section through a super-cell. The bold red arrows marks the rotating
updraft and the inflow of moist and warm air to the super-cell, while the blue arrows show the
separated downdrafts at the and in the rear of the cell (after Bluestein and Parks, 1983, modified
by Kunz et al., 2006).

2.5 Development of hail

Hailstones are large ice hydrometeors with a bulk density of usually less than 0.8 g cm−3 and

hence, less dense than pure ice (0.9 g cm−3; List, 1958a and 1958b). A hailstone has per def-

inition (Houze, 1993) a minimum dimension of 5 mm and is thus, larger than snow crystals,

graupel (snow pellets) and ice pellets. The largest hailstone, for example, was found on July 23rd,

2010 in Vivian, South Dakota (US), and had a diameter of more than 20 cm (NCAR1). Due to

their dimension and density, hailstones can cause major damage to buildings, cars and agriculture.

1http://www2.ucar.edu/magazine/features/all-hail
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For the evolution of hailstones a strong updraft in a thunderstorm is necessary. Updraft speeds

of up to 40 m s−1 have been observed in deep convective storms (Crook, 1996; Xu andRandall,

2001). Within the updraft, cloud droplets and small raindrops are rapidly transported to regions

with cold temperatures. However, these drops do not freeze at once, but remain liquid down to

temperatures of less than -20°C, due to the limited number of ice nuclei; these are known as su-

percooled droplets. Supercooled droplets may collide with ice particles that are moving from the

rear downdraft region to the updraft region, causing them to freeze upon the ice surfaces. Through

this process ice particles grow to sizes of one to five millimeters, which are by definition, graupel

particles. This type of growth is called collection growth or riming and increases sharply with

drop size (Pruppacher and Klett, 1997). These and irregular graupel particles are the basis for

further development of hail and are therefore defined as hail embryos.

Because of the vertical wind shear in a thunderstorm cell, graupel particles may get into the up-

draft of the cloud. At the lateral sides of the rotating updraft of the thunderstorm (red line in

Fig. 2.4) the updraft is only slightly larger than the gravitational force, makingthe vertical motion

of the particles very slow. Accordingly, many ice crystals and supercooled water droplets can

accumulate on a graupel particle allowing hailstones to grow very fast. This process is particu-

larly effective in the region of the cloud where temperatures range between 0°C and≈ -15°C and

many of the supercooled droplets can be found. Sometimes, hailstones may grow to diameters of

several centimeters. Thus, the size of a hailstone is dependent upon the vertical wind speed and

the time span the hail embryos stay in the updraft region containing supercooled drops.

The properties of a hailstone are defined by two different kinds of collection growth (riming). Dur-

ing dry growth, the surface temperature of the hail embryos does not exceed the freezing/melting

point, even if the water droplets release latent heat due to surface freezing on the graupel particles.

Hence, the structure of the hailstone becomes opaque because of air pockets embedded within the

growth layer.

If the surface temperature of the hailstone rises over the freezing/melting point due to the release

of latent heat freezing of the supercooled droplets, the growth mechanism is called wet growth.

Because of this process, the hailstone can evolve into a water-ice system, aso called spongy ice

(Strangeways, 2007). The liquid water can flow into the air pockets and thestructure of the hail-

stone becomes transparent. Remaining water splits off the surface of the hailstone in the form of

liquid drops and may form a new hail embryo (shedding). Due to the changeof the different types

of growth and the permanent change between growth and melting in the cloud,hailstones often

have a layered structure (Fig. 2.5).

When reaching the upper levels of a convective cloud, the hailstones may be transported by strong

winds to the front side of the thunderstorm. While the thunderstorm is moving forward, the hail-

stones pass a region with a maximum updraft and are accelerated further.After leaving the updraft

at the front of the thunderstorm, hailstones precipitate due to their large mass.
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Figure 2.5: Profile of a hailstone, showing the layer structure caused by the change between
growth and melt (http://www.martin-wagner.org).

The terminal fall velocity of hailstones depends on their diameter. Their speed ranges between 10

and 50 m s−1 and can be described empirically by an equation of Pruppacher and Klett (1997),

valid for an air pressure of 800 hPa, a temperature of 0°C and a diameter between 0.1 and 8 cm:

v ≈ 9D0.8, (2.24)

with D for the diameter in cm andv in m s−1.
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To categorize the relevant synoptic systems, the objective weather type classification of the Ger-

man Weather Service (Deutscher Wetterdienst, DWD) is used and applied to reanalysis data from

the European Center for Medium-Range Weather Forecast (ECMWF) and to an ensemble of eight

different regional climate model (RCM) runs. The investigation area is Germany, but the methods

applied are tested and adjusted for the German federal state of Baden-Württemberg only, where

comprehensive loss data from a building insurance company is available.

In the first section, a short overview of the model and observational data is given, followed by

an introduction of the weather type classification scheme of DWD and its application to model

data. In the second part, methods to categorize the weather types into hailstorm-related types and

hailstorm-unrelated types are outlined. Furthermore, the methods used to analyze the temporal

variability of specific weather types are described.

3.1 Data sets

3.1.1 Reanalysis data and regional climate models

For the determination of specific weather types, both reanalysis and climate model data are used.

In the climate model data, the control runs include the years from 1971 to 2000, while the future

projections are available for the years from 2001 or 2011 to 2050 for theIPCC emission-scenarios

A1B and B1 (IPCC, 2007). The different scenarios estimate possible future developments of

economy and population in the 21st century. The scenarios used for this thesis can be described

as follows (IPCC, 2007):

• A1B: Future world with rapid economic growth and an increasing global populationuntil

the mid of the 21st century and a decreasing population afterwards. A quick spread of

new and efficient technologies is assumed, as well as a balanced use of all energy sources.

The income and way of life converges between regions and there are extensive social and

cultural interactions worldwide.

• B1: Same population changes and growth of the economy as in A1B, but changes towards

a service and information economy. The introduction of new clean and resource efficient

technologies is expected and emphasis is put on global solutions to economic,social and

environmental stability.

23
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CCLM-KL

The Consortium for Small-scale Modeling in Climate Mode (COSMO-CLM, abbreviated by

CCLM), developed and applied by DWD, is a non-hydrostatic local climate model (Adrian and

Frühwald, 2002). The CCLM consortial runs, hereinafter referredto as CCLM-KL, are based on

the CCLM model version 3.1. Their horizontal spatial resolution is 0.167° (≈ 18 km) and they

are available for the control period C20 and the IPCC scenarios A1B andB1 for the time period

from 2001 to 2048/50 (the A1B scenario is just available until 2048). The model is driven by

the global coupled atmospheric-ocean model ECHAM5/MPI-OM (European Center/HAmburg

Model Version 5/Max Planck Institute - Ocean Model) developed by the Max-Planck Institute for

Meteorology, Hamburg (Germany). The ECHAM5 model is based on the weather forecast model

of the ECMWF at T63 spectral resolution, while several parameterizationshave been adjusted

especially for the modeling of climate. Further details can be found, for example, in Roeckner

et al. (2003). The calculations of the CCLM-KL were performed for the years 1950 to 2100 on a

rotated grid and for two model runs. The thesis considers the period between 1971 and 2048/50.

The two runs are driven by two different realizations of ECHAM5, whichdiffer by about their

starting point for 25 years.

CCLM-ECHAM5

These CCLM runs are driven by the initial and boundary conditions of theglobal climate model

ECHAM5. In comparison to the CCLM-KL runs the CCLM version 4.8 was used. This data set

was calculated by the Institute for Meteorology and Climate Research (IMK-TRO) of the Karl-

sruhe Institute of Technology (KIT) within the project "Herausforderung Klimawandel", funded

by the Ministry of the Environment, Nature Conservation and Transport Baden-Württemberg.

The data sets of the first nesting step of two have a temporal resolution of sixhours and a spatial

horizontal resolution of 0.44° (≈ 50 km). They are available for the European area from 1968

to 2000 and 2008 to 2050 and on four different pressure levels (1000hPa, 850 hPa, 700 hPa and

500 hPa). The data of the first three years of each time period are not used due to the spin-up time

of the model. Three different realizations of ECHAM5 for the A1B and B1 scenarios are used

(cf. Table 3.1).

The values are available only on a rotated grid and the grid has to be rotated toa latitude/longitude

grid, as in the following the wind direction needs to be calculated from the wind vectors. The re-

rotation is performed by applying the Climate Data Operator (CDO1) software.

CCLM-CCCma3

For the CCLM-CCCma3 model runs, the CCLM version 4.8 was initialized and driven by the

third generation of coupled Global Climate Model (CGCM3) of the Canadian Center for Climate

Modeling and Analysis (CCCma). The CGCM3 couples the third generation Atmospheric Gen-

eral Circulation Model (AGCM; McFarlane et al. 2005, Scinocca et al. 2008) of the CCCma and

1http://www.mpimet.mpg.de/fileadmin/software/cdo/cdo.pdf
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the three-dimensional Modular Ocean Model2 (MOM) of the Geophysical Fluid Dynamics Lab-

oratory (GFDL). The coupling between those models happened daily and included monthly flux

adjustments for heat and fresh water as well as a monthly ocean surface temperature adjustment

(Flato et al., 2000). The spatial horizontal resolution of the AGCM is 2.8°, while the resolution

of the ocean model is approximately 1.4°, and thus, each atmospheric grid cell has 6 underlying

ocean grids cells3.

The model runs of the CCLM-CCCma3 again were accomplished by IMK-TRO. The data sets

have the same horizontal spatial and temporal resolution as the CCLM-ECHAM5 model runs and

are available on a rotated grid. Likewise the IPCC scenario A1B was simulated.

Table 3.1: Overview of the regional climate models used in this thesis.

CCLM-KL CCLM-ECHAM5 CCLM-CCCma3

Model-version COSMO-CLM 3.1 COSMO-CLM 4.8 COSMO-CLM 4.8
Forcing ECHAM5 run 1, 2 ECHAM5 run 1, 2, 3 CCCma3
Emission-scenario A1B, B1 A1B A1B
Horizontal resolution 0.167°≈ 18km 0.44°≈ 50km 0.44≈ 50km
Simulation period 1971-2048/50 1971-2000 1971-2050

2011-2050
Referred to as CKLC20R1 CE5C20R1 CC3C20R1

CKLA1BR1 CE5A1BR1 CC3A1BR1
CKLB1R1, ... CE5A1BR2, ...

ERA40/ERA-Interim

The ERA40 and ERA-Interim reanalysis, released by ECMWF, were calculated backdated with a

current model version and include a large set of measurements, for example from radio soundings,

satellites, buoys, airplanes and synoptic stations. The ERA40 reanalysesrepresents the climate of

the period 1971 to 2001 and is available every six hours and with a spatial horizontal resolution of

1.25°, which is approximately 125 km, on a reduced Gaussian grid on 23 pressure levels (Uppala

and coauthors, 2005).

ERA-Interim is an interim reanalyses from 1989 onwards and is developed by ECMWF in prepa-

ration to the next generation of reanalysis that is planned to replace the ERA40. Important im-

provements compared to ERA40 are, among others, a new and better humidity analysis, improved

model physics and improvements due to observational systems. The corrected hydrological cycle

leads to a better precipitation-evaporation ratio, which is globally closer to zero in comparison

to the ERA40 reanalyses (Simmons et al., 2007). This makes this new generation of data more

reliable than its proceeding version.

2http://www.gfdl.noaa.gov/ocean-model
3http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1
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These data from these reanalysis are used for the determination of the different weather types and

for the evaluation of the control runs of the different climate models. As theyare incorporating

observations, the two data sets are also used for evaluation purposes. The data sets were obtained

at different pressure levels at 12 UTC from the Climate and EnvironmentalRetrieving Archive

(CERA4) data center. A problem, related to all model data downloaded from the CERAdatabase,

was negative values of humidity. Since these values almost exclusively occur at individual grid

points at the uppermost pressure levels, they most likely result from the interpolation from model

to pressure levels. To avoid any loss of data, the values are set close to zero in this study.

CCLM-ERA40

For the CCLM-ERA40 model runs the CCLM version 4.8 was used and driven by initial and

boundary condition of ERA40 (ECMWF; Par. 3.1.1) reanalyses. The data set was calculated on a

rotated grid by IMK-TRO. The horizontal spatial resolution again of the first nesting step is 50 km

and the data is available for 1968 to 2000. Again, the first three years arenot considered. Due to

the rotation of the grid, the same routine as for the CCLM-ECHAM5 data is applied to re-rotate

the grid to a latitude/longitude grid.

3.1.2 Objective weather type data for Germany

The DWD calculated objective weather types according to the classification method that will

be presented in paragraph 3.2.2. The time series starts on July 1st, 1979 and is based on three

different operational weather forecast models. Until the end of 1991,the weather types were

calculated on the basis of the BKF (German for baroclinic-humid: ’baroklin-feucht’) model which

had a coarse spatial horizontal resolution of 254 km and a small number ofvertical layers. Hence,

the 1000 hPa level instead of the 950 and the 550 hPa instead of the 500 hPahad to be used. The

BKF model was replaced in 1999 by the DWD European model (EM) with a horizontal resolution

of approximately 55 km. Since 22 November 1999, the present operationalglobal model GME is

used, which is available on an icosahedral-hexagonal grid. Due to grid differences, the GME grid

was interpolated to the grid of the EM (Bissolli and Dittmann, 2001). Weather types calculated

by the DWD are available from their website5.

3.1.3 Meteorological station data

To compare statistical distributions of stability indices derived from the model simulations for

past decades with observations, data of the radiosonde station of Stuttgart in Baden-Württemberg

are used. The station is operated by the DWD and located at an altitude of 314m a.s.l. The values

for temperature, mixing ratio and pressure at 12 UTC and the time period 1971to 2000 are used

to calculate the Lifted Index according to Eq. (2.19) in Section 2.3, starting from the surface. The

values are merely used as estimates rather than to verify model results.

4http://cera-www.dkrz.de
5http://www.dwd.de - Klima und Umwelt; 29/03/2010



3.2. Weather type classifications schemes 27

3.1.4 Insurance data

For the analysis of hailstorm-related weather types, loss data provided by the ’SV Sparkassen-

Versicherung AG’ building insurance company (hereafter referred toas SV) is used for the period

from 1986 to 2008. The data is resolved in 5-digit postal code zones of Baden-Württemberg

(Fig. 3.1) and includes the number of claims, value of reimbursement as well as the total number

of contracts and the insured values per year, which are important for a correction of the data set.

Even if the insurance data is strongly limited to settled regions that are affectedby hailstorms and

rely on the vulnerability of the buildings, they are currently the best availableinformation about

severe hailstorms.

In this thesis, a hail day is classified if more than 10 claims were settled on a day.This definition

prevents non-severe hail days to enter the sample as well as failures dueto a wrong assignment of

the day.

From 1960 to 1994, an insurance for natural hazards was obligatory for any building (private

and commercial) in Baden-Württemberg, exclusively offered by the "Gebäudeversicherung". But

in 1994 this obligation was abolished. Nevertheless, approximately 70% of allbuildings were

still insured by the successor, the SV, until 2009. Due to the tempered change in the number of

contracts, the loss data were annually normalized by mean value (Weber, 2006). In doing so, it is

assumed that the portfolio remained constant over the entire time period.

Damage to buildings caused by hailstones

The degree of damage and thus the amount of claims are controlled by the amount and the maxi-

mum size of the hailstones, the wind speed (hailstones get accelerated), but also by the exposure

of the buildings. Newer buildings often feature a higher vulnerability due to roof windows or

additional constructions such as solar panels, winter gardens or roller blinds. Other factors that

influence the damage on buildings are shadowing effects by trees or otherbuildings and the used

construction materials. Analyses by Stucki and Egli (2007), for example,showed that in the

Switzerland 90% of all claimed damages are on residential buildings and a big fraction on roofs

or claddings.

3.2 Weather type classifications schemes

3.2.1 Subjective weather type classification after Hess andBrezowsky

The subjective weather type classification is based on the calendar of large-scale weather types of

Europe, created by Baur (1947). He defined large-scale weather types as the air-pressure distribu-

tion with at least the size of Central Europe that persists for several days. Baur analyzed surface

weather charts and classified the prevailing cyclonic or anticyclonic weather types according to

the geographical location of the pressure centers as well as the location and the extension of the

frontal zones, yielding 21 different weather types.
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Figure 3.1: Number of days with hail damage claims in the corresponding postal code area be-
tween April and September of the years 1986 to 2000.

