Der Einfluss von stratosphärischen Wellen auf die Zyklogenese im nordhemisphärischen Winter

The influence of stratospheric waves on cyclogenesis in northern hemispheric winter

Masterarbeit im Fach Meteorologie
von

Jasmin Hofgärtner

Oktober 2016
Referent: Prof. Dr. Peter Knippertz
Korreferent: Prof. Dr. Peter Braesicke
Inhaltsverzeichnis

1 Einleitung .. 5
2 Grundlagen ... 8
 2.1 Winterstürme ... 8
 2.2 Stratosphäre ... 11
 2.3 Interaktionen ... 13
3 Daten und Methoden ... 17
 3.1 Daten ... 17
 3.1.1 ERA-Interim Datenset / Reanalysedaten ... 17
 3.1.2 Stürme ... 18
 3.2 NCL und CDO ... 19
 3.3 Drucktendenzgleichung ... 19
 3.4 Synoptische Situation der jeweiligen Stürme .. 22
 3.5 Hovmöller-Diagramme ... 23
4 Ergebnisse .. 30
 4.1 Auswahl der Stürme ... 30
 4.2 Die Familie der mobilen Wellen ... 34
 4.2.1 Stürme 10, 13 und 68 .. 39
 4.2.2 Stürme 45 und 64 ... 48
 4.2.3 Stürme 43, 48 und 72 .. 55
 4.2.4 Sturm 96 .. 65
 4.2.5 Interpretation ... 69
 4.3 Die Familie der stationären Wellen .. 71
 4.3.1 Stürme 60 und 81 ... 75
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>Sturm 58</td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Interpretation</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Familie „Rückläufige Wellen“</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Interpretation</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Zusammenfassung</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Literaturverzeichnis</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Abbildungsverzeichnis</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Formelverzeichnis</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Tabellenverzeichnis</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Anhang</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Erklärung</td>
<td></td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Danksagung</td>
<td></td>
<td>III</td>
</tr>
</tbody>
</table>
1 Einleitung

In dieser Arbeit soll nun der direkte Einfluss der Stratosphäre auf Zyklonen während ihrer Entwicklungsphase untersucht werden. Innerhalb dieser Studie werden die 100 intensivsten Zyklonen, welche im Zeitraum von 1979 bis 2015 im Bereich des Nordatlantiks auftraten, betrachtet. Anhand der gefundenen Ergebnisse sollen Schlüsse gezogen werden hinsichtlich der Verallgemeinerung dieser Ergebnisse auf Kopplungen
zwischen stratosphärischen Wellen und Bodenzyklogen, in welchem Umfang diese Kopplung stattfinden kann und wie dieser Beitrag zeitlich und räumlich verteilt ist. Das Ziel ist es also, den Einfluss der Stratosphäre auf Winterstürme zu quantifizieren.
2 Grundlagen

2.1 Winterstürme

Die Entwicklung von Zyklenen hängt eng zusammen mit der lokalzeitlichen Entwicklung des bodennahen Luftdrucks. Die Drucktendenzgleichung (Gleichung (1)) beschreibt die Prozesse, die zu dieser Druckänderung führen können.

\[
\frac{dp}{dt} = -g \int_z^\infty \rho \nabla h \cdot \mathbf{v}_h dz - g \int_z^\infty \mathbf{v}_h \cdot \nabla \rho dz + g \rho_w \tag{1}
\]

Term 1 auf der linken Seite der Gleichung steht für die bodennahe Luftdruckentwicklung. Term 2 beschreibt horizontale Vergenzen. Darunter sind horizontale Massedivergenzen und Massekonvergenzen zu verstehen. Ab einem Niveau

Abbildung 2: Jetstreak mit Konfluenz- und Diffluenzeffekt

Auf der linken Seite der Abbildung befindet sich der Eingang des Jetstreaks und auf der rechten Seite der Ausgang. Im Eingangsbereich des Jetstreaks wird auf der antizyklonalen Seite Divergenz erzeugt (A) und auf der zyklonalen Seite Konvergenz (B). Im Ausgangsbereich wird dagegen im antizyklonalen Bereich Konvergenz erzeugt (C) und im zyklonalen Bereich Divergenz (D). Diese Vergenzen sorgen für Auf- und Absinkbewegungen. Durch diese Bewegung sowie durch ageostrophische Komponenten vom hohen zum tiefen Druck, bilden sich beidseitig Zirkulationen aus. Eine thermisch direkte Zirkulation zwischen A und B sowie eine thermisch indirekte Zirkulation zwischen C und D.

Zyklogenese setzt bevorzugt im antizyklonalen Bereich des Eingangsgebietes (A) ein. Aber auch auf der zyklonalen Seite des Ausgangsgebietes kann Zyklogenese einsetzen, die unter Umständen sogar sehr intensiv vonstattengehen kann.

Ebenfalls unabdingbar für Zyklogenese ist die barokline Instabilität. Bei Baroklinität ist ein horizontaler Temperaturgradient vorhanden, der durch die unterschiedlich starke Sonneneinstrahlung entsteht. Baroklinität ist also der Normalzustand. Ein kritischer und infolgedessen anfälliger Ort für Instabilitäten und damit auch Zyklogenese ist die Polarfront, an welcher warme Subtropenluft auf kalte Polarluft trifft.

2.2 **Stratosphäre**

Ein kurzer Überblick über die Klimatologie der Stratosphäre soll beim späteren Interpretieren der Ergebnisse helfen.

In der stabilen Stratosphäre, welche sich in einer Höhe von etwa 10 bis 50 km befindet, sind die Strömungsverhältnisse aufgrund der Temperaturzunahme annähernd turbulenzfrei und durch große Wellen geprägt. Änderungen der Zirkulation geschehen auf einer Zeitskala von Wochen bis Monaten und fast ausschließlich durch Strahlungsprozesse oder Interaktionen mit troposphärischen Wellen. Die stratosphärischen Wellen bewegen sich also im Allgemeinen nur langsam und werden, im Vergleich zur kurzen Zeitskala der Winterstürme, oft als stationär betrachtet.