Due to improvements in meteorological observations, for example by additionalaerological mea-

surements, several changes in this classification method were conducted by Hess and Brezowksy

(1952). They published the "Catalogue of larg-scale weather types of Europe" in 1952, which

contains all weather types from 1881 to 1950. Important for the modified classification meth-

ods are the pressure distribution at sea level and the 500 hPa geopotential height charts, where

troughs and ridges and the extension of the frontal zones are analyzed. Nowadays, 30 different

weather types are distinguished (Appendix A.1) according to Gerstengarbe and Werner (2005).

The weather types can be grouped into the three main categories of zonal, meridional and mixed-

type circulations.

Since the subjective weather type classification is highly dependent on the analyst, this method is

not used in this thesis. Nevertheless, it is the pioneer method in this area.

3.2.2 Objective weather type classification (oWLK) - DWD

The objective weather type classification (oWLK) by DWD considers threecriteria that are com-

bined into 40 different weather types. This includes the general flow direction in 700 hPa, which

can give information about the potential stability of the atmosphere regardingthe origin of the

air mass, the vorticity in the lower and middle troposphere, which gives information about meso-
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scale uplift, and the humidity in the entire troposphere. These properties arecalculated on a

selected grid of the DWD European model (EM) that covers Germany and afew adjacent regions.

Since the target area is Germany, the grid points are weighted non-uniformlyto avoid emphasis

on grid points that are very close to the borders of the area, but already beyond the borders of

Germany. Hence, the grid points in the center of the domain are weighted by a factor of three,

the surroundings by a factor of two, whereas the ones that are close to the border of Germany are

not weighted. The remaining grid points are not included in the calculation (Fig. 3.2; Bissolli and

Dittmann, 2001). The resulting weather types are classified by a five digit identifier as follows:

AAC950C500H

with AA for the general flow direction (NE, SE, SW, NW, XX), C950 and C500 for vorticity in 950

and 500 hPa (C = cyclonal, A = anticyclonal) and H for the humidity (W = wet, D =dry).

Figure 3.2: Classification area of the DWD objective weather type classification including three
different weighted subareas. Within the central frame the grid point weight is three, within the
surrounding frame it is two and the other gray shaded area has a grid weight of one. The grid area
itself is based on the former DWD model EM (Bissolli and Dittmann, 2001).
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Advection type/ flow direction

The advection type (wind index) is derived from theu- andv-components of the wind vector at

the 700 hPa level at each grid point considered by the weighting. To determine the wind direction,

the wind rose (360°) is split into 36 direction sectors where each is 90° wideand shifted by 10°

from each other (first sector is between 0° and 90°, second sector between 10° and 100°, last

sector analogously between 350° and 80°). For each sector the numberof grid points with a

corresponding wind direction are counted and added up considering their grid weight. The sector

with the maximum number of grid points is defined as wind index, if at least two thirds of the grid

points are attributed to this sector. If these requirements are fulfilled, the sector with the maximum

grid points is assigned to the main direction intervals:

• NE = northeast = [0°, 90°)

• SE = southeast = [90°, 180°)

• SW = southwest = [180°, 270°)

• NW = northwest = [270°, 360°)

If the threshold of 66.7% is not exceeded at any sector, the advection type cannot be clearly de-

fined and is labelled by XX.

An example is the following: If the wind direction at a grid point with a grid point weight of three

is 185°, it can be assigned to 9 different sectors ([180°, 270°) to [100°, 190°)) and shows up in

these sectors for three times. In the case, the maximum wind sector is the sector[180°, 270°),

including more than 2/3 of all grid points, the corresponding wind direction is defined as the

center of this sector, thus 205° and accordingly SW.

Cyclonality

The cyclonality index gives information about the bending of the geopotential areal at the 950 and

500 hPa levels. It is similar to the geostrophic vorticity in the p-system

ζg =
1

f
∇2φ =

1

f

(

∂2φ

∂x2
+

∂2φ

∂y2

)

≈ 1

f

φ(i+ 1, j) + φ(i− 1, j) + φ(i, j + 1) + φ(i, j − 1)− 4φ(i, j)

(∆x)2

(3.1)

calculated for every grid point(i, j) and averaged for each separate level, while/phi is the geopo-

tential. Note that∆x ≡ ∆y because of the equidistant grid so that(∆x)2 occurs in the denomina-

tor. The calculated values are indicators for the cyclonality index. A positive value is equivalent

to cyclonality (C; positive vorticity), a negative one is equivalent to anticyclonality (A; negative

vorticity).
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Humidity

The humidity index compares the precipitable water (PW) content of the troposphere on each day

with a long-term mean. Therefore, the weighted areal mean of the PW is calculated as the integral

of the mixing ratio from the lowermost (950 hPa) up to the uppermost pressure level (300 hPa):

PW= −1

g

p300
∫

p950

rdp =
1

g

5
∑

i=1

1

2
(ri+1 + ri) (pi+1 − pi) (3.2)

wherer is the mixing ratio

r = 0.622
RHE

p−RHE
, (3.3)

RH the relative humidity,E the saturation vapor pressure (in hPa) andi are the different pressure

levels starting with the lowermost level. The PW values are calculated from temperature and rel-

ative humidity. Since the PW shows an inter-annual variation, corresponding to the temperature,

the actual value is compared to an approximately 18 year daily average value(July 1979 to De-

cember 1996). If the value of PW is exceeding the average value, the atmosphere is denoted to

as wet (W), if not, it is denoted to as dry (D). A list of all existing weather types can be found in

Table A.2 in the Appendix.

Adjustments of the oWLK software and its application to model data

For the classification of the different weather types, the geopotential, specific humidity and tem-

perature at four pressure levels (1000, 850, 700 and 500 hPa) andwind on one pressure level

(700 hPa) are used due to data availability. Hence, the cyclonality index forthe lower troposphere

is calculated at 1000 instead of 925 hPa. Accordingly, only the air-column between 1000 and

500 hPa is considered for computing PW. Furthermore, the specific humidity isused to calcu-

late PW because the relative humidity downloaded from the CERA database was erroneous for

ERA40 (cf. Sec. 3.1). Hence, the mixing ratio is computed from the specific humidity qv as:

r =
1

1
qv

− 1
. (3.4)

All model data considered are interpolated on a uniform grid since the modelsexhibit a different

resolution and use different grids. The uniform grid has 540×270 grid points, which corresponds

to a horizontal spatial resolution of 0.66°. The used interpolation method is a bilinear interpolation

conducted with the CDO routine "remapbil". After interpolation and re-rotationof the wind fields,

an area including Germany and adjacent regions is cut out, using the CDO routine "selindexbox".

The area includes 29 grid points in zonal direction and 21 grid points in meridional direction,

starting in the lower left corner with the longitude 44.333°N and latitude 0.667°E(Fig. 3.3).

Since the interpolated grid of the data is cylindric equidistant, the oWLK (Par. 3.2.2) requires an

additional routine to calculate the geometrical distances between the grid points. This is necessary
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to compute the cyclonality, which is derived by the horizontal Laplace operator of the geopotential

(see Eq. 3.1) evaluated by the following numerical expression

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2

≈ φ(i+ 1, j) + φ(i− 1, j)− 2φ(i, j)

(∆x)2
+

φ(i, j + 1) + φ(i, j − 1)− 2φ(i, j)

(∆y)2
,

(3.5)

whereφ(i, j) is the geopotential at the respective grid point,i − 1 or i + 1 are the neighboring

grid points in zonal direction andj + 1 or j − 1 are the neighboring grid points in meridional

direction. At the lateral sides, the values of the nearest calculated grid points are used.

The geometrical distances between the grid points are derived from the equation (Eq. 3.6) of

distances on a circle:

x = r arccos [sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(λ1 − λ2)] (3.6)

wherer = 6371 km is the radius of the Earth,ϕ the latitude andλ the longitude.

During the evaluation it turned out that an error in the routine which calculates the flow direction

in the original oWLK software, operationally applied by the DWD, slightly modified the results.

Thus, all oWLK data provided by DWD may be affected by this error (this error was communi-

cated and is now corrected in the DWD software). To avoid wrong values,the method has been

modified. Instead of using the 36×90° sections as described in Paragraph 3.2.2, the wind rose

is split into four mean wind directions ([0°-90°), [90°-180°), [180°-270°) and [270°-360°)). If at

least 66% of the grid points exhibit a wind direction in one of these sectors, this wind direction is

selected accordingly (NE, SE, SW or NW).

3.3 Statistical methods

3.3.1 Categorical verification

To determine the prediction skill of the various weather type classifications withregard to their

forecast skills of hailstorms, the methods of categorical verification are applied (Wilks, 1995).

Table 3.2 shows the 2× 2 contingency table with the four elementsa to d which are related

to whether an event is observed (Yes/No) and/or predicted (Yes/No). The word "categorical"

indicates that one and only one of these sets of possible events will occur.Hence, it does not

contain expressions of uncertainties.

Assume, e.g., the weather type SWCAW (south-westerly flow direction, positive vorticity in

1000 hPa and negative vorticity in 500 hPa, wet in comparison to the climatological mean) pre-

vailed for 20 days out of a total of 100 days and hailstorm occurred during 10 of these 20 days,

then the correct event forecast isa = 10, while the false alarm forecast isb = 10. During the

remaining days there arec = 5 surprise events and the corresponding none eventsd = 75 days.
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Figure 3.3: Interpolated and selected 29×21 grid, used for the weather type classification. Shaded
areas give information about the grid point weight as in Fig. 3.2.

Table 3.2: Contingency table for a dichotomous categorical verification of forecasts.

Observation

Y es No

F
or

ec
as

t

Y es a b

No c d
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Normalized by the total number of daysn = a + b + c + d = 100, the relative frequency of the

"Yes" or "No" forecasts or observation can be calculated.

According to the contingency table, a perfectly forecast goes along with zero false alarms as well

as zero surprise events, i.e.b = c = 0. Besides this, several other accuracy measures of the

forecast can be defined. A detailed description of these methods can be found, for example, in

Wilks (1995). The most important skill scores are briefly discussed in the following and listed in

Appendix B.

Heidke Skill Score

When the fraction of hailstorm observations to no hailstorm observations is expected to be very

small, the use of conventional accuracy measures does lead to high uncertainties. A combination

of these skill scores, such as the Heidke skill score (HSS Heidke, 1926), gives more reliable

estimates (Doswell et al., 1990), as it also considers random "Yes" and "No" forecasts.

HSS =
(a+ d) /n− [(a+ b) (a+ c) + (b+ d) (c+ d)] /n2

1− [(a+ b) (a+ c) + (b+ d) (c+ d)] /n2
(3.7)

The reference accuracy measure used for the Heidke skill score is theHit Rate (Appendix B.1).

The HSS computes the relation between the true "Yes" and "No" forecasts and the randomly cor-

rect forecasts. The probability of a correct "Yes" forecast by chance is

pyes = [(a + b)/n][(a + c)/n)] = (a + b)(a + c)/n2, while the probability of a correct "No"

forecast by chance ispno = (b+ d)(c+ d)/n2 (Wilks, 1995). This simplifies Eq. (3.7) to:

HSS =
a+ d−R

n−R
, (3.8)

whereR is the random chance that the forecast is correct:

R =
(a+ b) (a+ c) + (c+ d) (b+ d)

n
. (3.9)

Thus, a perfect forecast has a HSS of one, while a forecast that is just randomly correct receives a

negative HSS.

Threshold detection

To improve the weather type classification method with regard to hailstorm prediction, categorical

verification is used. A combination of skill scores (Appendix refapp:skillscores) is a common

method to detect thresholds of, for example, thunderstorm indices (see Sec. 2.2) that relate higher

(or lower) values of several indices with a higher thunderstorm potential(Kunz, 2007a; Haklander

and Delden, 2003).

The aim is to find a value of an index, for which the correct forecasts (a andd) are maximized,

while the wrong forecasts are minimized (b andc; Tab. 3.2). An example for such verification is

shown in Fig. 3.4 for the Lifted Index. Note that the lower this index, the higher is the potential
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for thunderstorm occurrence. The threshold is fixed for a value of LI, where the HSS reaches its

maximum (here forLI = 1), the Probability of Detection (POD; Appendix B) index has relatively

high values and the False Alarm Rate (FAR) index is relatively low.
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Figure 3.4: Skill scores as a function of the Lifted Index (LI100 = vertical profile averaged over
the lowest 100 hPa) according to Kunz (2007a).

Detection of hailstorm related weather types

Categorical verification is also used to detect weather types that are related to the most common

occurrence of hail damage on buildings. It is assumed that a certain weather type was predicted

and occurred in conjunction with hail damage (a) or without damage (b). Weather types with

high HSS (HSS> 0.04) are considered as hail-related weather types, while those with low HSS

(HSS< 0.04) are considered as hail-unrelated. Those are categorized into three groups, including

a group of those with an HSS of approximately zero. This group is called ’remaining types’ and

indicates weather types that are only infrequently accompanied by hail.

3.3.2 Trend analysis and statistical significance

To detect linear, monotonic trends in the time series of the categorized weathertypes, the rank

based non-parametric Mann-Kendall (MK) statistical test is applied. This test is widely used

for the detection of linear trends in hydrological and meteorological time series (Mann, 1945;

Kendall, 1975). It computes the probability that the null hypothesis (the sample is independent

and identically distributed) can be rejected against the alternative hypothesis that a monotonic

trend exists. Advantage of this test is the independence to any specific distribution, such as the

normal distribution. In this thesis a trend is defined as significant if the null hypothesis can be

rejected on the 80% significance level.

To detect trends in series, each data value is compared to each subsequent data value. The MK

statisticS is computed as (Yue et al., 2002)

S =
n−1
∑

i=1

n
∑

j=i+1

sgn(xj − xi), (3.10)
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wherexi are the sequential data values,xj the subsequent values,n the length of the data set and

sgn(xj − xi) =



















1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

. (3.11)

Hence, negative values ofS indicate a decreasing trend and positive ones an increasing trend.

SinceS approximately follows a standard normal distribution forn ≥ 8 (Kendall, 1975), the

significance is tested by using the mean (E(S) = 0) and the variance (V (S)):

V (S) =

n(n− 1)(2n+ 5)−
n
∑

i=1
tii(i− 1)(2i+ 5)

18
(3.12)

whereti is number of tied group (set of sample data with same values),i the number of values

in the corresponding tied group andn the length of the time series. If, for example, a data set

contains the values [1, 2, 3, 2, 2, 3],ti is equal two 2, because there are two groups of the same

values.

The standardized MK statisticZ, which follows a standard normal distribution, is computed by:

Z =























S−1√
V (S)

if S > 0

0 if S = 0

S+1√
V (S)

if S < 0

. (3.13)

To compute the probability that the null-hypothesis is rejected, a standard normal cumulative

distribution function is used

P =
1√
2π

z
∫

−∞

e−t2/2dt. (3.14)

The probabilityP assumes a value of 1 if the time series exhibits a positive trend, a value of 0.0

if a negative trend exists and 0.5 if the sample is without any trend.

Prewhitening

Any auto-correlation in time series increases the variance of the Mann-Kendall statistic and, con-

sequently, increases the probability of the detection of a significant trend,as shown, for example,

by Von Storch and Navarra (1995) and Yue et al. (2002). A positive serial correlation leads to an

overestimation of the probability of significant trends, while negative serialcorrelation (autocor-

relation) tends to underestimate the probability of detecting trends. Furthermore, the trend itself

has an impact on the Mann-Kendall statistics. If the time series has no trend, there is an incorrect

rejection of the null hypothesis, meaning an overestimation of a trend (Type Ierror). If a trend
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exists, there is an incorrect acceptance of the null hypothesis (Type IIerror; Bayazit and Önöz,

2007). Hence, a data correction method referred to as prewhitening should be applied to the time

series prior applying the MK test.

Corresponding to the method introduced by Yue et al. (2002) and improvedby Bayazit and Önöz

(2007), the time series of the weather types are prewhitened if the number ofyears is less than 50,

if the slope of the trend is less than 0.01 and if the coefficient of variation (Cv) is more than 0.1

(Cv is the relative standard deviation of the time series).

For the prewhitening procedure, the linear trendb

b = Median

(

xj − xl
j − l

)

∀ l < j, (3.15)

which is a robust estimate for the magnitude of a trend (Theil, 1950; Sen, 1968) is removed and

thelag-1 (τ = 0 = time shift) correlation coefficient of the detrended series is computed as

r(τ) =

1
n−1

n−1
∑

i=1
(xi − xi)(xi+1 − xi)

√

1
n

n
∑

i=1
(xi − xi)

2
n−τ
∑

i=1
(xi − xi)

2

, (3.16)

wherer is the rank correlation coefficient,xi the detrended time series,xi the mean of the de-

trended time series andn the number of values. This term (3.16) is used to reduce the detrended

time seriesxi by the auto regression function, if an autocorrelation exists,

yi = xi − rixi−1 (3.17)

whereyi is the resulting, independent time series. The fourth and last step before applying the

MK test is to add the identified trend, which was removed at the beginning. Theresulting time

series is not longer influenced by the effects of autocorrelation, and thesignificance of the MK

test is less erroneous.