Darüber hinaus wird das Verhalten des absoluten Geopotentials in einer bestimmten Höhe in der Stratosphäre durch die Geopotentialtendenzen der darunter befindlichen Level beeinflusst. Dies gilt es bei Interpretationen der Phasenbeziehungen zwischen Welle und Sturm zu beachten.

2.3 Interaktionen

Erst in den letzten zwei bis drei Jahrzehnten konnte die Wissenschaft die bis dahin angenommene Passivität der Stratosphäre widerlegen und durch eine Vielzahl an Untersuchungen zeigen, dass die Stratosphäre nicht nur von troposphärischen Wellen angeregter wird, sondern ebenfalls Einfluss auf die Troposphäre nehmen kann.

So zum Beispiel stellte Black (2002) fest, dass Variationen in der Stärke des Polarwirbels einen direkten Einfluss auf bodennahe Klimasysteme haben und diese
Dann wiederum auf das troposphärische Wettergeschehen. Auf diese Aussage wird im Folgenden näher eingegangen.

Die Nordhemisphere ist durch alternierende Druck- und Variabilitätsmuster, die Nordatlantische und die Arktische Oszillation (NAO, AO), geprägt. Unter der NAO sind Schwankungen in den Luftdruckunterschieden zwischen dem Islandtief und dem Azorenhoch zu verstehen. So tritt beispielsweise während einer positiven NAO-Phase ein stärkerer Luftdruckgegensatz zwischen den beiden Druckgebilden als im Mittel auf. Die Folge davon sind stärker ausgeprägte Westwinde, was eine erhöhte Sturmaktivität und auch –intensität über dem Nordatlantik mit sich bringt. Die Zyklen haben eine längere Lebenszeit und werden mit verstärkten Westwinden Richtung Europa gelenkt.

Sowohl NAO als auch AO haben also großen Einfluss auf das Wettergeschehen in der Troposphäre und stehen in unmittelbarer Verbindung mit nordatlantischen Zyklen.

Ein Zusammenhang zwischen Stratosphäre und Troposphäre zeigt sich auch nach Vulkaneruptionen sowie bei Änderungen des stratosphärischen Ozongehalts in außertropischen Breiten (Langematz, et al., 2008). In der Ozonschicht wird UV-Strahlung absorbiert und trägt so zur Erwärmung der Stratosphäre bei. Einer Abnahme des Ozongehalts, ob aus natürlicher oder anthropogener Herkunft, folgt eine Abkühlung der Stratosphäre, was wiederum zu einer Verstärkung des Polarwirbels führt.

Bisher zeigen Literatur und Forschung einen indirekten Einfluss der Stratosphäre auf troposphärische Zyklonen auf. Dabei wird nicht auf einzelne Zyklonen eingegangen.
sondern lediglich auf so genannte „stormtracks“. Dies beschreibt die Zugbahnen aller in einem Winterhalbjahr auftretenden Zyklonen. Ziel dieser Arbeit ist es, einen direkten Einfluss des Polarwirbels auf einzelne Zyklonen zu quantifizieren.
3 Daten und Methoden

3.1 Daten

In dieser Arbeit werden hochaufgelöste Reanalysedaten des Europäischen Zentrums für mittelfristige Wettervorhersage (ECMWF) verwendet.

Der Untersuchungszeitraum bezieht sich auf die Jahre von 1979 bis 2015, beschränkt sich jedoch jeweils auf die Winterhalbjahre, da sich dann die betrachteten intensiven Winterzyklen im Bereich des Nordatlantiks bilden. Das Untersuchungsgebiet bezieht sich auf die Nordhemisphäre mit einer geographischen Länge von 100° W bis 20° O und einer geographischen Breite von 40° N bis 70° N. Für die genauere Betrachtung einzelner Stürme wird das geographische Gebiet an die jeweiligen Zugbahnen angepasst.

3.1.1 ERA-Interim Datenset / Reanalysedaten

Reanalysedaten beschreiben das Wetter- und Klimageschehen der Vergangenheit. Diese werden mit numerischen Wettervorhersagemodellen unter Berücksichtigung aller zur Verfügung stehenden Beobachtungen, Messungen sowie bekannten Unsicherheiten für die Vergangenheit simuliert. Sie liefern, im Gegensatz zu einzelnen Messungen,
großflächige, konsistente und realitätsnahe Informationen über den atmosphärischen Zustand, was sie für die Forschung bedeutend macht.

Die ERA-Interim Daten werden mit dem spektralen Modell IFS (Integrated Forecast System) mittels einer 4D-Variationsanalyse berechnet. Sie haben eine räumliche Auflösung von 0,7°, was etwa 80 km entspricht sowie eine zeitliche Auflösung von 6 Stunden. Das Modell teilt die Atmosphäre vom Boden bis etwa 0,1 hPa in 60 Schichten auf.

Die in dieser Arbeit verwendeten ERA-Interim Daten liegen 6-stündig für die Winterhalbjahre von 1979 bis 2015, jeweils vom 30.09. bis 30.04. vor. Darin enthalten sind Informationen über das absolute Geopotential sowie die u- und v-Komponenten des Windes zu jedem Zeitpunkt des genannten Intervalls für die gesamte Nordhemisphäre von 180° W bis 180° O sowie von 0° N bis 90° N.

3.1.2 Stürme

Die Datensätze zu diesen 100 Zyklonen beinhalten den Zeitraum von der Entstehung bis zur Auflösung, den Kerndruck sowie die Koordinaten zum jeweiligen Aufenthaltsort. Da diese Stürme keine besonders schadensträchtigen Stürme sind, unter anderem da sie das Europäische Festland in den meisten Fällen nicht erreichen, können ihnen keine Namen zugeordnet werden. Die Stürme werden daher in dieser Arbeit als die Stürme 01 bis 99 bezeichnet.
3.2 NCL und CDO

3.3 Drucktendenzgleichung

In dieser Arbeit soll der direkte Einfluss der Stratosphäre auf Zyklonen während ihrer Entwicklungsphase untersucht werden. Innerhalb dieser Studie werden dazu die in Kapitel 2.1 näher erläuterten Winterstürme betrachtet.