3.3.3 Frequency analysis

A common method to detect periodicity in time series is spectral analysis. Using a Fourier Trans-

formation (FT), the signal is broken down into its harmonic parts by

F (f) =
N−1
∑

n=0

xne
−2πift (3.18)

with

e2πift = cos 2πft+ i sin 2πft, (3.19)

N for the length of the time series,f for the sampling frequency andt for the sampling time. The

FT is applicable to any continuous, infinite and periodic time series and able to breakdown the
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time series into its harmonic parts up to the Nyquist frequency of

fNyquist =
f

2
. (3.20)

Due to the remarkable computing time for the FT, a Fast Fourier Transformation(FFT) algorithm

according to Cooley and Tukey (1965) is applied. The FFT is based on thecondition that the

FT of each finite time series is, under certain conditions, computable as two consecutive FTs of

shorter sequences with the lengths ofN = M ×K = 2n, whereM andK are the lengths of the

shorter sequences (Von Storch and Zwiers, 2003) and n a random number. Applying this leads to

a significantly shorter computing time.

As the used time series for this thesis are discrete, finite and not harmonic, a spectrum can only

be estimated. To minimize the uncertainty of estimation, several steps are applied tothe time

series prior to the FFT analysis. To avoid the effect of a linear trend on thespectral analysis,

each time series is detrended as described in the previous section. Furthermore, the effects of

’spectral leakage6’ and discontinuities (e.g., phase shifts), are reduced by application of theFFT

to the autocorrelation function (ACF) of the time series (Eq. 3.16) instead of the time series

itself. Additionally, the ACF is filtered with a ’hamming-window’h(i) to avoid spectral leakage

(Schönwiese, 2000)

h(i) = 0.54− 0.46 cos

(

2πi

M

)

(3.21)

for 0 < i < M , with M for the maximal shift of the ACF (Oppenheim and Schafer, 1989). The

maximum time shift of the ACF is chosen to be the half of the length of each time seriesto ensure

a sufficient long period of examination, but also to avoid the spectrum to become unstable for

high M -values (Schönwiese, 2000). Another effect that can be reduced by applying a window

function is ’aliasing’. The finite spacing of the measurements may lead to a misinterpretation of

the frequencies, as shown in Fig. 3.5, where the sampled signal indicates asignal with a lower

frequency than the original one. To avoid aliasing, a low pass filter needsto be applied, which is

also achieved by use of the hamming-window.

3.3.4 Probabilistic Forecast of hailstorm events

Application of categorical verification to the classified weather types yields specific weather types

that occur most frequently on days with damaging hail events. However, this method cannot

give an appropriate estimate about the uncertainty, with which hailstorms occur during a certain

weather pattern. Hence, a statistical model is used to quantify uncertainty and to predict the future

number of hail days.

The requirements of the model are:

6Due to the finiteness of the time series and the corresponding cutting off of harmonic periods, the discrete time
spectrum appears as a smeared version of a continuous spectrum, since energy of the cutoff signal ’leaks’ into neigh-
boring frequencies (Schönwiese, 2000).
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Figure 3.5: Amplitude of a signal vs. time. The black line shows the original sig-
nal, while the back circles indicate the sampled data. Aliasing occurs when the sam-
pling frequency is too low with respect to the frequency content in the original time series
(http://www.cbi.dongnocchi.it/glossary/Aliasing.html).

• the model must be able to deal with a small sample size since hailstorms are rare events

(222 hail days out of 2745 days in this study);

• it needs to take weather types into account that never occurred along with a hailstorm in the

past;

• it must be able to dismiss weather types that never occurred at all.

Model description

The chosen model is a binomial distribution (Vitolo and Economou, 2011, not published) defined

by

Prob(Hi|pi) = Bin(Ni, pi) =

(

Ni

Hi

)

pHi

i (1− pi)
Ni−Hi i = 1, ..., 38 (3.22)

pi ∼ Beta(α, β) =

[

Γ(α+ β)

Γ(α)Γ(β)

]

pα−1(1− p)β−1 α, β > 0 (3.23)

with Ni for the total number of days where weather typei occurred,Hi as the number of hail

damage days that occurred during the weather typei andpi as the probability with which hail

damage does occur during the weather typei. Γ is the gamma function (Wilks, 1995). Thus,

theProb(Hi|pi) is the statistical distribution of the number of hail damage days according to the

statistical probabilitypi. WhileNi is known for every weather type, the probabilitypi with which

hail damage days occurred during a certain weather types is unknown. Hence, statistical methods

are used to estimate a value forpi for each weather type and, thus, to use the model to predict the

number of hail damage days in the climate models.
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The method used to fit the model is Bayesian: A Beta-distribution (Eq. 3.23) is used to model

the probabilities with which hail damage days occurred during the differentweather patterns. The

Beta-distribution has the advantage that it ranges between [0,1]. The methodof Markov chain

Monte Carlo (MCMC; Wilks, 1938) is used to estimate the distribution of the parametersα andβ

and hence eachpi. The Monte Carlo technique allows to approximate properties of a probability

distribution by drawing independently identically distributed samplesX1, X2, ...Xn. The sample

mean is an approximation for the original expectation (herepi). The used MCMC method is

similar, with the only difference that the samples are not independent. They are dependent and

generated by a Markov chain.



4. Validation and detection of

hail-related weather types

To identify specific weather types (WTs) that are associated with a higher frequency of hailstorm

damage, the simulation results of the CCLM-ERA40 model were used. Because these model

runs were initialized by ERA40 reanalysis data, the results can be evaluatedwith the original

ERA40 and ERA-Interim and with the WTs operationally determined by DWD. After evaluating

the weather patterns derived from the CCLM-ERA40 data hail-related WTswill be identified and

discussed. Subsequently, differences between the WTs derived by the different climate models

will be discussed. Furthermore, a modified WT classification scheme that gives a better correla-

tion between hailstorm occurrence and WTs is introduced and evaluated.

4.1 Validation of CLM-ERA40 derived weather types

First, to what extend the spatial resolution of the models modifies the weather patterns determined

by the oWLK method is evaluated. For this purpose, the WTs derived from the CCLM-ERA40

with a horizontal resolution of 0.44° are compared with those obtained from the ERA40 reanalysis

with a resolution of approximately 2.5° (Fig. 4.1). The total number of days atwhich the corre-

sponding WT prevailed in the years 1971 to 2000 (April to September) is shown (red: ERA40;

blue: CLM-ERA40) in Fig. 4.1. It is evident that the distributions are very similar, showing that

WTs with general flow directions from NW and SW or indifferent direction (XX) occur more

often than WTs with NE or SE flow directions. Of course, this fact can be related to the main flow

direction in the west-wind zone of Central Europe with prevailing westerly winds. Additionally,

WTs with negative vorticity in the lower troposphere (in 1000 hPa) prevail more often than others.

Both data sets show similar overall distributions, even if large relative deviations between them

are found (right panel of Fig. 4.1). The bars indicate the relative deviation of the number of

days of each particular WT derived from CCLM-ERA40 and normalized by that obtained from

ERA40. Apparently, WTs with northerly advection types are overestimated by CCLM-ERA40,

while southerly types are underestimated. Nevertheless, the over-/underestimation is mostly less

than 50%, or even less than 25% in most of the cases. Higher differencesoccured only in cases

of rare WTs (e.g., NWCAW, NWCCD, NWCCW, SWCCD).

41
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Figure 4.1: Left: Number of days WTs prevailed during the summer months from April to
September between 1971 and 2000 derived from ERA40 reanalysis (red) and from CCLM-ERA40
(blue). Right: deviation of WTs derived from CCLM-ERA40 and ERA40;light red bars indicate
weather patterns that occurred less than 50 days in the whole period.

The reasons behind that differences are further investigated by deriving histograms of the partic-

ular parameters considered in the classification method (Fig. 4.2). NW and NEadvection types

occur more often in the data of the CCLM-ERA40 model, but are still within an accuracy level

of 8% compared to the ERA40. Accordingly, other advection types occur less frequently in both

models. As evident from Fig. 4.1, all WTs with positive vorticity in 1000 hPa are overestimated

by the CCLM-ERA40 model. This cannot be explained by the distribution of the cyclonality.

However, within scope of this thesis, it will be shown that the differences incyclonality and also

in other parameters can often be explained by specific cases, where the accumulated parameter is

very sensitive to a slight shift, for example, when the vorticity is near zero.In this case, the spatial

resolution of the models may modify the results due to the matching in a dichotomous scheme.

The distribution of the humidity in terms of precipitable water (PW) shows major differences

particularly at higher values between the two data sets. In general, CCLM-ERA40 has a higher

PW content than ERA40. This effect, however, is mitigated to a large extent because the actual

PW values are normalized by the model climatology in the oWLK scheme. On the other hand,

the annual cycle of PW agrees well with both models.

According to these analysis, the differences in the classification of the flowdirection are largest.

Hence, these cause the main deviations in the frequency of the WTs betweenthe RCM realiza-

tions, as shown in Fig. 4.1.
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Figure 4.2: Relative distribution of the parameters used for weather type classification as derived
from CCLM-ERA40 (red) and ERA40 (blue) in the same period as Fig. 4.1.Top: wind direction,
middle: vorticity in 1000 (left) and in 500 hPa (right), bottom: precipitable water content (PW;
left) and daily mean of precipitable water content vs. the day of the year (right).

Identification of hail-related weather types

As the overall distribution of WTs determined from CCLM-ERA40 data showsa good agreement

to that derived from ERA40 reanalyses, only the WTs derived from CCLM-ERA40 were used to

relate them to hailstorm occurence. This is done by comparing them with hail days as determined

from the SV data for the federal state of Baden-Württemberg.

First, the fractional occurrence of hailstorms per WT is discussed, as thisanalysis identifies the
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strength and weaknesses related to the application of the oWLK to differentdata sets. It also

gives information on the validation of the CCLM-ERA40 data set. Additionally, itexplains why

categorical verification is applied.

According to the fraction of hail-days on each WT and the number of days this WT occurred

during the whole observational period of the SV (referring to the months April to September from

1986 to 2000), five of the 40 WTs can be considered as the most hail-related WTs (Fig. 4.3).

With a frequency of over 15%, the types SWCCW, SWCAW, SECAD, SWAAWand XXCAW

are related to hail (Fig. 4.3, right). This conforms well with findings of Bissolli et al. (2007), who

found a relationship between three of those WTs and tornadoes in Germany. This is not surpris-

ing since tornadoes often accompany thunderstorms, as does hail. Likewise WTs that are only

very infrequent accompanied by hail can be detected. For example, the WTs NWAAW, XXAAD,

NWAAD and NWACD all prevail more than 150 days within the whole period butare only 2% of

the days accompanied by hail damage.

The reasons the five mentioned WTs are forcing the development of hailstorms can be explained

by the general atmospheric conditions necessary for thunderstorm development. As discussed

in Section 2.4 the triggering mechanisms for thunderstorm development are insolation, synoptic

scale ascent in front of a trough, forced ascent due to overflow over mountains, uplift on frontal

zones or convergence zones. With the oWLK just the meso-scale mechanisms can be captured.
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Figure 4.3: Number of days each WT occurred (left) and the probability ofdamage causing
hailstorms to occur during each WT (right) according to the CCLM-ERA40 data.
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Of additional importance and indirectly coupled with those properties, is the stability of the at-

mosphere and the amount of water in the lower troposphere. Hence, all theWTs are most likely

linked to those properties.

Three of the five WTs that have a high fraction of occurrence along with hailstorms feature SW

advection, and one of them an indifferent advection type, which could possibly include south-

westerly features as well. However, advection of an air-mass from SW mainly implies the trans-

port of moist and warm air from the Mediterranean or, through France from the Atlantic. High

temperatures increase the probability of the surface temperature to overcome the convective tem-

perature necessary for thermal convection. Furthermore, the high moisture content of the air-mass

allows the formation of heavy rain and hail.

The general flow direction is mainly determined by large-scale pressure systems. Those are al-

ready captured by the cyclonality index in the oWLK. Three of the five patterns are characterized

by cyclonality at the 1000 hPa level and anticyclonality at 500 hPa, which indicates that those con-

ditions favor thunderstorm development. A typical condition favoring thunderstorms in summer is

a slow eastwards moving upper air ridge, followed by a low pressure system from the west. First

the pressure drops close to the surface, inducing convergence leading to large-scale lifting and,

hence, thunderstorm development. This constellation is also know as ’Spanish Plume’, introduced

by Morris (1986).

On the other hand, the frequent occurrence of the patterns SWAAW andSWCCW on hail dam-

age days indicates that the cyclonality is not as important as the general flowdirection and the

humidity. For example, the WT SWAAW prevailed on 218 days (out of 2,745 days in total) and

with 18% of those days came damage causing hailstorms. To answer the question of whether the

cyclonality has an influence on hail damage occurence and to identify typical hailstorm condi-

tions with regard to the cyclonality, the geopotential fields (cyclonality) of WTsthat are related to

hailstorms are shown in Figures 4.4 - 4.6.

For the mean patterns of SWCAW (Fig. 4.4) and SWAAW (Fig. 4.5) the averaged geopotential

fields in 500 hPa are almost similar, differing by a geopotential difference of about 4 gpdm. The

standard deviation indicates that there is just a slight change in the location ofthe high pressure

ridge southwest of Germany. For the SWCCW (Fig. 4.6) pattern, the upper-air trough is closer to

Germany (lower values of the geopotential) and affects the largest part of the area, leading into

a positive cyclonality index. It is remarkable that for this case the standarddeviation west of the

area is highest with 10 gpdm. This is most likely due to the meridional extension ofthe trough.

For the patterns SWCAW and SWCCW it is evident that the upper air ridge, located southwest of

Germany, is followed by a low pressure system in the lower layers. This confirms the hypothesis

of the ’Spanish Plume’ and explains why thunderstorms tend to occur duringthese conditions.

This is also valid for the WT XXCAW (Fig. 4.7), where the upper air ridge is stilllocated with its

center over Germany and the 1000 hPa trough has a location west of the area. This is an indication

that these three WTs, even if classified as different WTs, are a result of the same setting of the

synoptic systems just at different points in time. However, the theory of the ’Spanish Plume’ is
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Figure 4.4: Mean geopotential fields in gpdm (left) in 1000 (top) and 500 hPa (bottom) with
standard deviation (right) on all days the WT SWCAW prevailed and hail occurred.

not valid for the SWAAW condition. Here, a high pressure system at 1000hPa is located over the

European Alps as shown in the mean fields in Fig. 4.5. Hail damage occurredon 39 days when

this WT prevailed (≈ 17%).

Case study - SECAD

The last hailstorm favoring WT according to Fig. 4.3 is the WT SECAD. For thisWT hail damage

has a probability of 18% to occur together with this WT. Physically, with a dry atmosphere and

advection of south-easterly air masses (continental, not extraordinary warm or moist) hailstorm

development would not be forced by this WT. However, the high probabilityis limited by the total

number of occurence for this type. It prevailed for just eleven days in total and for just two days

together with hail damage claims. Furthermore, those two days occured within atime period of

three days and were forced by a long-lasting high pressure system over Iceland (Fig. 4.8). The
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Figure 4.5: Same as Fig. 4.4 but for the SWAAW pattern.

weather on May 10 1993 was dominated by high pressure, with its center southeast of Iceland and

low pressure over the Azores. The high pressure predominant in various vertical layers extended

over the south and middle of Scandinavia through the west of Russia. Germany was located be-

tween those two pressure systems with easterly to southeasterly flow directions. According to

CCLM-ERA40, the vorticity at 1000 hPa (12 UTC) indicated a cyclonic behaviour (Table 4.1),

while at the 500 hPa height indifferent conditions prevailed. Slightly different values of the vor-

ticity between ERA40 and CLM-ERA40 lead to different values for the cyclonality index, which

is important for the WT classification. Hence, the reanalysis data show a cyclonic rotation, while

the CCLM-ERA40 data result in anticyclonic behavior. The magnitude of the values, however,

indicate (ERA-Interim: 0.9 at 500 hPa) that during this day a slightly different constellation on

the location would lead to another WT. This indicates that the WT classification maylead to dif-

ferences between data sets. Similarly, consideration of humidity may lead to similarresults. For

example, on May 10, PW in the CLM-ERA40 was 16.4 mm and only marignally lowercompared

to the 10-day running climatological average (16.6 mm).
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Figure 4.6: Same as Fig. 4.4 but for the SWCCW pattern.

Table 4.1: Parameters of the oWLK on May 10 (upper part) and May 12, 1993 (12 UTC) according
to the ECMWF reanalysis and CLM-ERA40 model data. PW (mean) is the climatological mean
of the precipitable water on that day of the year.

Day Model oWLK Cyc. Ind. Cyc. Ind. PW PW (mean)
of year 1000 hPa 500 hPa in mm in mm

CLM-ERA40 SECAD 9.6 -5.0 16.4 16.6
May 10 ERA40 SECCW 20.0 3.1 18.3 16.0

ERA-Interim SECCW 19.3 0.9 19.0 16.4
CLM-ERA40 SECAD 10.5 -7.9 14.2 16.9

May 12 ERA40 SECCW 24.6 1.8 18.6 16.3
ERA-Interim SECCW 26.6 0.7 19.0 16.6
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Figure 4.7: Same as Fig. 4.4 but for the XXCAW pattern.

Categorical verification

These examples illustrate the strength, but also the limits of the WT classification scheme with

regard to the predictability of hail days, especially at indifferent weatherconditions. It also ex-

plains the differences in the distribution of the WTs (Fig. 4.1), but does notallow an assessment

about which of the data sets is more reliable.

Hence, categorical verification is used, as this method considers the number of days where each

weather pattern occurred during the whole time period. In the following analysis, the weather pat-

terns with the highest skill to detect/predict the occurrence of damage causing hailstorms accord-

ing to the SV data are identified over a reference period from 1986 to 2000according to the HSS

introduced in Paragraph 3.3.1. The highest HSS (HSS≥ 0.04) with values up to 0.162 is found

for the weather types SWCAW, SWAAW, SWCCW and XXCAW, which are referred to as hail-

related WTs in the following discussion. Based on the same approach, ’non-events’ in terms of
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Figure 4.8: NCEP reanalysis of the geopotential at 500 hPa in gpdm and surface pressure in hPa
for May 15, 1993 (http://www.wetterzentrale.de).

Table 4.2: Skill scores of hailstorm-related and hailstorm-unrelated weathertypes, determined
from the CLM-ERA40 and SV data between 1986 and 2000.

Weather type POD FAR CSI HSS a b c d

Hailstorm- SWCAW 0.239 0.775 0.131 0.162 53 183 169 2340
related SWAAW 0.176 0.821 0.097 0.106 39 179 183 2344

SWCCW 0.086 0.771 0.066 0.084 19 64 203 2459
XXCAW 0.090 0.831 0.062 0.065 20 98 202 2425

Hailstorm- SWACD 0.005 0.989 0.003 -0.044 1 93 221 2430
unrelated NWAAW 0.018 0.974 0.011 -0.048 4 149 218 2374

NWAAD 0.023 0.980 0.011 -0.071 5 249 217 2274
NWACD 0.023 0.978 0.011 -0.065 5 221 217 2302
XXAAD 0.023 0.973 0.012 -0.053 5 180 217 2343

specific weather patterns with no hail damage are determined. Lowest skill scores (HSS≤ -0.04)

are found for the weather types SWACD, NWAAW, NWAAD, NWACD and XXAAD, referred to

hereinafter as hail-unrelated WTs (HIWT; see Table 4.2).

In order to determine to what extent the long-term variability of hailstorm-related WTs of the ref-

erence model CCLM-ERA40 corresponds with the ECMWF reanalysis data, the relative fraction

of hailstorm-related weather patterns of each year are compared (Fig. 4.9). Deviations between

the relative fraction of WTs derived by CCLM-ERA40 and ERA40 amountto values between 0%
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(e.g., in 1994 and 1997) and 19% (1983), but mostly remain in the range of less than 5%. For

some exceptions, the overall variability is reproduced well by the different data sets. Even the low

number of hail-related WTs in 1984 is reproduced by all models. To account for the uncertainty

of ERA40, which is known to have uncertainties in some of the atmospheric parameters (precip-

itation and humidity according to Simmons et al., 2007), WTs operationally determined by the

DWD (GME) and by ERA-Interim reanalyses are additionally displayed. The data sets confirm

that the CCLM-ERA40 model can be considered a reliable reference model with regard to the

analysis of long-term variability of the WTs.

Similar statements can be deduced for hailstorm-unrelated WTs (Fig. 4.10), even if the deviation

between the different data sets is larger. In some years, the differenceof the relative fraction

of hailstorm-unrelated WTs amounts to up to 10%, and is therefore higher thanfor hail-related

WTs. This is due to the more frequent occurence of those WTs (on average, 61 days of the

summer half-year according to CCLM-ERA40) compared to the hail-related types (on average,

42 days of the summer half-year). Hence, even higher deviations are found for the remaining WTs,

which occured during the remaining days (80 days per summer half-year). Nevertheless, a good

corrlation between ERA40 and CCLM-ERA40 was found (Fig. 4.11). Noticable are the greater

deviations between the DWD data and the others between 1980 and 1988. This might result from

the use of the BKF model in these years until 1991, which had a coarse spatial horizontal resultion

of 254 km. Furthermore, the erronous classification of the advection type and the consideration of

different pressure levels, which were discussed in Paragraph 3.2.2,might lead to those differences.
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Figure 4.9: Relative fraction of hailstorm-related WTs per year determined from the CCLM-
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4.2 Validation of the regional climate model realizations

Reliable reproduction of synoptic weather patterns by climate models is limited, since they are

not driven by real weather data. Most climate models are able to reproduce the statistical distribu-

tion of various meteorological variables over an adequate long time-period,but cannot reproduce

the temporal course of the synoptic fields, for example, on an annual basis. Hence, the valida-

tion of the WTs determined from the different climate models is limited to the comparisonof the

distributions of the weather patterns and their occurrence during the entirecontrol period C20

(1971-2000).

Comparing the three CCLM runs driven by ECHAM5 and calculated by KIT (CE5C20 run 1-

3; cf. Table 3.1) with the CCLM-ERA40 (Fig. 4.12) shows very good agreement between the

modeled distributions of the WTs. The distributions show minor differences, even if the relative

deviations for WTs that occur more than 50 times in the summer months range between 0% and

approximately 100%. The 100% deviation is valid only for the weather type NWCCD, which

seems to be an exception. While WTs with flow directions from NE or no clearly defined di-

rection seem to be underestimated by all three runs, the other flow direction cannot be clearly

considered as over- or underestimated (Fig. 4.13). By evaluating the distribtions of the vorticity

at both levels and the PW index (Fig. 4.16), the vorticity in 500 hPa might be overestimated by

all three RCM runs, which would lead to less cyclonal WTs. This could be thecase for the WTs

NWACD, NWCCD and SWCCW, where the three CE5C20 runs overestimate thetypes. Accord-

ingly, the type NWAAD is underestimated, while there is no evidence of an underestimation of

the types NWCAD or SWCAW. The distributions for the PW index are conformand show just

minor differences.

Same comparison were performed for the CCLM consortium runs (CKLC20R1-R3; cf. Table 3.1)

and the CCLM run driven by the GCM of the Canadian Center for Climate Modeling and Analysis

(CC3C20R1; Fig. 4.14). These climate model scenarios achieve a similar good correspondence

to the CCLM-ERA40, but the CC3C20R1 shows the largest deviations. ForWTs occurring more

than 50 times, the CC3C20R1 run clearly overestimates the northerly WTs up to 110%, for WTs

occurring more than 50 times, but underestimate the southerly types. The CKLC20R1 run shows

reverse patterns, but less deviations. For the second run of the CCLM-KL model, the variations

are less distinct and within a range of 25%. Additionally, the CCLM-KL runs underestimate the

humidity of the south-westerly WTs (especially Run 1). Considering the distributions of the WTs

parameters, larger deviations between CCLM-ERA40 and the CCLM-KL runs can be recognized

(Fig. 4.17). The vorticity in 500 hPa shows larger deviations between the different model runs,

especially in the range between anticyclonic and cyclonic. This indicates thata higher potential for

differences of the determined WTs exists. Furthermore, the humidity distributions substantially

differ as well. CKLC20R2 and CC3C20R1 are dryer than the other models.But as the PW is

normalized by the long-term mean, this parameter is less sensitive against model characteristics.
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In summary, all climate models reflect the overall distribution of the WTs well, whileCC3C20R1

shows the largest differences compared to CCLM-ERA40. This implicates that deviations are

mainly caused by the different forcing GCMs (ECHAM5, CCCma3). However, the distribution

of WTs that occur rarely and those occurring frequently is especially reproduced well by all mod-

els. Nevertheless, the under- or overestimation of certain WTs of different model runs has to be

considered with regard to the interpretation of the long-term variability. A summary is given in

Table 4.3.

Table 4.3: Summary of the validation for the WTs derived from different RCM realizations.
Over- or underestimations are considered due to the comparison with the WTsderived by CCLM-
ERA40.

Model Advection Cyclonality Cyclonality
realization type 1000 hPa 500 hPa

CCLM-ECHAM5 NE, XX - slightly
(Run 1, 2 and 3) underestimated overestimated
CCLM-KL NW, SW - slightly
(Run 1 and Run 2) overestimated overestimated
CCLM-CCma3 SE, SW - overestimated

underestimated
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Figure 4.12: WT distribution derived from CCLM-ERA40 and CE5C20R1 (blue), CE520CR2
(green) and CE5C20R3 (orange) during the hailstorm season (April toSeptember).

-100

-75

-50

-25

0

25

50

75

100

125

A
b

s
o

lu
te

 f
re

q
u

e
n

c
y
 i
n

 d
a

y
s

N
E

A
A

D
N

E
A

A
W

N
E

A
C

D
N

E
A

C
W

N
E

C
A

D
N

E
C

A
W

N
E

C
C

D
N

E
C

C
W

N
W

A
A

D
N

W
A

A
W

N
W

A
C

D
N

W
A

C
W

N
W

C
A

D
N

W
C

A
W

N
W

C
C

D
N

W
C

C
W

S
E

A
A

D
S

E
A

A
W

S
E

A
C

D
S

E
A

C
W

S
E

C
A

D
S

E
C

A
W

S
E

C
C

D
S

E
C

C
W

S
W

A
A

D
S

W
A

A
W

S
W

A
C

D
S

W
A

C
W

S
W

C
A

D
S

W
C

A
W

S
W

C
C

D
S

W
C

C
W

X
X

A
A

D
X

X
A

A
W

X
X

A
C

D
X

X
A

C
W

X
X

C
A

D
X

X
C

A
W

X
X

C
C

D
X

X
C

C
W

Weather type

CE5C20R1 CE5C20R2 CE5C20R3
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Figure 4.16: Same as Fig. 4.2 but for CCLM-ERA40 (red), CE5C20R1 (blue), CE5C20R2 (light
blue) and CE5C20R3 (orange).
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Figure 4.17: Same as Fig. 4.2 but for CCLM-ERA40 (red), CKLC20R1 (blue), CKLC20R2 (light
blue) and CC3C20R1 (orange).
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4.3 Evaluation of a modified weather type classification

In addition to the operational oWLK of DWD, an own classification scheme wasdeveloped that

considers the mechanisms decisive for thunderstorm development. This routine considers weather

types (WT) that are specifically adjusted to predict damaging hailstorms. Theparameters and

methods used to design the weather types are introduced and explained in thefollowing.

Stability index

Kunz (2007a) identified several convective indices that allow to assessthe potential for severe

thunderstorms. Based on this study, convective and stability indices that are computable on the

basis of model data on pressure levels are analyzed to determine the prediction skill of WTs

derived from a modified weather type classification scheme. The indices LI, SI, PII, DCI and VT

(introduced in Chapter 2) are calculated for the federal state of Baden-Württemberg, for which

hail damage data (SV) are available.

Dynamic parameter

The second parameter that is used in the new classification scheme of WTs is chosen to describe

large-scale lifting related to a mid-tropospheric trough or front. The equivalent-potential temper-

ature (EPT) at 1000 and 850 hPa, the dew point difference (DD) at 850 hPa, the wind shear (WS)

and the vorticity advection (VA) were examined with regard to the best prediction skills.

While EPT displays the latent energy of the condensation process that an air parcel stores, the

DD gives an estimate about undersaturation of the atmosphere and the VA about changes in the

bending of the geopotential and uplift. Vertical wind shear (directional shear) is important for

the organization of the convective cells or systems (single cells, multicells, supercells) and conse-

quently the severity of the convection (Sec. 2.1).

Determination of a MoWLK with the best prediction skill for hail

To derive the modified classification scheme (MoWLK) with the best predictionskill for dam-

age causing hailstorms, the original parameters used for the oWLK are combined with the two

additional parameters. This new classification scheme considers the three triggering mechanisms

necessary for thunderstorm development: conditional instability, moisture content and large-scale

lifting. Hence, the modified WT includes at least three parameters that describe all these pro-

cesses. One example of a MoWLK classification is the combination of the cyclonality at two

layers as lifting parameter, the precipitable water (PW) as measure for the water content and the

LI as indicator for the static stability. To use the additional parameters as partof the classifica-

tion method, appropriate thresholds need to be defined in order to separatethunderstorm forcing

from thunderstorm inhibition conditions. For the stability index, for example, such a separation

defines stable and unstable atmospheric conditions. To adjust these thresholds with regard to the
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prediction skill for damage causing hailstorms, thresholds are chosen according to the modified

WT that has the highest value of the HSS (Par. 3.3.1).

Table 4.4 gives examples for MoWLKs and shows the WT, derived by different MoWLKs, that re-

ceives the best prediction skill according to the HSS. Picking up on the example for the MoWLK

from above (cyclonality, humidity, stability), the highest HSS is received for the weather type

CAWL, indicating cyclonic rotation in 1000 hPa, anticyclonic rotation in 500 hPa, a relatively

high water content in the atmosphere compared to the climatological mean and a unstable strat-

ification according to the LI. The highest skill is achieved for a threshold of LI≤ −1 K and the

HSS attains a maximum value of 0.252, which is already high for rare events likehailstorms. This

value is even higher than the maximum HSS of 0.162 achieved for the weather type SWCAW

from the original classification method.

According to this method several MoWLKs are designed that have a higher HSS for specific WTs

compared to those from the original method. The highest HSS of 0.342 was achieved for the

MoWLK considering humidity (PW), stability (LI) and VA, for the weather typeWLP. This WT

indicates a high water content, unstable stratification (according to a low LI value) and positive

VA (lifting). However, this MoWLK only includes eight different WTs in total,as each parameter

holds two classification choices. This low total number of WTs within the MoWLK also affects

the HSS and, hence, the value of the HSS needs to be evaluated relative to the absolute number of

WTs (8 for the MoWLK and 40 for the oWLK).

A decrease in the number of WTs leads to an increase in the number of days where each individual

WT occurs. This implies that the probability of hail occurrence during the WTincreases when

the hail events are equally distributed over the 8 WTs. Hence, a higher HSSdoes not necessarily

mean that the new MoWLK improves the relationship between hail damage occurrence and WT

occurrence. To clarify this argumentation, a simple example is used: Assume there are two WTs

that are combined to a single one. The result is an increased HSS, but onlydue to the reduction of

Table 4.4: Parameters that are combined resulting in different MoWLKs thatare good predictors
of damage causing hailstorms (SV insurance data). The advection, cyclonality and humidity are
the same as for the oWLK. Parameter 1 is an additional stability index(S = stable,L = unstable).
Parameter 2 contains processes that force thunderstorm development depending on the chosen
threshold. VA = vorticity advection (P = positive, N = negative), EPT = equivalent-potential
temperature in 1000 hPa (H = high, L = low).

Weather Parameter 1 Parameter 1 Parameter 2 Parameter 2 HSS
type Threshold Threshold

SWCAW - - - - 0.162
CAWL LI −1 K - - 0.252

WLP LI −1 K VA 0 s−2 0.342
CAWLP LI −1 K VA −0.5 s−2 0.252
CAWLH LI −1 K EPT 315 K 0.266
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WTs. Similarly does an increase in the number of WTs not necessarily leads toa decrease in the

HSS. Conversely, assume that one WT is split into two, with both occurring equally as often and

also equally as often accompanied by hail. The result would be a decreased HSS of zero. Now

assume that one WT favors the development of hailstorms. Due to the splitting it would still occur

less often, but is relatively more often accompanied by damage causing hailstorms. Consequently,

the HSS would increase even though the total number of WTs is higher.