Eine Vertiefung von Zyklonen erfolgt unter Einfluss von diabatischen Effekten wie Strahlungseffekte, freiwerdende latente Wärme oder Diffusion sowie barokline Effekte. Aber wird die Druckentwicklung auch von der Stratosphäre beeinflusst?

Um herauszufinden, welche Effekte im Laufe der Entwicklungsphase der Stürme in welchem Maße auf die explosive Vertiefung des Bodendrucks haben, eignet sich eine Anwendung der nach Knippertz et al. (2008) und Fink et al. (2012) modulierten Drucktendenzgleichung (Pressure Tendency Equation, PTE) auf die ausgewählten Zyklonen. Die PTE folgt nachstehender Formulierung

\[
\frac{\partial p_{sfc}}{\partial t} = \rho_{sfc} \frac{\partial \Phi}{\partial t} + \rho_{sfc} R_d \frac{f_{sfc}^2 \partial v}{\partial t} dlnp + \rho (E - P) + RES_{PTE}
\]

\[(2)\]
\[Dp = D\Phi + ITT + EP + RES_{PTE} \] (3)

wobei \(\rho_{sfc}\) der Bodendruck, \(\rho_{sfc}\) die bodennahe Luftdichte, \(\Phi\) das Geopotential in Niveau \(p_2\), hier auf 100 hPa gesetzt, \(T_v\) die virtuelle Temperatur, \(R_d\) die Gaskonstante trockener Luft und \(g\) die Gravitationsgeschwindigkeit ist.

Die Benennung der einzelnen Terme aus Gleichung (2) ist in Gleichung (3) dargestellt. Dabei ist \(Dp\) die Drucktendenz am Boden. \(D\Phi\) auf der rechten Seite der Gleichung stellt die Geopotentialänderung im Drucklevel \(p_2\) dar. Dieser Term ist ein Indikator für einen möglichen Beitrag der Stratosphäre zur Druckentwicklung am Boden. Setzte man in einem Gedankenexperiment alle anderen Termen der oben genannten Gleichung Null, so kann man sich den Beitrag der Stratosphäre zum Druckfall durch eine Verringerung des Geopotentials vorstellen. Denn wenn die troposphärische Luftsäule durch darüber stattfindende Prozesse zusammengedrückt wird, muss aufgrund der Kontinuität Masse entweichen, was einen Druckfall zur Folge hat; und andersherum. Die sich ausdehrende stratosphärische Luftmasse und die komprimierte troposphärische Luftmasse würden jedoch in der Realität mit Temperaturadvektionen und daraus folgenden anderen Faktoren einhergehen, sodass ein Beitrag durch die Stratosphäre zur Bodendruckentwicklung nicht in Isolation auftritt.

\(ITT\) entspricht der vertikal integrierten Tendenz der virtuellen Temperatur. Durch Erwärmung der Luftsäule trägt dieser Term zum Druckfall bei, da die Luft sich ausdehnt und zu den Seiten ausströmt. Dieser Term lässt sich weiter aufspalten in einen Anteil aus horizontaler Temperaturadvektion, einen Anteil aus Vertikalbewegungen sowie den Einfluss diabatischer Effekte. Hinter dem Ausdruck \(EP\) steckt die Massenänderung durch Evaporation und Niederschlagsprozesse, \(RES_{PTE}\) ist ein Residuum, welches sich aus Diskretisierungsfehlern ergibt.

Um die Anteile der oben genannten Faktoren auf die Bodendrucktendenz darstellen zu können, wird die PTE auf die Stürme angewandt. In die Berechnung fließen 6-stündige Tracks der Stürme ein. Betrachtet wird dabei, wie sich die Gegebenheiten in einer 3° x 3° Box ändern, sodass sich das Druckminimum des Sturms gerade in dieser Box neu bilden wird (s. Abbildung 5). Dabei muss beachtet werden, dass \(DP\) nicht der Kerndruck des betrachteten Sturms ist, sondern die 6-stündige Änderung des Drucks. Des Weiteren erfolgt die Betrachtung in eulerscher Form, wie auch aus Gleichung (2)
ersichtlich. Es wird also nicht der Sturm in seiner Zugbahn verfolgt, sondern man „sitzt“ in der Box, der Sturm kommt auf die Box zu. In die Interpretation muss mit einfließen, dass durch die PTE stratosphärische Systeme und deren Einfluss erfasst werden, welche vertikal über den Zyklonen auftreten. Wichtig ist aber zu beachten, dass Wellen, welche sich von der Stratosphäre in die Troposphäre bis zum Boden hin durchsetzen, eine mit der Höhe nach Westen geneigte Achse zwischen den jeweiligen Druckzentren aufweisen. Ein starker Trog in der Troposphäre geht demnach mit einem deutlich westlicher gelegenen stratosphärischen Trog einher.

Abbildung 5: PTE Diagnostik (Fink, et al., 2012)

Durch Aufsummieren dieser Balken über die Periode mit negativem DP, lässt sich deren prozentualer Beitrag errechnen. Dies wurde für alle Stürme durchgeführt und der jeweilige prozentuale Beitrag von $D\Phi$ auf die Druckentwicklung bestimmt. Die Werte sind in Tabelle 1 in Kapitel 4.1 angegeben.