To account for the potential misinterpretation of the HSS, the VA was tested separately to de-

termine whether this parameter leads to an increase of the prediction skill. If theVA is added

to another modified WT, it can be studied how the HSS changes when the absolute number of

WTs increases. An increase in the HSS, when increasing the absolute number of weather types,

would indicate a better prediction skill for this WT and, thus, imply that the VA hasa positive

effect on the hailstorm-WT relationship. To test this the VA was added to the weather type CAWL

(HSS = 0.252; Table 4.4). Adding the VA as additional parameter (CAWLP: HSS = 0.252) did not

increase the prediction skill for hail significantly. Hence, VA does not increase the performance

of the MoWLK.

Considering all possible combinations and regarding the increase/decrease in the absolute number

of WTs within the MoWLK, the best result of the HSS are obtained with a combination of the

five parameters: cyclonality in 1000 and 500 hPa, humidity (PW), LI and EPTat 1000 hPa. The

resulting classification scheme is a five character identifier:

C1000C500HSE

with C1000 andC500 for the cyclonality (relative vorticityζ) in 1000 and 500 hPa,H for the

humidity,S for the Stability according to LI (S = stable, L = unstable) andE for EPT (H = high,

L = Low). This MoWLK, comprising 32 different WTs, is used for furtheranalyses. An entire

list of the weather types of this MoWLK can be found in Appendix A.3.

Validation of MoWLK

Several WTs of the MoWLK do not occur in the C20 period from 1971 to 2000 based on the

CCLM-ERA40 and ERA40 data (Fig. 4.18). It is evident that WTs with a highvalue of LI

(LI > −1 K) and those with a low EPT (θe < 315 K) occur more often. This is plausible as

the parameters characterizing this classification method are chosen with regard to a better forecast

skill of hailstorms. Hence, thresholds are chosen at the tail of the distributions of the parameters

causing a disproportionate occurrence of hail-related WTs to be expected.

Large deviations in the absolute fraction of the WTs derived from CCLM-ERA40 and ERA40 are

evident in Fig. 4.18 (right). Some deviations are far more than 100% for someWTs (AAWLH

and AAWSL) and some WTs, particularly those with a high EPT and a low LI, show large de-

viations between CCLM-ERA40 and ERA40. Thus, this method seems not to beapplicable to
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Figure 4.18: Same as Fig. 4.1 but for MoWLK. Light red colors mark WTs that occurred less
than 100 times between 1971 and 2000 (summer).
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Figure 4.19: Distributions of LI and EPT in 1000 hPa derived by ERA40 (red), CCLM-ERA40
(blue) and by radiosonde measurements in Stuttgart (green). Dotted lines indicate the chosen
thresholds.

different models. But what causes those differences? In order to evaluate the reasons behind these

differences, the distributions of LI and EPT obbtained from both reanalysis data and radiosonde

data are shown in Fig. 4.19. The distributions of the LI (left) generally appear to conform well.

However, there are larger deviations for values in the range between -8K and 1 K, the region

that separates unstable from stable WTs. The CLM-ERA40 data hold more days with an unstable

atmosphere compared to those of the ERA40. Hence, there is a higher potential for hail-related

WTs to occur in the CCLM-ERA40 data set compared to the ERA40 data, because an unstable

atmosphere supports thunderstorm and hailstorm development. To estimate therelationship of
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the distributions, they are compared with LI derived from the radiosonde data taken in Stuttgart

(Par. 3.1.3).

The radiosonde station in Stuttgart is the only one in Baden-Württemberg and thus, the entire

region is limited to being represented by a single point measurement. However,Brombach (2010)

showed that LI and SI derived from reanalyses are almost homogeneously distributed over Baden-

Württemberg. Additionally, the pressure level used to derive LI is the 1000hPa level, which is less

dependent on the surface layer. The ERA40 reanalyses have only a coarse spatial horizontal reso-

lution. Hence, complex orography is not resolved and does not affectthe value of LI. This allows

the use of LI derived from the Stuttgart sounding as representative for the Baden-Württemberg

region. This is confirmed by the fact that even if the LI distributions, derived from the reanalysis

and CCLM-ERA40 are determined from average values for Baden-Württemberg, they are unex-

pected conform with the distribution of the LI in Stuttgart. However, especiallyin the range of

instability of the distributions, the LI from the CLM-ERA40 data conforms much better with the

observations than that from the ERA40 reanalyses. As such, it can be expected that the LI, derived

from the CLM-ERA40 model data, is more reliable, but it also indicates that theLI is a source of

error in the MoWLK and reduces its applicability when considering different model realizations.

Similar results are also evident in the histograms of EPT (Fig. 4.18, right). Values of EPT derived

from CLM-ERA40 and ERA40 show larger deviations in the relative frequency, especially in the

range around the chosen threshold (315 K). Hence, the potential for deviations between the re-

sulting WTs is higher.

In summary, the introduced method leads to higher forecast skill of specificWTs describing the

occurrence of hail, but the applicability to different data sets is problematic,in particular due to

the thresholds defined for the convective parameters. The hail-related WTs (CAWLH, AAWLH,

CCWLH and AAWSL; Appendix C) are especially overestimated in their frequency by CCLM-

ERA40 in comparison to ERA40, implying that especially those types cannot bereproduced

well by different models or realizations. Additionally, some of the hail-unrelated WTs (AAWSL,

AADSL, ACDSL, CCDSL) are also significantly overestimated by CCLM-ERA40 (Fig. 4.18).

Due to these large deviations, the respective hail-related and hail-unrelated WTs are only analyzed

for the CCLM-ERA40 data set, as the modification of the weather type classification scheme is

adjusted to this data set. However, with more investigations regarding the validation of this method

(e.g., bias corrections or exchange of some parameters), the method couldbe improved to provide

more robust results when applied to different climate models.

Temporal variability of hail-related weather types

To determine the temporal variability of hail-related WTs and, thus, the changes in the occurrence

of hail damage, linear trends over variable periods were calculated. Thetrends were calculated for

periods of at least 10 years and visualized by trend-matrices. The trendmatrices are structured as

follows: The entire time series of hail-related WTs is split into many subsequences. The start year

of those subsequences is given on the abscissa, while the end year is assigned on the ordinate. The
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Figure 4.20: Absolute frequency of hail-related WTs derived from CCLM-ERA40 and obtained
with the modified classification method. The black line shows the 5-year runningmean.

linear trend of the number of hail-related WTs is computed for each subsequence and displayed as

colored box. Those boxes indicate an increase or decrease in the number of hail-related WTs per

year (red/yellow: positive, blue/green: negative). Furthermore, consideration ofn >= 10 years

allows the use of the Mann-Kendall significance test (Par. 3.3.2) to detectsignificant changes.

Accordingly, insignificant changes are plotted as white boxes.

Figure 4.20 shows the time series of the hail-related WTs derived from CCLM-ERA40. The

mean number of these WTs according to the MoWLK is 24 days. Large deviations from this

mean are evident in the time series (24±7 days), with a minimum number of only eight days and

a maximum of up to 39 days. Between 1970 and 1976, a significant decrease in the number of

days can be observed in the time series, which is also evident in the trend matrices for an period of

10 years (Fig. 4.21). After this decrease, the number of hail-related WTsincreases significantly by

9 days between 1972 and 2000. However, no significant trends can beobserved with the start year

later than 1978. This is interesting as the observations (SV data) indicate a significant increase

(Chap. 1; Fig. 1.1). However, the time series of WTs indicate that the trendsare probably not

significant due to the large inter-annual variations, especially in 1984 and1994.

As the time series is very short, no proper statistical analyses of periodic behavior, such as the

application of an FFT, can be applied. To get an estimation of certain periodicity, the 5-year run-

ning mean is plotted in Fig. 4.20. Interestingly, this mean indicates a continuous increase in the

number of hail-related WTs, beginning in the year 1975. An increase of approximately 10 days

can be observed. Disregarding the trend, the 5-year running mean impliesa vague periodic be-

havior of approximately 15 years, recognizable by the two minimums in 1975 and1990 and three

maximums (1973, 1984 and 1994).
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Figure 4.21: Linear trend matrices of hail-related weather types determined from CCLM-ERA40
between 1971 and 2048. In the right panel only trends are displayed that have a statistical signifi-
cance of more than 80% according to the MK trend test.

Temporal variability of hail-unrelated weather types

An increasing number in hail-related WTs may lead to a more frequent occurrence of damage-

causing hailstorms. Likewise would a decrease in the number of hail-unrelated WTs likely affect

the thunderstorm frequency. To investigate this further, a time series for hail-unrelated WTs is

analyzed to determine the changes in the thunderstorm potential.

The number of days with prevailing hail-unrelated WTs is much higher (91 days, Fig. 4.22) com-

pared to the number of hail-related WTs. This is because the classification method is adjusted

towards a good correlation between hail damage days and WTs. Thus, ashail damage days are

relatively rare (15 days per summer half-year according to SV loss data), the number of hail-

unrelated WTs is higher. Large inter-annual variability can be seen ranging from 71 days in the

year 2000 to 110 days in the year 1974, which also indicates a higher standard deviation (91±12

days). However, a remarkable negative trend between the 1970s and 2000 can be recognized,

which is statistically significant (Fig. 4.23). The trend amounts to nearly one day per year, a total

decrease of 24 days (1976-2000) which is larger compared to the positive trends for hail-related

WTs. This indicates that the potential for the occurrence of damage causing hailstorms is not

just increasing due to a more frequent number of hail-related WTs, but also due to an even more

pronounced decrease in the number of days that do not favor the development of thunderstorms.

Even if the probability is smaller for thunderstorms to occur during the prevailing ’remaining’

WTs (those that are classified neither as hail-related nor as hail-unrelated), it has to be taken into

account when estimating the number of hail damage days.

Investigations of the periodicity by analyzing the 5-year running mean (Fig.4.22) yields results

similar to those derived for the hail-related WTs. Some harmonic behavior of eight years is

indicated, but is not as pronounced as in the other time series. Additionally to this long-term

periodicity derived from the 5-year running mean, there are shorter periodicities noticeable in the
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Figure 4.22: Same as Fig. 4.20 but for hail-unrelated weather types.
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Figure 4.23: Same as Fig. 4.21 but for hail-unrelated weather types.

original signal. Regular maximum peaks in the years 1984, 1987, 1990, 1993 and 1996 indicate

some shorter periodicity between the years 1983 and 2000. However, thisanalysis is only an

estimation and would need to be verified by statistical methods.

In summary, an increase in the frequency of hail-related WTs and a decrease in the number of

hail-unrelated WTs imply a significant increase for the potential of damage causing hailstorm

occurrence in the past. This conforms well with the trends derived by observations of the SV

and indicates an adequate relationship between WTs and hailstorm occurrence. Thus, the method

seems to be a good estimate for the climatological analyses of hailstorms, althoughit needs to be

improved with regard to its applicability to different data sets.





5. Temporal variability of hail-related

weather types

This chapter will focus on long-term variability of hail-related and hail-unrelated WTs, including

the detection of possible linear trends and periodicities. As the RCMs are notable to reproduce

the course and development of real synoptic systems, it is important to analyze the different mod-

els with regard to their individual epistemic uncertainty.

To assess epistemic uncertainty, eight different RCM realizations are considered comprising dif-

ferent initialization times and initial conditions (Run 1, 2 and 3 of the GCM), emission scenarios

(A1B, B1), RCM realizations (CCLM versions 4.8 and 3.1) and forcing global models (ECHAM5,

CGCM3). Unfortunately, a comparison between the CCLM and other RCMs was not possible due

to limited availability of model data on different levels, which are necessary in the WT classifi-

cation routine. Note that this is important regarding the interpretation of the results, as variability

might be caused by the model physics.

5.1 Temporal variability of hail-related weather types

To determine the temporal variability of hail-related WTs according to the oWLK,linear trends

over variable periods were calculated and displayed in trend matrices explained in Section 4.3.

5.1.1 Detection of linear trends

The upper panel of Fig. 5.1 shows the trend matrix from 1971 to 2048 (left)and the correspond-

ing significance (right) at the 80% confidence level according to the MK significance test for

CKLA1BR1. Over the whole time period displayed, a positive linear trend of hail-related WTs

can be noticed, but this trend is not significant. A significant linear trend is evident until the early

2010s, with an increase of less than one day per year or approximately 9 days for the period 1971

to 2002. This positive trend possibly already affects past hailstorm occurrence, as the fraction of

hail damage days on the hail-related WTs was around 20% in the past (1986-2000). Larger signif-

icant linear trends of more than three days per year can be identified only for shorter time periods

of approximately 12 years, for example from 1975 to 1987 or from 1988 to2000. Those positive

trends persist for approximately 5-6 years (1971-1978, 1988-1992, etc.) until the trend changes

67
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Figure 5.1: Linear trend matrices of hail-related WTs determined from CKLC20R1/CKLA1BR1
(top) and CKLC20R2/CKLA1BR2 (bottom) between 1971 and 2048. In the right panel, only
trends are displayed that have a statistical significance of more than 80% according to the MK
trend test.

its algebraic sign and becomes negative. These periodic changes of the trends are indicated by

several peaks in the time series which cause also significant negative trends between 1980 and the

late 2030s, as evident in the matrices for CKLA1BR1 and CKLB1R1 (Fig. 5.1and Fig. 5.2, top

panels). The decrease in the number of hail-related WTs sums up to a total ofapproximately 9

days (1982 to 2039). Furthermore, another positive significant trend isevident in the CKLA1BR1,

beginning in 2005.

Those ’time blocks’ of trends with a statistical significance of > 80% lead to the question of

whether a kind of periodicity in the occurrence of hail-related WTs can be detected. To answer

this question, it is important to determine if those potential periodicity patterns arealso evident in

the other models. By considering several RCM results, epistemic uncertaintycan be assessed.

The trends of the time series of hail-related WTs derived from Run 2 of CKLA1B and CKLB1

(Fig. 5.1 and Fig. 5.2, bottom) indicate similar significant short-term trends in thefuture projec-

tions, similar to those of Run 1. These positive significant trends of more thanthree days again

occur for approximately 5 to 6 years in the time series. This implied periodicity in thetime series
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Figure 5.2: Same as Fig. 5.1 but for CKLC20R1/CKLB1R1 (top) and CKLC20R2/CKLB1R2
(bottom).

will be analyzed in Paragraph 5.1.2. The long-term trends of Run 2 differbetween CKLA1B and

CKLB1. Except for negative trends over shorter periods (e.g., 1971to 1991, 2018 to 2038), which

are not significant, most of the long-term trends are positive by less than one day per year. Over

the whole period from 1971 to 2048, the trend is positive with a total increaseof approximately

11 days. Interestingly, the trends before 2010 are not significant (1971 to 2010) as well as those

after 2010 (2010 to 2048). This indicates that there is a difference in the characteristics of hail-

related WTs between 1971 to 2010 and 2011 to 2048. To find the reasons for this abrupt gradient

in the significance of the positive trends, the time series is split into two sequences at the year

2010 (the year with the largest gradient). Figure 5.3 shows the time series withthe mean of the

number of hail-related WTs for the two separated time periods. A ’step’ structure of the mean can

be detected, which causes those gradients in the trend matrices. Whether this’step’ structure is

due to natural variability or climate model characteristics can be clarified by analyzing the whole

ensemble of climate models (Par. 5.1.3); this emphasizes the importance of the useof an ensemble

of RCM (even if the used ensemble is a mini-ensemble comprising only a limited numberof eight

possible realizations).
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Figure 5.3: Absolute frequency of hail-related WTs, derived from CKLC20R2/CKLB1R2 and the
mean values (dashed) of the two time periods 1971-2010 and 2011-2048.

The results of the CKLA1BR1/R2 and CKLB1R1/R2 (cf. Table 3.1) show substantial differences

in the trends of the number of hail-related WTs between Run 1 and Run 2. By contrast, differ-

ences between the emission scenarios A1B and B1 are not evident (Fig. 5.1 and Fig. 5.2). This

indicates that the year, where the GCM was initialized is of major importance for the hail-related

WT climatology, while the emission scenarios have no strong influence on the weather patterns

over Germany at least for the nearer future until 2050.

As the CCLM-ECHAM5 runs are only available for the time periods 1971 to 2000 and 2011 to

2050, the trends were calculated separately for the control period and future projections. These

two investigation periods are compared with the CCLM-KL model runs to derive uncertainties

induced by the use of different RCMs. Both models are driven by the sameglobal climate model

ECHAM5, but use different RCM versions of the CCLM. By comparing theresults obtained from

these two RCM runs, the impact of the RCM on the linear trends is evaluated. Figure 5.4 shows

the trend matrices of CE5A1BR1 for the control period C20 (top) and the future projection (bot-

tom). The positive trends of the control periods until 1994 are similar compared to CKLA1BR1,

while those determined from the CCLM-ECHAM5 are not significant for most of the sequences.

Likewise, trends for the series beginning in 1980 are negative in both models, while most of

them are not significant as well. However, the long-term trends derivedfrom CKLC20R1 and

CE5C20R1 show several differences. For time series of hail-related WTs that begin in 1971-1979

and end in 2000 the trends determined from CKLC20R1 are positive and those from CE5C20R1

are negative. This can be explained by the difference of the relative frequency of hail-related WTs

of those models (Fig. 5.1.1) in the mid to end of the 1990s. Even if the number of hail-related
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Figure 5.4: Same as Fig. 5.1 but for the control period C20 (top) and the A1B scenario (bottom)
of the model CLM-ECHAM5.

WTs conforms well between the two model versions, the corresponding linear trend is affected by

some peaks in the time series. Therefore, these trends are statistically not significant. Moreover,

the trends of the future projections conform well between both models, as do the linear trends of

the second model runs (cf. Appendix D).

The results obtained by using another driving GCM (CCLM-CCCma3) showsimilar characteris-

tics of the linear trends. But they also feature some differences in comparison to the CCLM-KL

(Fig. 5.6 and Fig. 5.2). The trends at the beginning of the control period (until 1998) are almost

positive, but very small and not significant. Considering a longer periodfrom 1971/1990 to 2006

yields significant positive trends with an increase of maximal two days per year. From 1990 or

2000 until 2028, the trends are significantly negative by less than one dayper year. This variability

and the magnitude of the trends are similar to CCLM-KL, but the time period of significance is

much shorter. Additionally, the mentioned block-wise significant trends are similar to the CCLM-

KL (Fig. 5.6) but less distinctive.

The analysis of the trend matrices show that there are differences in the linear trends due to the

RCM versions and different forcing GCMs. These differences are investigated in the following.
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Figure 5.5: Absolute frequency of hail-related WTs per summer half-yearaccording to
CKLC20R1/CKLA1BR1 (red) and CE5C20R1/CE5A1BR1 (blue) for the years 1971 to 2050.
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Figure 5.6: Same as Fig. 5.1 but for the hail-related WTs derived from CC3C20R1/CC3A1BR1.

As a comparison between the RCMs is difficult because of the different time periods of CCLM-

KL and CCLM-ECHAM5, the absolute fraction of the WTs derived from from CKLA1BR1/R2

and CE5A1BR1/R2 for a 30 year time period within the future projections is analyzed for the pe-

riod 2019-2048 (Fig. 5.7). The time period is chosen according to other studies using ensembles

of climate models (e.g., Mayer et al., 2010) but, due to the data availability of the CCLM-KL

data sets, the period is shifted by two years. The absolute fraction of hail-related WTs for the

second model run differs just slightly between the different RCM model versions. The maximum

difference is 51 days or 11% for the WT SWAAW. Similar results can be drawn from the absolute

frequency of hail-related WTs for the first model run, but the relative deviations are higher (41

days or 18% for SWCCW). Concluding, the different versions of the RCM have only a marginal

influence on the frequency and linear trends of hail-related WTs. Especially the absolute fre-
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Figure 5.7: Absolute frequency of hail-related WTs per summer half-yearderived from
CKLA1BR1 (red), CKLA1BR2 (green), CE5A1BR1 (blue), CE5A1BR2 (orange) and
CC3A1BR1 (yellow) for the years 2019 to 2048.

quencies from CKLA1BR1 and CE5A1BR2 conform well. This implies that thedifferent model

resolutions (0.167◦ for CCLM-KL and 0.44◦ for CCCLM-ECHAM5) play only a minor role for

the determination of hail-related WTs.

The influences of the different GCMs on the trends can be confirmed by the distribution of the

absolute frequency of hail-related WTs from CC3A1BR1 for the period 2019-2048 (cf. Fig. 5.7).

Maximum deviations of nearly 40% for the WT SWAAW are evident, indicating a major influence

of the GCM on the frequency of hail-related WTs.

In summary, the largest difference between the linear trends of hail-related WTs are found for

different realizations of the GCM (ECHAM5) in terms of different initial conditions. This indi-

cates that the model climate with regard to the WTs is highly dependent on the initialization time

and the initial conditions of the GCM. Furthermore, differences are also caused by the individ-

ual GCMs. Trend patterns of CCLM-KL, driven by ECHAM5, are also evident in the CCCma3,

but are less pronounced in the CCLM-KL. Differences due to the RCMs are difficult to examine,

since the period of 2001 to 2010 is missing in CCLM-ECHAM5 and may result in insignificance

of trends for these sequences. Disregarding the statistical significance, the results for the WTs of

the C20 and the future projections obtained from the two CCLM model versions and runs conform

well, even though the resolution differs. In all cases, the trends are onlymarginally affected by

the underlying emission scenarios.
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5.1.2 Detection of periodicities

As discussed in the previous paragraph, most of the models indicate short-term variability in the

trends of the time series, which may be due to a certain harmonic behavior in the timeseries. To

analyze possible periodicities the results obtained from the RCMs with an adequate length and

without gaps, e.g. CCLM-KL and CCLM-CCma3, were transformed to the frequency space by

applying an FFT algorithm to the autocorrelation function (ACF; see Chapter3, Par. 3.3.3). Fig-

ure 5.8 (top) shows the relative variance of CKLA1BR1 vs. frequency(left) and the corresponding

time axis (right).

As expected and discussed earlier, some peaks in the relative variance indicate that the mentioned

short-term trends can be related to periodic behavior of hail-related WTs.The spectra indicate

some shorter periodicity of approximately 2 to 4.5 years in the time series of hail-related WTs

derived by CKLA1BR1, CKLB1R1 and CC3A1BR1. Furthermore, the WTs follow a periodicity

of 12 to 16 years.

A periodicity of approximately 14 to 18 years is detected also in the second runs of CCLM-KL

(Appendix D.3). The relative variance of CKLA1BR2 shows an additional peak at approximately

7 years. Whether this maximum is due to periodicity or caused by a convolution through the

transformation into the frequency space cannot be determined. According to the fact that all max-

ima of the variance occur at a multiple of the same frequency, convolution caused by spectral

’leakage’ is most likely and the results of this spectrum should be handled withcare. However,

the power spectra determined from the results of the second GCM runs show similar results for

the variability of the hail-related WTs in comparison to the first runs with only an offset of ap-

proximately three years towards a longer periodicity. This indicates that the differences between

the first and second GCM/RCM runs impact the magnitude and direction of the linear trends, but

not the periodicity of hail-related WTs.

5.1.3 Variability of hail-related weather types in an ensemble of regional climate
models

The differences between the model realizations illustrate why it is important to consider not only

one RCM run, but to use an ensemble of different model realizations and scenarios to determine

temporal variability of hail-related weather patterns. Since it is not possible to determine the

’best’ model run, each model needs to be taken into account with the same probability to predict

the future climate. Hence, a mini-ensemble of eight members with the RCM of CCLM-ECHAM5,

CCLM-KL and CCLM-CC3ma, different initialization times (R1,R2,R3) and emission scenarios

(A1B, B1) is created for the time periods 1971 to 2000 and 2011 to 2048. Anexamination of

periodicity is not possible due to the short length of CCLM-ECHAM5 runs, which are integrated

in the mini-ensemble.

Figure 5.9 shows the frequency of the hail-related WTs from the ensemble interms of mean and

standard deviation. The mean of WTs for C20 amounts to 41 days, with a maximumof 54 days
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Figure 5.8: Frequency spectra of the autocorrelation function of hail-related WTs. Top:
CKLC20R1/CKLB1R1; Bottom: CKLC20R1/CKLA1BR1 (left), CC3C20R1/CC3A1bR1
(right).

and a minimum of 26 days. Those large fluctuations lead to statistically insignificant trends for

many of the sequences within the time series between 1979 and 2000, which are also obvious

in the trend matrices (Fig. 5.10, top). Furthermore, large standard deviations of up to 25 days

indicate that there are large differences in the number of hail-related WTs derived by the different

RCMs, implying a large uncertainty. However, significant trends are evident for the entire time se-

ries, as well as in the first part of C20 (Fig. 5.10). The number of days with occurring hail-related

WTs increases by 12 days between 1971 and 2000 from approximately 35to 47 days. This leads

to a higher potential for the occurrence of damage causing hailstorms.

In the year 2011, the number of hail-related WTs is lower than in the late 1990s. Either a decrease

of hail-related WTs cannot be identified due to the missing period between 2001 and 2010, or the

models indicate a different WT climatology of those WTs which are related to hail.However, the

mean number of hail-related WTs for the future projection is just about 3 days higher than the

mean for C20. The annual fluctuations are similar to C20 with a range of 27 days and indicate

high uncertainties between single years. The standard deviation resulting from the differences

between the model realizations is lower for the future projection period (σmax = 26) compared

to this of C20 (σmax = 17). This indicates that the emission scenarios have no influence on

the frequency of hail-related WTs until 2048. However, positive trendsare evident in the future

projections of hail-related WTs derived from the ensemble. While there areno trends for the
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Figure 5.9: Number of hail-related WTs for the control period C20 and the future projection
period derived from CCLM-ECHAM5, CCLM-KL and CCLM-CC3ma with mean values (black
line) and standard deviation (gray).

first 20 years, a significant trend for time series longer than approximately30 years can be seen

(Fig. 5.10). According to the linear regression the number of hail-related WTs increases from

39 days in 2011 to 46 days in 2048. Note that the analysis is limited to the mean values and

that the mentioned uncertainty caused by the standard deviations between thedifferent RCM

realizations is not considered.

5.2 Variability of hail-unrelated weather types

5.2.1 Detection of linear trends

As a decrease in the number of hail-unrelated WTs may probably affect theoverall thunderstorm

probability, the time series for these WTs are analyzed with respect to trendsand periodicity.

The trend analysis of the time series, derived from CCLM-ECHAM5 showssignificant trends

only for very short subsequences of the control period (Appendix D.4). This is due to the higher

annual variability compared to the number of hail-related WTs (Fig. 5.11). In1977, for example,

85 days with hail-unrelated WTs occurred according to Run 1, while in 1978those WTs prevailed

just for 42 days.

Some significant negative trends for subsequences between 2012 and2031 (Run 1) or 2026 (Run

2) are evident in the future projection (Appendix D.4), mainly due to a very small number of

hail-unrelated WTs in 2039. Run 3 does not show any significant trends during this period at all,

indicating that initial conditions are decisive for the variability of hail-unrelated WTs.
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Figure 5.10: Trend matrices and significance of the ensemble for C20 (top)and the future projec-
tions (bottom).
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Figure 5.11: Absolute frequency of hail-unrelated WTs derived from CE5C20R1/CE5A1BR1
(red), CE5C20R2/CE5A1BR2 (blue) and CE5C20R3/CE5A1BR3 (green).
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Trends of hail-unrelated WTs, derived from the CCLM-KL data, are similar to those of the

hail-related WTs, but are reverse and more distinct, especially for the first run (Fig. 5.12; Ap-

pendix D.6). Positive trends in the subsequences of the time series from 1971/2000 until 2050

remain significant throughout the entire time period and the subsequences.But those trends

are probably misleading as they are due to an abrupt decrease of hail-unrelated WTs between

1993 and 2001 from approximately 70 days to roughly 35 days (Fig. 5.13). None of the CCLM-

ECHAM5 runs indicate such a decrease in hail-unrelated days. To determine which of the pa-

rameters in the oWLK leads to this decreased number of WTs between 1993 and 2001, the dis-

tributions of the vorticity (not shown) as well as the PW values are compared(Fig. 5.14). Time

blocks of 8 years within the control period are chosen to compare the distributions of the values

of the CCLM-KL runs, but also to evaluate what differences appear in one of the other model re-

alizations (CCLM-ECHAM5 or CCLM-CCma3). The green line in Fig. 5.14 represents a period

with the minimum of hail-unrelated WTs in CKLC20R1, while the other two periods 1977-1984

(blue) and 1985-1992 (red) represent an average occurrence of these WTs. As evident, the PW is

much higher for the years 1993 to 2000 by up to 30% of the median compared tothe other periods

(1977-1984: 18.8 mm; 1993-2000: 26.6 mm). This increase of the PW is not evident in WTs from

CKLC20R2. The reasons for this large discrepancy in the CCLM-KL model run are not clear, as

the model physics and the forcing GCM are the same for all three time periods.Additionally, an

overproportionate amount of water in the CCLM-KL cannot be confirmed by other studies, for

example, in the precipitation study over Baden-Württemberg by Feldmann et al.(2010).

The second run of the CCLM-KL (Fig. 5.12) shows negative trends of hail-unrelated WTs for the

same periods, where positive trends for the hail-related WTs were detected. The linear trend for

the entire period from 1971 to 2048 amounts to 14 days for WTs derived from CKLA1BR2 and

11 days for those from CKLB1R2. These trends are very similar, but reverse, in comparison to the

trends analyzed for the hail-related WTs. This is interesting as it reveals that hail-related WTs and

hail-unrelated WTs depend on each other, at least statistically over longerperiods. Even if there

are 31 remaining types that were considered neither as hail-related nor ashail-unrelated, there

seems to be a direct relationship between the occurrence of hail-related and -unrelated WTs. This

is supported by the trend matrices of the remaining 31 WTs, where no significant trends are evi-

dent in the entire time periods (Appendix D.7). Hail-unrelated WTs derived from CCLM-CC3ma

do not show noticeable significant trends.

In summary, almost the same conclusions as for the hail-related WTs can be drawn here. The

largest differences in the trends are evident for the different model runs of the RCMs due to

different initialization times and conditions. Second, the forcing global modelscause differences,

while for the CKLC20R1 the largest deviations are due to the unusual high PW values between

1993 and 2001. The emission scenarios have little influence on the sign of thetrend but small

influence on the overall number of hail-unrelated WTs per time period.
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Figure 5.12: Trend matrices of hail-unrelated WTs from CKLC20R1/CKLA1BR1 (top) and
CKLC20R2/CKLA1BR2 (bottom) from 1971 to 2048. Right panels show the corresponding
significant trends.

5.2.2 Detection of periodicities

As discussed for the hail-related WTs, short-term variability of hail-unrelated WTs are apparent

in the trend matrices as well, but less pronounced but statistically significant over several peri-

ods. Similar to the hail-related WTs, also those with infrequent hail occurrence were analyzed

for periodicity (Fig. 5.15). Especially the spectrum for WTs derived from CC3A1BR1 (Fig. 5.12,

bottom, right) shows that no harmonic behavior with a period of approximately 12 to 16 years

is evident. However, there is an increased variance for shorter periods between 2.5 and 3 years,

which was not detectable for the hail-related WTs by CC3A1BR1. Thus, thestatement about

the direct relationship between hail-related and hail-unrelated WTs needs tobe softened, as this

would imply that they hold the same harmonic behavior. Thus, this hypothesis is apparently not

valid for the CC3A1BR1.

Nearly all other model realizations show an enhanced variance for the same periods as found for

hail-related WTs, but the variance is less pronounced (Fig. 5.15). This result was expected as it

was already visible in the trend matrices. It indicates that there is some periodicbehavior in the
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Figure 5.13: Absolute frequency of hail-unrelated WTs per summer half-year according to
CKLC20R1/CKLA1BR1 (red) and CKLC20R2/CKLA1BR2 (blue) from 1971 to 2048.
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Figure 5.14: Distributions of PW for three sequenced time periods of 8 years from CKLC20R1
(left) and CKLC20R2 (right). Blue: 1977-1984; Red: 1985-1992; Green: 1993-2000.

time series of hail-unrelated WTs, but it probably interferes more with non-harmonic oscillations.

For the CCLM-KL realizations the direct relationship between hail-related and hail-unrelated

WTs can be confirmed. In years with less hail-related WTs, the number of hail-unrelated WTs

increases, instead of the number of remaining 31 WTs.

5.2.3 Variability of hail-unrelated weather types in an ensemble of regional climate
models

Finally, to account for epistemic uncertainty, the ensemble mean of the different RCM realizations

is analyzed for the hail-unrelated WTs in accordance to the hail-related WTs(Par. 5.1.3). The

average number for hail-unrelated WTs in the control period is 66±9 days, while a minimum
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Figure 5.15: Frequency spectra of the autocorrelation function of hail-unrelated WTs. Top:
CKLB1R1 as a function of frequency (left) and year (right); Bottom: CKLA1BR1 (left) and
CC3A1BR1 (right) over time.

of 49 days is reached in 1976 and a maximum of 80 days in 1971 (Fig. 5.16).This indicates

that the number of hail-unrelated WTs fluctuates a lot for the control period, especially in the

1970s (Fig. 5.16). From the year 1980 a decreasing number of days until the year 2000 is evident

(Fig. 5.17, top). The large standard deviation (up to 45%) in the late 1990s isdue to the minimum

number of hail-unrelated WTs according to CKLA1BR1, as discussed at the beginning of this

section.