3.4 Synoptische Situation der jeweiligen Stürme

Ein weiterer Schritt besteht darin, die Tracks der einzelnen Stürme zu plotten und die jeweilige synoptische Situation darzustellen. Die Zugbahnen der ausgewählten Stürme werden dabei in Verbindung mit dem absoluten Geopotential sowie der 24-stündigen Geopotentialtendenz zu einem bestimmten Zeitraum gebracht. Die Geopotentialtendenz wird aus den gegebenen ERA-Interim Daten wie folgt berechnet:

$$\Delta Z_n = \frac{Z_n - Z_{n-1}}{24 \, h}$$

(4)

Dadurch kann der Sturm in seine geographische Umgebung und seine dynamische Situation sowohl in Troposphäre als auch in Stratosphäre eingeordnet werden, die Phasenbeziehung zwischen Sturm und stratosphärischer Welle wird betrachtet. Damit können Differenzen und auch Gemeinsamkeiten der ausgewählten Stürme aufgezeigt werden.
werden. Bei der Interpretation gilt es zu beachten, dass stratosphärische Tröge und Rücken von den Geopotentialtendenzen aus darunter liegenden Level gesteuert werden.

3.5 Hovmöller-Diagramme

Um nun Wellen in der Stratosphäre überhaupt identifizieren zu können, werden Hovmöller-Diagramme erstellt.

Hovmöller-Diagramme sind eine in der Meteorologie gern genutzte Möglichkeit zur Darstellung von mehrdimensionalen, zeitlich abhängigen Daten. Durch eine Mittelung über einen ausgewählten Breitengürtel werden die Daten auf eine Dimension reduziert. Diese so ermittelten Daten werden gegenüber der Zeit in einem Raum-Zeit-Diagramm dargestellt. Dabei wird typischerweise auf der Ordinate die Zeit, auf der Abszisse die räumliche Koordinate aufgetragen. Durch diese Art der Darstellung lassen sich auf einen Blick wichtige vonstatten laufende Entwicklungen erkennen. Insbesondere Rossby- oder planetare Wellen, welche in dreidimensionaler Darstellung sehr komplex erscheinen, lassen sich damit gut identifizieren.

In dieser Arbeit wird, nach Mittelung über einen Breitengürtel, auf der Ordinate die Lebenszeit des jeweiligen betrachteten Sturms aufgetragen, auf der Abszisse die geographische Länge.

Es wurde in einem ersten Schritt das absolute Geopotential in einem Hovmöller-Diagramm bezüglich der Lebenszeit eines Sturmes gegenüber dem ausgewählten Breitengürtel von 40° N bis 70° N dargestellt. Dabei können zwei idealisierte Fälle unterschieden werden. Der erste Fall beinhaltet eine zeitliche Konstanz. So lassen sich, wie in Abbildung 7, stehende Tröge und Rücken identifizieren. Das „+“ in der

Abbildung 7: zeitlich konstantes absolutes Geopotential, "+" steht für Trog, "-" für Rücken; Meridionalwind durch grüne Pfeile dargestellt

Mit der Geopotentialtendenz lassen sich Aussagen über die lokalzeitliche Änderung, also eine Prognose, des Geopotentialfelds machen. Die Berechnung der 24-stündigen Geopotentialtendenzen wurde bereits in Kapitel 3.4 erläutert.

Hier wird auch die Beziehung zur Drucktendenzgleichung (PTE) bezüglich der darin enthaltenen Geopotentialänderung (dΦ/dt) deutlich. Dieser Term kann als möglicher Einfluss der Stratosphäre auf die Bodendrucktendenz gesehen werden.

Da das absolute Geopotential im hier besprochenen ersten idealisierten Fall zeitlich konstant ist, ist die Ableitung und somit die Geopotentialtendenz überall Null.

Der zweite idealisierte Fall beinhaltet eine zeitliche Variabilität. Dabei wird wiederum unterschieden zwischen einer linearen räumlichen Intensivierung/Abschwächung und einer propagierenden Welle. Abbildung 8 zeigt die lineare räumliche Änderung mit einer Intensivierung links und einer Abschwächung rechts. In Abbildung 9 ist die dazugehörige Geopotentialtendenz dargestellt. Diese weist eine zeitliche und räumliche
Konstanz auf mit links, entsprechend der Intensivierung des Geopotentials, eine konstante positive Tendenz, rechts eine konstante negative Tendenz in Anlehnung an die Abschwächung des Geopotentials.

Abbildung 8: zeitlich variables absolutes Geopotential; lineare räumliche Zunahme (links) und Abnahme (rechts)

Abbildung 9: räumlich konstante Geopotentialtendenz, links passend zu lineare räumliche Zunahme des Geopotentials, rechts passend zur Abnahme des Geopotentials
Eine Propagation der Tröge und Rücken wird in Abbildung 10 aufgezeigt. Eine mobile Welle ist durch eine schräge Achse durch gleichwertige Geopotentialwerte im Zeitverlauf zu erkennen. Im Beispielbild wandern die Wellen von West nach Ost. Legt man nun eine Gerade durch ein Wellenpaket, dann lässt sich anhand der Steigung die Propagationsgeschwindigkeit der Welle bestimmen. Diese wird wie folgt mit der Formel für Geschwindigkeit berechnet:

\[v = \frac{s}{t} \]

mit \(s \) in km, abgeleitet aus der geographischen Länge in 55° N, und \(t \) in Tagen. Eine typische Geschwindigkeit von Zyklonen beträgt 80 km/h. So können Lage und Verhalten des Sturms relativ zur Welle betrachtet werden.

Ein reiner Blick auf die Geopotentialtendenz liefert also noch keine Information über die tatsächliche Wellenstruktur. Dafür ist eine gleichzeitige Betrachtung des absoluten Geopotentials nötig.

Oftmals wird zur Identifizierung von Wellenzügen in der oberen Troposphäre und auch unteren Stratosphäre der Meridionalwind anstelle des Geopotentials genutzt. Der Meridionalwind ist eine abgeleitete Größe und bietet so den Vorteil, kleinere Strukturen, die den Skalengrößen der Wellenzüge oft näher kommen, sichtbarer zu machen. Welle und Meridionalwind sind durch eine differenzielle Beziehung zueinander um eine Viertel Wellenlänge phasenverschoben.