The future projection period starts with a higher number of days, where these WTs prevail. An

increase is visible until 2040, where the number of hail-unrelated WTs achieves its minimum

of 48±16 days. A standard deviation of more than 30% indicates large differences between the

RCM realizations and, thus, a high uncertainty. The trend matrices (Fig. 5.17) confirm these

characteristics. The control period holds significant negative trends for the entire time period, but

not for periods ending prior to 1994, where large fluctuations occur. The trends amount between

-0.4 days (1971-2000) and -2.2 days (1989-1999) per year. A decrease of 12 days is observed for

the years 1971 to 2000. A decrease of the hail-unrelated WTs implies that there is more potential

for the occrrence of more days with severe thunderstorms. Due to the large number of remaining

WTs where hail occurrence might be possible and due to the high uncertainty, no quantitative

statement can be made about an increase in the number of hail damage days.
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For the future projections, statistically significant trends are very rare (Fig. 5.17, bottom). This

can be ascribed to the high annual variability, particularly to the high number ofhail-unrelated

WTs in 2041 and 2042. Even though the values seem abnormally high (≈ 5 days), the very small

standard deviations of roughly 5% indicate a low uncertainty since all models considered show

almost the same results. Considering this finding, the trends are signifcant for either the entire

time series or mainly periods that do not include those two years. For example,a decrease of

7 days is evident from 2011 to 2048 and 11 days for 2011 to 2040.
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Figure 5.16: Same as Fig. 5.9 but for hail-unrelated WTs.
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Figure 5.17: Same as Fig. 5.10 but for hail-unrelated WTs.





6. Statistical modeling of hail damage

days

The statistical probability model, introduced in Paragraph 3.3.4, is used on theone hand to verify

the results of categorical verification, in terms of the HSS, and on the other hand, it is used as a

predictor for the number of hail damage days based on the derived WTs from different climate

models. One advantage of the model is that all WTs are considered and notjust the four hail-

related WTs discussed in previous chapters. Furthermore, the uncertainty in the predictions of

hail damage days is properly accounted for. In this section, the potential for hail damage day

occurrence will be discussed, according to all 40 WTs of oWLK.

6.1 Determination of hail damage day probabilities

To derive the number of hail damage days, the probabilities of damage causing hailstorms occur-

rence during a certain WT have to be derived first. For this, the statistical model is used. The

output of the statistical model is a distribution for each probabilitypi of hail damage occurrence

during thei-thWT. A summary of these distributions and their 95% prediction intervals are shown

in Figure 6.1. Red markers show the fraction of hail damage days according to the SV insurance

data during each WT (further referred to as empirical values) derivedfrom CCLM-ERA40 (1986-

2000; see Fig. 4.3). Black markers indicate the point estimates for the probabilities pi derived

from the statistical model, and the brackets show the corresponding 95% prediction intervals.

This diagram illustrates that the model gives very good estimates for the probabilities pi as all

empirical values are within the 95% prediction interval. Note that just 38 WTs are displayed, as

two WTs never occured in the past, according to CCLM-ERA40. The modelconfirms the results

of the categorical verification and indicates that the four WTs SWCAW, SWCCW, SWAAW and

XXCAW are most likely accompanied by damage causing hailstorms with a probability between

10% and 25%. Furthermore, the statistical model seems to confirm that not considering the WT

SECAD (cf. Sec. 4.1) as hail-related WT is justified. The WT occurs only 11times in total and is

accompanied twice by hail and, thus, the absolute fraction of hail damage occurrence is≈ 18%.

However, this rare occurrence of the WT implies a high statistical uncertainty, which is well de-

scribed by the model. The point value forpi is statistically smaller than the empirical value and

afflicted with high uncertainty according to the 95% prediction interval.

85
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Figure 6.1: Point estimates (black dots) and 95% prediction intervals for the probabilitiespi of
having hail during days with thei− th WT. The estimates are computed from WTs derived from
CCLM-ERA40 and hail damage days of the SV data. Red points indicate empirical probabilities,
derived from the same data sets.

But the model also has some problems. Especially those WTs with an empirically large pi are

under-predicted, meaning that the point estimates for the probabilities are lower for the model

predictions than they are for the empirical values. Similarly, WTs that are notaccompanied by

hail and have an empiricalpi of zero are over-predicted.

6.2 Prediction of hail damage days

A great advantage of the statistical model is that it is possible to statistically predict the number

of hail damage days from it by using the time series of all WTs. For predictingthe WTs de-

rived from the reference model CCLM-ERA40, reanalysis and climate models (cf. Table 3.1) are

used to count the number of days where each WT prevailed (Ni). Second, for eachi, one sam-

ple for pi is drawn andK = 200 values from the binomial distributionB(Ni, pi) are sampled.

These processes are repeatedS = 200 times, which gives a good approximation for the predictive

distribution of the number of hail damage daysH for each WT. The sampling of thepi (S) in-
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Figure 6.2: Predictive distribution for the fraction of hail damage days derived from CCLM-
ERA40 during the observed record of the SV loss data (1986-2000). The 95% prediction interval
is shown in red and the point estimate and the empirical value are shown as redand green dots,
respectively (Vitolo and Economou, 2011, not published).

corporates the epistemic uncertainty in the estimation ofpi, while the sampling of the distribution

(K) represents the aleatory uncertainty of hail-generating processes.

Validation of the statistical model

To determine how well the model fits with observations, the predictive distribution of hail damage

days derived from CCLM-ERA40 is compared with the empirically observedvalues. For this,

all 38 samples with the number of hail damage days for each WTHi are incorporated to one

predictive distribution. Dividing this by the total number of days results in a distribution of the

frequency of hail damage days as shown in Fig. 6.2. The frequency ofhail damage days between

the statistical model and the empirically derived frequency conform very well . Hence, statistically

there is a chance between approximately 7% to 9% that damage causing hailstorms occur during

a summer day in the federal state of Baden-Württemberg, which is on average approximately

15 days per summer half-year.
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Figure 6.3: Number of hail damage days per year (1986 to 2000) according to the statistical model.
Black: hail damage days derived by WTs of CCLM-ERA40; Red: ERA40; Green: ERA-Interim.

Validation of CCLM-ERA40 derived hail damage days

For prediction of the number of hail damage days, a consideration of the WTs that never occurred

in the CCLM-ERA40 (SEACD, NECAW) is necessary, as those could occur in the ERA40/ERA-

Interim reanalyses or in the different climate models (see below). Thus, their probabilities are

sampled from the overall, unconditional distribution of the hail damage days (cf. Fig. 6.2). To

derive the number of hail damage days, the probabilitiespi and the occurrence of each WTNi are

used as input for the model. Finally, the probabilities are used to derive the number of hail damage

days per summer half-year. Figure 6.3 shows the predictive distributions of the hail damage days

per year for the period 1986 to 2000 derived by WTs from the ERA40 and ERA-Interim reanalysis

and the CCLM-ERA40. The accordance of the hail damage days is remarkable and confirms that

the CCLM-ERA40 is an appropriate model, when considering WTs applied to the frequency of

hailstorms. All data sets give an approximate number of 15 hail damage days per year, which is in

very good agreement to the number of hail days according to the SV data (15 days). All models

indicate that there is a high probability (>90%) of having more than 13 hail damage days and less

than 17 days per year.

Prediction of hail damage days in climate models

To evaluate whether the climate models (Table 3.1) are capable to reproduce the WTs and hence,

the same number of hail damage days for the past decades, the distributionsof the number of hail

damage days are computed for the model realizations CKLC20R1, CKLC20R2 and CC3C20R1
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Table 6.1: Values used for the bias correction of the predictive distributionsof the number of hail
damage days shown in Fig. 6.4 (and in the Appendix E.2).

Model realization Number of hail damage days

CKLC20R1 -0.7
CKLC20R2 +0.4
CC3C20R1 +1.4
CE5C20R1 +0.7
CE5C20R2 +0.9
CE5C20R3 +0.9

as well as for CCLM-ECHAM5 (Appendix E.2). According to Table 6.1 (top), largest deviations

to the CCLM-ERA40 results are evident for CC3C20R1, while the deviationsbetween the differ-

ent model runs are again largest for the forcing global model (CC3C20R1 vs. CKLC20R1) and

the initial conditions (CKLC20R1 vs. CKLC20R2). The reasons of the differences in the distribu-

tions are due to both epistemic and aleatory uncertainty. Unfortunately, due tothe gap in the time

series of the other RCM realization, no statement can be made in respect to theregional models.

To predict the number of hail damage days that can be expected in the future, a bias correction

for the three different model realization towards the CCLM-ERA40 distribution is accomplished.

For this, the distributions of the RCM realizations are shifted by the amounts in Table 6.1. After

applying this correction, it is possible to evaluate future changes in the probability of hail damage

days and to consider the bias of the statistical model in regards to the bias of the climate model

realizations.

The computation of the distributions of hail damage days for the entire future projection period

(2001 to 2048) indicates that the CKLA1BR2, CC3A1BR1 (Fig. 6.4), CKLB1R2 (not shown) and

CE5A1BR1-R3 (Appendix E.2) show an increase in the number of days, while the CKLA1BR1

(and CKLB1R1; not shown) indicates a decrease. This is very interesting as a positive trend for

the hail-related WTs was also observed in the trend matrices (Fig. 5.1 in Sec. 5.1). This raises the

question why there is an expected decrease in the number of hail damage days when considering

all WTs of the CKLA1BR1.

In Figure 6.4, the distributions for CKLA1BR1, CKLA1BR2 and CC3A1BR1are split into three

different time periods with a length of 15 years each, which was chosen according to the 15 year

observation period of the SV data. For the years 2001-2015, the distribution of CKLA1BR1 indi-

cates a significant smaller number of hail damage days compared to the other model realizations

and to the number of days in the past (1986-2000). This reveals that the future projection of this

model realization seems to have a different distribution of those WTs that aremainly forcing hail

development, while this difference is not reflected within the control period.The differences are

also not visible in the trend matrices, because a positive trend in the number ofhail damage days

is also obvious in the distributions for the periods 2016-2030 and 2031-2045. Those shifts to-

wards a decreased number of hail damage days are probably induced by an increased number of
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hail-related WTs in the late 1990s (Fig. 5.1.1), which have significant influences on the trends.

Similar shifts are evident for CE5C20R2 and CE5C20R3 (Appendix E.2), but due to the lack of

data between 2001 and 2010 there is a potential for misinterpretation. However, those realizations

show a tendency to a higher number of hail damage days in the projections for the future.

For the time period from 2001-2015, CKLA1BR2 and CC3A1BR1 indicate a probability of more

than 90% that the number of hail damage days per summer half-year exceeds 13 days, which con-

forms to CCLM-ERA40 in the control period (1986-200). As mentioned already, the probability

of having more than 13 days according to CKLA1BR1 is much smaller and amounts to values

of approximately 20%. For the next period of 15 years (2016-2030; Fig. 6.4 bottom, left) all

means of the distributions indicate an increase in the number of days from at least 13 hail dam-

age days (1986-2000; 2001-2015) up to a minimum of 15 days. The probability of having more

than 14 hail damage days according to CKLA1BR2 is still more than 90%. This rapid increase is

probably caused by the ’step’ in the time series of hail-related WTs, as explained in Section 5.1.

Note that only the minimum number of hail damage days according to the 90% probability of hail

occurrence is discussed. The variance of the distribution is much larger and amounts to values

of approximately 7 days. Thus, a larger number of hail damage days can also be expected to a

certain probability.

In the period from 2031 to 2045 (Fig. 6.4, bottom right) positive trends in thenumber of hail

damage days are evident again in all model realizations. According to CC3A1BR1, CKLA1BR2

and CE5A1BR1-R3, the probability of having more than 14 damage days persummer half-year is

more than 90%. For the CKLB1R1 and CKLB1R2 model realizations similar results are achieved,

but not shown. Table 6.2 summarizes the findings.

Table 6.2: Minimum number of days during which hail damage can be expectedwith a 90%
probability derived from the statistical model and different climate model realizations. All values
are corrected for a systematic bias according data of CCLM-ERA40 and for the control period
1986-2000.

Model realization 1986-2000 2001-2015 2016-2030 2031-2045

CKLA1BR1 13 10 10 11
CKLA1BR2 13 13 13 15
CC3A1BR1 13 13 14 14
CE5A1BR1 13 - 13 14
CE5A1BR2 13 - 14 15
CE5A1BR3 13 - 14 14

The results of the statistical modeling of hail damage days confirm that the analysis of the four se-

lected hail-related WTs already gives a good estimate about the variability of hail damage events.

However, the use of this method has some advantages. The analysis showsthat even if the con-

trol periods (1986 to 2000) conform well to both reanalysis and climate models, there are re-

markable differences in the future projections of the climate models (CKLA1BR1, CE5A1BR2,
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CE5A1BR2) that affect the number of hail-related WTs per year and, hence, the number of hail

damage days. Those can be attributed to aleatory uncertainty, as differences are mainly due to the

different initialization times and initial conditions of the forcing global climate model.However,

with an increase of approximately one to two days in the number of hail damage days, the results

are similar to those of the analysis of hail-related WTs. This indicates that the periodicity and

temporal variability of the four chosen hail-related WTs is probably a good estimate for the actual

occurrence of hail damage days.
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Figure 6.4: Predictive distributions of the number of hail damage days derived from CCLM-
ERA40 for the time period from 1986 to 2000 (black) and CCLM-KL for 1986-2000 (top), 2001-
2048 (middle, left), 2001-2015 (middle, right), 2016-2030 (bottom, left) and 2031-2045 (bottom,
right). A bias correction is applied to all RCM realizations during the control runs (top, right).



7. Summary and conclusion

In this thesis the long-term variability of weather patterns which are frequently accompanied by

damage causing hailstorms is analyzed. In order to accomplish this, the first step is to examine the

applicability of the weather type classification method (oWLK) of Deutscher Wetterdienst (DWD)

to different climate model data. The second step is to verify whether the climate models are able

to reproduce weather types (WTs) properly. These steps are essential to analyze the variability of

WTs over the longest possible time period.

To clarify these questions, reanalysis data of the ECMWF (ERA40 and ERA-Interim) and dy-

namically downscaled data of the regional climate model (RCM) CCLM-ERA40 for the control

period C20 (1971 to 2000) were available. The CCLM-ERA40 data were driven by initial and

boundary conditions of ERA40. Furthermore, data of eight different realizations of the regional

climate model COSMO-CLM were used. They were available for C20 and different future pro-

jection periods (2001-2048/2050 and 2011-2050). The RCM realizations differ by the version of

COSMO-CLM (3.1 and 4.8), the driving global climate model (ECHAM5-MPI/OM, CCCma3),

the initialization time and initial conditions of the global climate model (Run 1 to 3) and theemis-

sion scenarios (A1B and B1). The oWLK are applied to all of these data sets for the investigation

area of Germany (4◦E to 16◦E and 45◦N and 57◦E) and WTs are derived.

Using categorical verification allowed to link loss data from the SV SparkassenVersicherung AG,

which include claims of hail damage on buildings in Baden-Württemberg, and derived WTs. In

doing so, it is possible to differentiate between weather patterns that are frequently accompanied

by damaging hailstorms (hail-related WTs) and those that are only rarely accompanied by hail

(hail-unrelated WTs), which are the basis for the analysis of variability.

The applicability of the classification method is examined by comparing the distributions of the

absolute frequency of WTs derived from ERA40, ERA-Interim and CCLM-ERA40 for C20. The

deviations between the distributions are only minor, indicating that the applicationof the oWLK

to similar data sets (all contain observations) leads to similar results. Hence, different model res-

olutions of ERA40 (≈ 125 km), ERA-Interim (≈ 80 km) and CCLM-ERA40 (≈ 50 km) do not

have much influence on the resulting WTs. However, the main reason for differences in the WT

distributions is the flow direction (< 8%) as shown by comparing the distributionsof the individual

parameters in the oWLK (flow direction, relative vorticity and humidity). Furthermore it is found

that the classification method is found to reach its limits when classifiying indifferent weather

conditions, e.g., an accumulated relative vorticity that is close to zero. Theseindifferent WTs
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might also impact the results of the oWLK, but are probably equally distributedin all models and,

hence, the effects are relatively small.