Absolutes Geopotential und Meridionalwind weisen eine geostrophisch balancierte Proportionalität zwischen einander auf. So kann mit dem Meridionalwind eine Nord-

Um die betrachteten Systeme in die großräumige Wellenstruktur einordnen zu können, werden Geopotential, Anomalien des Geopotentials und Geopotentialtendenzen für die gesamte Nordhemisphäre berechnet und in Hovmöller-Diagrammen dargestellt. Durch einen 10-Tages-Tiefpassfilter, aufbauend auf dem Lanczos-Filter, kann die Einhüllende der Welle veranschaulicht werden. Der Lanczos-Filter ist ein nichtrekursiver Rekonstruktionsfilter und beruht auf der Sinc-Funktion, multipliziert mit einer Fensterfunktion. Die Sinc-Funktion, auch sinus cardinalis, ist eine mathematische Funktion, die nachstehender Gleichung folgt (nicht normiert):

\[\text{sinc}(x) = \frac{\sin(x)}{x} \]

(6)

Die Fensterfunktion legt fest, mit welcher Gewichtung die Abtastwerte nach Abtastung eines Signals in Berechnungen eingehen. Dabei werden Werte unterhalb eines bestimmten Schwellenwertes auf null gesetzt und so hochfrequente Strukturen unterdrückt.

4 Ergebnisse

In diesem Kapitel werden die erhaltenen Ergebnisse vorgestellt und nachfolgend auch analysiert und interpretiert. Zu Beginn werden die Ergebnisse der Anwendung der PTE auf die Stürme zusammengefasst dargestellt und anhand dessen erläutert, wonach sich die Stürme in definierte Familien eingliedern lassen und welche Stürme im weiteren Verlauf näher betrachtet werden.

Am Schluss dieses Kapitels soll eine Aussage getroffen werden bezüglich des Eingangs formulierten Ziels, ob die Stratosphäre Einfluss auf die Entwicklung von Winterstürmen hat.

4.1 Auswahl der Stürme

Abbildung 12: Histogramm über die Beiträge von $D\Phi$ zur Druckentwicklung aller 100 Stürme

Tabelle 1: Prozentualer Anteil von $D\Phi$ an der Bodendruckentwicklung auf Grundlage der Anwendung der PTE auf die Stürme sowie der NAO-Index. Die fünf außerhalb des Winterhalbjahrs auftretenden Stürme wurden in dieser Tabelle außer Acht gelassen.

<table>
<thead>
<tr>
<th>Sturm</th>
<th>Anteil von $D\Phi$ an Dp [%]</th>
<th>NAO-Index</th>
<th>Sturm</th>
<th>Anteil von $D\Phi$ an Dp [%]</th>
<th>NAO-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>41,58</td>
<td>+</td>
<td>26</td>
<td>44,95</td>
<td>+</td>
</tr>
<tr>
<td>03</td>
<td>13,82</td>
<td>+</td>
<td>27</td>
<td>29,95</td>
<td>+</td>
</tr>
<tr>
<td>04</td>
<td>16,17</td>
<td>-</td>
<td>29</td>
<td>6,79</td>
<td>-</td>
</tr>
<tr>
<td>05</td>
<td>- 6,92</td>
<td>-</td>
<td>30</td>
<td>27,25</td>
<td>+</td>
</tr>
<tr>
<td>06</td>
<td>22,53</td>
<td>+</td>
<td>31</td>
<td>36,24</td>
<td>+</td>
</tr>
<tr>
<td>07</td>
<td>15,53</td>
<td>+</td>
<td>32</td>
<td>26,72</td>
<td>+</td>
</tr>
<tr>
<td>08</td>
<td>21,02</td>
<td>+</td>
<td>33</td>
<td>16,66</td>
<td>+</td>
</tr>
<tr>
<td>09</td>
<td>44,90</td>
<td>+</td>
<td>34</td>
<td>32,21</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>58,19</td>
<td>+</td>
<td>35</td>
<td>31,60</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>0,47</td>
<td>-</td>
<td>36</td>
<td>- 6,44</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>60,15</td>
<td>+</td>
<td>37</td>
<td>- 0,38</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>- 7,08</td>
<td>+</td>
<td>38</td>
<td>16,71</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>34,94</td>
<td>0</td>
<td>39</td>
<td>7,11</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>10,31</td>
<td>-</td>
<td>40</td>
<td>15,53</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>- 0,68</td>
<td>+</td>
<td>41</td>
<td>9,88</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>20,82</td>
<td>+</td>
<td>42</td>
<td>8,70</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>12,94</td>
<td>+</td>
<td>43</td>
<td>52,52</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>14,48</td>
<td>+</td>
<td>44</td>
<td>11,67</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>33,55</td>
<td>+</td>
<td>45</td>
<td>62,02</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>29,94</td>
<td>+</td>
<td>46</td>
<td>20,69</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>25,09</td>
<td>+</td>
<td>47</td>
<td>34,37</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>24,27</td>
<td>+</td>
<td>48</td>
<td>57,72</td>
<td>+</td>
</tr>
<tr>
<td>Sturm</td>
<td>Anteil von $D\Phi$ an Dp [%]</td>
<td>NAO-Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>7,70</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>40,53</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>8,28</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>37,45</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>2,27</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>12,52</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>27,84</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>32,63</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>10,29</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>58,17</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>- 2,50</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>- 16,52</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>32,42</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>21,37</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>73,32</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>25,76</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>- 4,57</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>2,19</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>58,31</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>29,58</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>25,85</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>32,43</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>55,44</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>28,75</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>8,41</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sturm</th>
<th>Anteil von $D\Phi$ an Dp [%]</th>
<th>NAO-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>18,87</td>
<td>-</td>
</tr>
<tr>
<td>76</td>
<td>- 1,08</td>
<td>+</td>
</tr>
<tr>
<td>77</td>
<td>13,85</td>
<td>+</td>
</tr>
<tr>
<td>78</td>
<td>- 5,79</td>
<td>+</td>
</tr>
<tr>
<td>79</td>
<td>18,07</td>
<td>+</td>
</tr>
<tr>
<td>80</td>
<td>16,16</td>
<td>+</td>
</tr>
<tr>
<td>81</td>
<td>- 21,97</td>
<td>+</td>
</tr>
<tr>
<td>82</td>
<td>- 1,75</td>
<td>+</td>
</tr>
<tr>
<td>83</td>
<td>25,93</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>14,03</td>
<td>+</td>
</tr>
<tr>
<td>85</td>
<td>19,60</td>
<td>+</td>
</tr>
<tr>
<td>86</td>
<td>22,43</td>
<td>-</td>
</tr>
<tr>
<td>87</td>
<td>22,54</td>
<td>-</td>
</tr>
<tr>
<td>88</td>
<td>19,01</td>
<td>+</td>
</tr>
<tr>
<td>89</td>
<td>45,86</td>
<td>-</td>
</tr>
<tr>
<td>90</td>
<td>- 0,38</td>
<td>+</td>
</tr>
<tr>
<td>91</td>
<td>44,19</td>
<td>+</td>
</tr>
<tr>
<td>92</td>
<td>12,54</td>
<td>+</td>
</tr>
<tr>
<td>93</td>
<td>9,06</td>
<td>+</td>
</tr>
<tr>
<td>94</td>
<td>10,73</td>
<td>-</td>
</tr>
<tr>
<td>95</td>
<td>3,90</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>- 10,70</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td>21,69</td>
<td>+</td>
</tr>
<tr>
<td>98</td>
<td>7,58</td>
<td>-</td>
</tr>
<tr>
<td>99</td>
<td>20,82</td>
<td>-</td>
</tr>
</tbody>
</table>
Zwölf Stürme weisen besonders auffällige Beiträge der Stratosphäre auf. Neun davon einen positiven Beitrag von mehr als 50%. Die Stratosphäre trägt laut Ergebnis der Anwendung der PTE deutlich zum Druckfall im Entwicklungsverlauf dieser Stürme bei. Dies sind die Stürme 10, 13, 43, 45, 48, 58, 64, 68 und 72. Bei drei Stürmen wirkt die Stratosphäre dem Druckfall entgegen. Dies wird durch einen negativen Beitrag von $D\Phi$ verdeutlicht. Alle drei Stürme, das sind die Stürme 60, 81 und 96, erfahren einen Beitrag von $D\Phi$ kleiner als -10%.

4.2 Die Familie der mobilen Wellen

In diese Familie fallen mobile Geopotentialwellen. Mobil deutet nachfolgend auf eine ostwärts gerichtete Bewegung der Welle hin. Zu dieser Familie können 56 der 94 Stürme gezählt werden. Sie stellt mit 59,36% die Mehrheit dar.

Abbildung 13: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die jeweilige Lebenszeit von a) Sturm 15 und b) Sturm 11

Seite 35 von 117
schwächer wird. Bilden sich die Stürme vorderseitig eines stratosphärischen Rückens, so weisen sie oftmals eine zonalere Bewegungsrichtung und eine höhere Bewegungsgeschwindigkeit auf als Stürme, die trogvorderseitig entstehen.

Bei der Betrachtung der Geopotentialtendenz in Abbildung 15a und b, bezogen auf die beiden Stürme 15 und 11, wird deutlich, was bereits in Kapitel 3.5 erläutert wurde. Die Geopotentialtendenz ist um eine Viertel Wellenlänge phasenverschoben, bezugnehmend auf das absolute Geopotential.

Von den 9 Stürmen, die nach Anwendung der PTE einen stratosphärischen Beitrag zur Druckentwicklung von mehr als 50% erfahren, werden 8 zu dieser Familie gezählt. Von den 3 Stürmen, auf welche ein stratosphärischer Beitrag kleiner – 10% wirkt, wird 1 Sturm zu dieser Familie gezählt. Auf diese wird nachfolgend näher eingegangen.
4.2.1 Stürme 10, 13 und 68

Die Stürme 10, 13 und 68 weisen ähnliche Eigenschaften auf und werden daher in der Betrachtung zusammengefasst. Dem Ergebnis der Anwendung der PTE auf die Stürme folgt ein möglicher Einfluss der Stratosphäre auf die Druckentwicklung von 58,19% für Sturm 10, 60,15% für Sturm 13 und 58,31% für Sturm 68 folgt, also ein Beitrag der Stratosphäre zum Druckfall. Das Ergebnis der Analyse ist in Abbildung 17a bis c dargestellt. Bei den Stürmen 11 und 13 ist im Bereich der größten Vertiefung auch der größte Beitrag von $D\Phi$ zu finden. Bei Sturm 68 ist der Beitrag von $D\Phi$ in diesem Bereich ebenfalls groß, doch der stärkste Einfluss findet unmittelbar nach der explosiven Vertiefung statt.

Um die Stürme in die Strömungsbedingungen der Stratosphäre während ihrer jeweiligen Lebenszeit einordnen zu können, wird zunächst die synoptische Situation betrachtet. Diese ist in Abbildung 18a bis f dargestellt und bezieht sich auf den Zeitraum der stärksten Vertiefung. Im Falle von Sturm 10 sind dies drei Tage (17.12. - 19.12.1982),

Richtung Frankreich, löst sich der Sturm noch auf dem Atlantik auf. Sturm 68 (Abbildung 18e und f) bewegt sich ab dem Wendepunkt erst wieder zurück nach Westen, ehe er erneut eine nordöstliche Bewegungsrichtung einschlägt und sich schließlich bei Island auflöst. Die Phase der stärksten Vertiefung, deren Beginn und Ende jeweils durch die gelben Punkte angedeutet ist, erleben alle drei Stürme über dem Nordatlantik.