According to the evaluation, the WTs derived from CCLM-ERA40 were considered as reference

to categorize into hail-related and hail-unrelated WTs. Using the Heidke Skill Score (HSS) al-

lowed to define four WTs that have a high probability to be accompanied by damaging hailstorms

and five WTs where hailstorms are very rare. Interestingly, three of the hail-related WTs turned

out to be referable to the same meteorological process: warm and moist air advected from the

Atlantic and Mediterranean leading to a frequent occurrence of thunderstorms as the advected

air mass stores a lot of energy ("Spanish plume"). The fact that three WTs can be related to the

same proccess indicates that the oWLK cannot differ between differentmeteorological processes.

But it clarifies that the WTs that favor the development of damaging hailstorm determined from

the HSS are realistic. These findings are in agreement to the analyses by Bissolli et al. (2007),

who found a relationship between three of the detected WTs and the occurrence of tornadoes in

Germany.

To examine whether the annual variability of hail-related WTs is independentof the model and the

model resolution, the absolute frequency of hail-related WTs derived byERA-40, ERA-Interim,

CCLM-ERA40 and WTs derived by the DWD is compared. Deviations of the annual frequency

of WTs for C20 in general remain small (<5%) except for a few particular years. Deviations for

hail-unrelated WTs are slightly larger (<10%). This indicates that the model resolution also has

a minor influence on the variabiliy of hail-related WTs.

As the applicability of the classification method to different data sets is confirmed, the method is

applied to the mini-ensemble of climate model realizations. Since the RCMs are not driven by

observations, they cannot be compared for the temporal succession ofthe synoptic fields. Thus,

only the statistical distribution of WTs over an adequate long time-period of the 30 years in the

C20 is compared with WTs derived from CCLM-ERA40. The overall distributions of WTs de-

rived from climate models are approximately identical to those of the reference model. Deviations

are mainly due to the classification of the flow direction and the cyclonality in 500 hPa, which is

sensitive for indifferent WTs as discussed above. However, it is interesting that mainly the cyclon-

ality in 500 hPa causes differences as it is not as influenced by the lower boundary conditions as

the cyclonality in 1000 hPa and would, thus, be assumed to be less erroneous. However, the good

correspondence between climate models and reanalysis emphasizes that theoWLK is applicable

to a various type of data sets. This indicates that the oWLK is a good basis forthe analysis of the

natural variability of the hailstorm occurrence and allows to consider long timeperiods that are

not available for hail observations.

Linear trends in the time-series of hail-related WTs are examined by using trend matrices where

both the start and end year of the series are successively varied. Thesignificance (80% signifi-

cance level) of linear trends is tested using Mann-Kendall test statistics. Significant positive trends

for C20 of approximately 9 days are found in the hail-related WTs derivedfrom CKLA1BR1 and
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CKLB1R1, while trends are not significant for the remaining model realizations. For the future

projections three of the eight model realizations show significant positive trends of approximately

11 days (2001-2048/50) and 8 days for CE5A1BR1 (2011-2050). Furthermore, the periodic be-

havior of hail-related WTs is determined by the application of a Fast Fourier Transformation to

those time series with an adequate length (not CCLM-ECHAM5). Nearly all hail-related WTs

derived from the model realizations show a periodic behavior of 12-16 and 2-5 years. This in-

dicates that the potential for hail follows a certain harmonic behavior. The derived trends are

highly dependent on the initialization time and the initial conditions of the driving GCM, which

caused the largest differences of the WTs. Second largest differences are due to the forcing GCM

(ECHAM5 and CCCma3). The RCM model versions (3.1 and 4.8) and emissionscenarios (A1B

and B1) are just of minor importance. The differences between these modelrealizations indicate

a large uncertainty of the climate scenarios. Furthermore, it explains why theeight climate pro-

jections should not be considered as climate prediction, but more as an estimateof the potential

development of the climate with regard to hail-related WTs.

To summarize the potential development of hail-related WTs and to account for epistemic uncer-

tainty, the time series of hail-related WTs derived from the different model realizations are com-

bined to one ensemble with mean and standard deviation. The trend matrices show that short-term

trends are mostly not statistically significant, due to large inter-annual variability of hail-related

WTs. However, significant long-term trends are found in the past and future. A significant in-

crease of 12 days (from 35 to 47 days) is observed between 1971 and2000 and an increase of

9 days (39 to 46 days) for the years 2011-2048. These could partially explain the increase of

damage days observed by the SV insurance company (≈ 15 days). This would indicate that the

results are representable, even though thunderstorms cannot be resolved.

However, the detected changes should be interpreted with care as they are only derived from one

RCM. Due to the lack of three-dimensional data from different RCMs the changes cannot be

traced back to natural variability. Additionally, different initialization times for CCLM-CCCma3

and scenarios for CCLM-CCCma3 and CCLM-ECHAM5 would increase thenumber of ensem-

ble members and, thus, would make the analysis of linear trends more stable against a shift in the

initialization time.

To verify the results, the number of hail damage days is computed with a statistic probability

model based on the WTs from the climate models. This is the first time that hail damage days are

derived from time series of WTs using such a model. The comparison of the statistically derived

number of hail damage days on basis of WTs derived from CCLM-ERA40, ERA40 and ERA-

Interim conformed very well with the empirical derived number of days according to the SV loss

data. An approximate number of 15 hail damage days was found within the period from 1986

to 2000, while the distributions allow to quantify that there is a probability of more than 90% to

have between 13 and 17 hail damage days. The application of the probabilitymodel to different

RCM realizations allows to make statements of significant changes in the number of hail damage

days in the future. To reduce epistemic uncertainty in the RCM simulations, the number of hail

damage days is corrected for bias. The future projections show that an increase in the number of



96 Chapter 7. Summary and conclusion

hail damage days can be expected. For three of the model realizazions there is a probability of

90% that at least 15 hail damage days per summer-half year occur between 2031-2045 and for

three others that at least 14 hail damage days occur. Surprisingly, someof the model realizations

indicate a shift in the probabiliy distribution of the hail damage days between 1986-2000 and

2001-2015 towards a decreasing number of days, even if the data are bias corrected. This can

be related to peaks in the time series that significantly influence the trends. It should be further

analyzed if these deviations are caused by a certain periodicity or just dueto peaks.

The analyses shows that it is possible to apply the oWLK to different data sets and that the RCM

realizations reproduce the overall number of hail-related WTs surprisingly good. Applying dif-

ferent statistical methods makes it possible to investigate likely future changesof damaging hail-

storms. Hence, the methods could be applied to study WTs that are in some way related to other

meteorological phenomena, e.g. tornadoes (Bissolli et al., 2007) or flooding (Bardossy and Filiz,

2005). This would allow to estimate the probability of such extreme events in future decades.

However, the analysis also shows that nearly all statements are afflicted withhigh uncertainty.

Hence, further investigations should include a larger ensemble of RCMs to reduce the epistemic

uncertainty. This assures that natural variability is analyzed and not onlythe model physics. An

ensemble should preferably include a large number of RCMs that are driven by different global

climate models, as most uncertainties were found to originate from those.



A. Weather types

Table A.1: List of Hess-Brezowksy Major types (GWT) and types (GWL;Hess and Brezowsky,
1952; Gerstengarbe and Werner, 2005)

Major type (GWT) Abbrev. Type (GWL) Abbrev.

A. Zonal circulation
West W West cyclonic WZ

West anticyclonic WA
West angular WW

Southern West WS
B. Mixed circulation
Central Europe high HM Central European high HM

Central European ridge BM
Central European low TM Central European low TM

Southwest SW Southwest anticyclonic SWA
Southwest cyclonic SWZ

Northwest NW Northwest anticyclonic NWA
Northwest cyclonic NWZ

C. Meridional circulation
East E Fennoscadian high anticyclone HFA

Norwegian Sea/Fennoscadian high anticyclone HNFA
Fennoscadian high cyclonic HFZ

Norwegian Sea/Fennoscadian high cyclonic HNFZ
South S South anticyclone SA

South cyclonic SZ
British Isles low TB

Western Europe trough TRW
Southeast SE Southeast anticyclone NA

Southeast cyclonic SEZ
North N North anticyclone NA

North cyclonic NZ
North, Iceland high, anticyclonic HNA

North, Iceland high, cyclonic HNZ
British Isles high HB

Central European trough TRM
Northeast NE Northeast anticyclone NEA

Northeast cyclone NEZ
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Table A.2: List of objective weather types by the DWD

Abbrev. Advection Cylonality Cylonality Humidity
in 925 hPa in 500 hPa

NEAAD Northeast anticyclonic anticyclonic dry
NEAAW Northeast anticyclonic anticyclonic wet
NEACD Northeast anticyclonic cyclonic dry
NEACW Northeast anticyclonic cyclonic wet
NECAD Northeast cyclonic anticyclonic dry
NECAW Northeast cyclonic anticyclonic wet
NECCD Northeast cyclonic cyclonic dry
NECCW Northeast cyclonic cyclonic wet
SEAAD Southeast anticyclonic anticyclonic dry
SEAAW Southeast anticyclonic anticyclonic wet
SEACD Southeast anticyclonic cyclonic dry
SEACW Southeast anticyclonic cyclonic wet
SECAD Southeast cyclonic anticyclonic dry
SECAW Southeast cyclonic anticyclonic wet
SECCD Southeast cyclonic cyclonic dry
SECCW Southeast cyclonic cyclonic wet
SWAAD Southwest anticyclonic anticyclonic dry
SWAAW Southwest anticyclonic anticyclonic wet
SWACD Southwest anticyclonic cyclonic dry
SWACW Southwest anticyclonic cyclonic wet
SWCAD Southwest cyclonic anticyclonic dry
SWCAW Southwest cyclonic anticyclonic wet
SWCCD Southwest cyclonic cyclonic dry
SWCCW Southwest cyclonic cyclonic wet
NWAAD Northwest anticyclonic anticyclonic dry
NWAAW Northwest anticyclonic anticyclonic wet
NWACD Northwest anticyclonic cyclonic dry
NWACW Northwest anticyclonic cyclonic wet
NWCAD Northwest cyclonic anticyclonic dry
NWCAW Northwest cyclonic anticyclonic wet
NWCCD Northwest cyclonic cyclonic dry
NWCCW Northwest cyclonic cyclonic wet
XXAAD not defined anticyclonic anticyclonic dry
XXAAW not defined anticyclonic anticyclonic wet
XXACD not defined anticyclonic cyclonic dry
XXACW not defined anticyclonic cyclonic wet
XXCAD not defined cyclonic anticyclonic dry
XXCAW not defined cyclonic anticyclonic wet
XXCCD not defined cyclonic cyclonic dry
XXCCW not defined cyclonic cyclonic wet
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Table A.3: List of objective weather types by the modified weather type classification

Abbrev. Cylonality Cylonality Humid. Stability Equivalen t potential temp.
in 925 hPa in 500 hPa

AADSH anticyclonic anticyclonic dry stable high EPT (largescale lifting)
AADSL anticyclonic anticyclonic dry stable low EPT (no lifting)
AADLH anticyclonic anticyclonic dry instable high EPT
AADLL anticyclonic anticyclonic dry instable low EPT
AAWSH anticyclonic anticyclonic wet stable high EPT
AAWSL anticyclonic anticyclonic wet stable low EPT
AAWLH anticyclonic anticyclonic. wet instable high EPT
AAWLL anticyclonic anticyclonic wet instable low EPT
ACDSH anticyclonic cyclonic dry stable high EPT
ACDSL anticyclonic cyclonic dry stable low EPT
ACDLH anticyclonic cyclonic dry instable high EPT
ACDLL anticyclonic cyclonic dry instable low EPT
ACWSH anticyclonic cyclonic wet stable high EPT
ACWSL anticyclonic cyclonic wet stable low EPT
ACWLH anticyclonic cyclonic wet instable high EPT
ACWLL anticyclonic cyclonic wet instable low EPT
CCDSH cyclonic cyclonic dry stable high EPT
CCDSL cyclonic cyclonic dry stable low EPT
CCDLH cyclonic cyclonic dry instable high EPT
CCDLL cyclonic cyclonic dry instable low EPT
CCWSH cyclonic cyclonic wet stable high EPT
CCWSL cyclonic cyclonic wet stable low EPT
CCWLH cyclonic cyclonic wet instable high EPT
CCWLL cyclonic cyclonic wet instable low EPT
CADSH cyclonic anticyclonic dry stable high EPT
CADSL cyclonic anticyclonic dry stable low EPT
CADLH cyclonic anticyclonic dry instable high EPT
CADLL cyclonic anticyclonic dry instable low EPT
CAWSH cyclonic anticyclonic wet stable high EPT
CAWSL cyclonic anticyclonic wet stable low EPT
CAWLH cyclonic anticyclonic wet instable high EPT
CAWLL cyclonic anticyclonic wet instable low EPT





B. Skill Scores

Hit Rate

The hit rate counts all correct forecasts and is defined as

H =
a+ d

n
. (B.1)

The best possible hit rate is one, while the worst is zero. It considers allcorrect "Yes" and "No"

forecasts but is not an adequate measure when observational events occur only rarely (see Wilks,

1995).

Threat Score

The threat score (TS), also called critical success index (CSI), is equivalent to the number of

correct "Yes" forecasts divided by the occasions on which the eventwas forecast and/or observed

(Wilks, 1995):

TS = CSI =
a

a+ b+ c
. (B.2)

It can be interpreted as the quantity being forecast after removing correct "No" forecasts. It is

used particularly when an event occurs less frequently than the nonoccurence.

Probability of detection

To include information about the likelihood, that the event would be forecasted relative to its

occurrence, the probability of detection (POD) can be used as accuracy measure:

POD =
a

a+ c
. (B.3)

For a perfect forecast its value achieves one and for the worstPOD = 0.

False Alarm Rate

The false-alarm rate (FAR) is the number of "Yes" forecasts of the event that fail and it is calcu-

lated as

FAR =
b

a+ b
. (B.4)

In contrast to the other measures the best possible FAR is zero and the worst is one.
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Bias

The bias (B) is not an accuracy measure but indicates whether an eventwas forecasted more

frequently than it was observed. The B is the ratio of the number of "Yes" forecasts to the number

of "Yes" observations:

B =
a+ b

a+ c
. (B.5)

If B is equal to one, the event was forecast the same number of times than it was observed. If it

is greater than one, the event was forecast more often than observed (overforecast), while it was

underforecast when B is less than zero.



C. Modified weather type classification

Table C.1: Skill scores of hail-related and hail-unrelated WTs derived from CCLM-ERA40 with
MoWLK.

Weather type POD FAR CSI HSS a b c d

Hailstorm- CAWLH 0.257 0.601 0.185 0.266 57 86 165 2437
related AAWLH 0.207 0.681 0.144 0.2 46 98 176 2425

CCWLH 0.041 0.625 0.038 0.058 9 15 213 2508
CCWSH 0.054 0.844 0.042 0.04 12 65 210 2458

Hailstorm- AAWSL 0.018 0.983 0.009 -0.073 4 235 218 2288
unrelated AADSL 0.036 0.981 0.012 -0.092 8 423 214 2100

ACDSL 0.045 0.979 0.015 -0.092 10 464 212 2059
CCDSL 0.009 0.987 0.005 -0.06 2 152 220 2371
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D. Analysis of hail-related weather

types

D.1 Hail-related weather types
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Figure D.1: Same as Fig. 5.2 but for CE5C20R2 (top) and CE5A1BR2 (bottom).
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Figure D.2: Same as Fig. 5.2 but for CE5C20R3 (top) and CE5A1BR3 (bottom).
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Figure D.3: Same as Fig. 5.8 but for CKLC20R2/CKLB1R2 (left) and CKLC20R2/CKLA1BR2
(right).
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D.2 Hail-unrelated weather types
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Figure D.4: Same as Fig. 5.2 but for CE5C20R1 (top) and CE5A1BR1 (bottom) and hail-
unrelated WTs.
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Figure D.5: Same as Fig. 5.2 but for CE5C20R2 (top) and CE5A1BR2 (bottom) and hail-
unrelated WTs.
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Figure D.6: Same as Fig. 5.2 but for CKLC20R1/CKLB1R1 (top) and CKLC20R2/CKLB1R2
(bottom) and hail-unrelated WTs.
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Figure D.7: Same as Fig. 5.2 but for CKLC20R1/CKLA1BR1 (top) and CKLC20R2/CKLA1BR2
(bottom) and remaining WTs.
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Figure D.8: Same as Fig. 5.15 but from CKLC20R2/CKLB1R2.



E. Prediction of hail damage days
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Figure E.1: Same as Fig. 6.4 but for the CCLM-ECHAM5 model runs and onlyfor the control
period 1986 to 2000 without (left) and with (right) bias correction.
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Figure E.2: Same as Fig. 6.4 but for the CCLM-ECHAM5 model runs and forthe future projec-
tions 2011-2048 (top), due to the lag of data between 2001 and 2010.
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