Da nach Anwendung der PTE auf die Stürme die Stratosphäre bei allen drei deutlich mit mehr als 50% zum Druckfall beiträgt, ist die Position der Stürme in einem Feld negativer Tendenz zu erwarten. Dies trifft in allen Höhen sowie für alle drei Stürme zu. Sie bewegen sich jeweils mit dem stärksten Feld negativer Geopotentialtendenzen, welche sich in 50 hPa rückenvorderseitig befinden.

Um den Einfluss der Stratosphäre auf die Stürme quantifizieren zu können, ist auch hier wieder der Blick stromauf nicht zu vernachlässigen.

Um die stratosphärischen Wellen, die Einfluss auf die Stürme 10, 13 und 68 nehmen können, näher identifizieren zu können, werden im Folgenden Hovmöller-Diagramme betrachtet.
Abbildung 19a, c und e zeigen Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die jeweiligen Lebenszeiten der Stürme 10, 13 und 68. Die schwarze Linie stellt die Zugbahnen der Stürme dar.
Abbildung 19: Hovmöller-Diagramme a, c und e) des absoluten Geopotentials und b, d und f) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 10, c, d) Sturm 13 und e, f) Sturm 68. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die der Welle durch die rote Linie.

Die grünen Farben deuten auf ein höheres Geopotential, also auf höheren Druck hin, die blauen Farben auf einen tieferen Druck. Während der Entstehungsphase befinden sich die drei Stürme in Bereichen höheren stratosphärischen Drucks. Im Laufe der Entwicklung gelangen die Stürme 10 und 13 immer weiter in einen Bereich tieferen stratosphärischen Drucks. Der Beginn der explosiven Vertiefung fällt mit dem Beginn des Einflusses niedrigeren Geopotentials zusammen. Sturm 68 bewegt sich während seiner gesamten Lebenszeit entlang des Gradienten zwischen niedrigerem und höherem Geopotential.

Stürme und Wellen sind annähernd in Phase. Sie bewegen sich in die gleiche Richtung. Bei Sturm 10 ist besonders deutlich zu sehen, dass zum Zeitpunkt der Auflösung des Sturms auch die Höhe des stratosphärischen Geopotentials nachlässt.

Der stratosphärische Trog in Abbildung 19a bewegt sich in sechs Tagen um etwa 65° von 45° W bis 20° O. Dies wird durch die rote Linie in der Abbildung angedeutet. Nach Berechnung mit Formel (5) aus Kapitel 3.5 und mit 64 km pro Grad, bezogen auf 55° N, bewegt sich die Welle mit einer Phasengeschwindigkeit von etwa 29 km/h. Sturm 10 bewegt sich in sechs Tagen um etwa 95° von 75° W nach 20° O. Der Sturm ist mit 42 km/h etwas schneller als die Welle. Der Trog in Abbildung 19b wandert in sieben Tagen etwa 75° von 78° W bis 3° W. Dies entspricht einer Phasengeschwindigkeit von
29 km/h. Sturm 13 bewegt sich in der gleichen Zeit um nur etwa 65° von 75° W bis 10° W. Mit 25 km/h ist der Sturm in diesem Fall etwas langsamer als die Welle. Deutlich schneller dagegen ist Sturm 68 mit 22 km/h gegenüber der Phasengeschwindigkeit der Welle von 8 km/h (Abbildung 19c). Die Welle bewegt sich in vier Tagen um etwa 12° von 100° W bis 88° W, der Sturm bewegt sich in gleicher Zeit um etwa 33° von 50° W bis 17° W.

Abbildung 19b, d und f zeigen Hovmöller-Diagramme der Geopotentialtendenzen in 50 hPa, bezogen auf die Lebenszeiten der Stürme 10, 13 und 68. Im direkten Vergleich beider Abbildungen ist die in Kapitel 3.5 erwähnte Phasenverschiebung um eine Viertel Wellenlänge gut sichtbar. Die stärksten Tendenzen tauchen wie erwartet im Bereich der größten Gradienten des Geopotentials auf.

Die erwartete Lage der Stürme in Gebieten negativer Geopotentialtendenzen wird hier erneut bestätigt. Erst zum Zeitpunkt der Auflösung geraten die Stürme in Bereiche positiver beziehungsweise weniger negativer Tendenzen. Auch die Mobilität der Wellen wird hier noch einmal deutlich.

Abbildung 20: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 10, b) Sturm 13 und c) Sturm 68. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.

Für die Einordnung der Systeme in die großräumige Wellenstruktur, wird abschließend noch ein Blick auf die gesamte Nordhemisphäre geworfen. Die Hovmöller-Diagramme des Geopotentials für diesen Bereich in 50 hPa und bezüglich der Stürme 10, 13 und 68 ist in Abbildung 22a bis c dargestellt. Durch die Anwendung des in Kapitel 3.5 näher erläuterten Lanczos-Filters, werden hochfrequente Strukturen unterdrückt. Hier wird noch einmal die Lage des Sturmes im Vergleich zu Geopotentialwelle deutlich. Die Stürme 10 und 13 (Abbildung 22a und b) bewegen sich mit Wellen tiefen Geopotentials mit. Sie sind in Phase mit diesen Wellen. Sturm 68 (Abbildung 22c) ist ebenfalls in Phase mit den Geopotentialwellen, bewegt sich jedoch im Bereich der Gradienten zwischen zwei Wellen höheren und tieferen Geopotentials. Auffällig ist, dass sich die Stürme am Anfang einer Phase niedrigen Geopotentials befinden.
4.2.2 Stürme 45 und 64

Die PTE-Analyse ergibt für Sturm 45 einen Beitrag der Stratosphäre zum Druckfall von 62,02%. Für Sturm 64 sind es 73,32%. Die PTE-Analyse der beiden Stürme ist in Abbildung 23a und b dargestellt.

Bei Sturm 45 ist der größte Beitrag von $D\Phi$ zwar unmittelbar nach der stärksten Vertiefung zu finden, der Beitrag während der Vertiefung ist dennoch groß. Bei Sturm 64 ist der Beitrag von $D\Phi$ kurz vor und während der stärksten Vertiefung in etwa gleich groß.

Die Stürme 45 und 64 entstehen im Osten der USA. Beide nehmen eine nordöstliche Bewegungsrichtung an und ziehen auf den Nordatlantik Richtung Grönland. Sturm 45 erreicht die südöstliche Küste Grönlands und löst sich dort auf. Sturm 64 wandert an der kanadischen Ostküste entlang und löst sich schließlich bei etwa 57° N auf. Während der starken Vertiefungsphase befinden sich die drei Stürme zuerst nahe des Kontinents beziehungsweise über dem Kontinent, später aber über dem Nordatlantik. Die Stürme 45 und 64 entstehen und entwickeln sich vorderseitig stratosphärischer Rücken in 50 hPa. In der Troposphäre befindet sich aller Wahrscheinlichkeit nach an der Stelle der Stratosphärenrücken jeweils ein starker Trog. Dieser begünstigt die Entwicklung der Zyklen bis hin zu intensiven Winterstürmen.

Abbildung 25a und c zeigen Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeiten der Stürme 45 und 64. Abbildung 25b und d zeigen Hovmöller-Diagramme der Geopotentialtendenzen in 50 hPa. Die Stürme 45 und 64 weisen in den Hovmöller-Diagrammen des absoluten Geopotentials (Abbildung 25a und c) sehr ähnliche Situationen auf. Beide entstehen und verlaufen im Bereich der

Abbildung 25: Hovmöller-Diagramme a und c) des absoluten Geopotentials sowie b und d) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 45 und c, d) Sturm 64. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie.

Der stratosphärische Trog in Abbildung 25a bewegt sich in drei Tagen um etwa 35° von 100° W bis 65° W und weist somit eine Phasengeschwindigkeit von etwa 31 km/h auf. Sturm 45 bewegt sich in den drei Tagen um etwa 36° von 75° W nach 44° W. Der Sturm ist mit 32 km/h etwa gleich schnell wie die Welle. Sturm und Welle sind also in Phase. Der Trog in Abbildung 25b wandert in vier Tagen etwa 39° von 100° W bis 61° W. Dies entspricht einer Phasengeschwindigkeit von 26 km/h. Sturm 64 bewegt
sich in der gleichen Zeit um nur etwa 16° von 75° W bis 59° W. Mit 11 km/h ist der Sturm in diesem Fall deutlich langsamer als die Welle. Diese mittlere Geschwindigkeit nimmt jedoch nur einen solchen geringen Wert an, da der Sturm ab 59° W eine meridionale Richtung gen Norden einschlägt. Sturm und Welle sind dennoch annähernd in Phase.

Abbildung 26: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 45 und b) Sturm 64. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.
Abbildung 27: Hovmöller-Diagramme des Merdionalwinds von a) Sturm 45 und c) Sturm 64 und der Anomalie des Merdionalwinds von b) Sturm 45 und d) Sturm 64 in 50 hPa, bezogen auf die Lebenszeit der Stürme. Die schwarze Linie zeigt jeweils die Zugbahnen.

Sowohl die Südwinde als auch die Nordwinde sind bezüglich Sturm 45 relativ stark mit Geschwindigkeiten von 50 m/s oder mehr. Dies stellt eine größere Abweichung zur Klimatologie dar, weshalb auch die Anomalien (Abbildung 27b) stark ausgeprägt sind. Die Winde bezüglich Sturm 64 sind mit Geschwindigkeiten von maximal 40 m/s schwächer. Dies entspricht eher der stratosphärischen Klimatologie, weshalb die Anomalien des Meridionalwinds, bezogen auf Sturm 64 (Abbildung 27d) ebenfalls schwächer ausgeprägt sind.

Der Blick auf die 10-Tages-Tiefpass gefilterten Hovmöller-Diagramme des Geopotentials in 50 hPa für die gesamte Nordhemisphäre (Abbildung 28a und b) der Stürme 45 und 64 zeigen noch einmal die Lage beider Stürme im Bereich der Gradienten zwischen Trog und Rücken. Beide tendieren eher zu den Wellen niedrigen Geopotentials und sind mit diesen in Phase.
4.2.3 Stürme 43, 48 und 72

Da die Stratosphäre der PTE-Analyse zufolge deutlich zum Druckfall beiträgt, ist die Position der drei Stürme in einem Feld negativer Tendenz zu erwarten, was auch zutrifft. Sie bewegen sich jeweils mit dem stärksten Feld negativer Geopotentialtendenzen vorderseitig des stratosphärischen Rückens mit. Sturm 43 befindet sich jedoch in einem Übergangsbereich beider Tendenzen und steht auch unter dem Einfluss positiver Geopotentialtendenzen. In den darüber liegenden Level bildet sich im Bereich der positiven Tendenzen ein Rücken, was die Position dieses Feldes erklärt.

Die Stürme 48 und 72 entstehen in Bereichen tieferen stratosphärischen Geopotentials. Im Laufe der Entwicklung und auch während der Phase der explosiven Vertiefung

Die Welle bezüglich Sturm 48 in Abbildung 31c bewegt sich, nachdem sie zuvor einige Zeit stationär war, in drei Tagen um etwa 35° von 80° W bis 45° W und weist eine Phasengeschwindigkeit von etwa 31 km/h auf. Sturm 48 bewegt sich in dieser Zeit meridional gen Norden und bewegt sich daher lediglich um etwa 8° von 50° W nach 58° W. Der Sturm weist mit 7 km/h eine deutlich geringere Bewegungsgeschwindigkeit Richtung Osten gegenüber der Welle auf. Der Trog in Abbildung 31e wandert in vier Tagen etwa 43° von 76° W bis 33° W. Dies entspricht einer Phasengeschwindigkeit von 29 km/h. Sturm 72 bewegt sich in der gleichen Zeit um nur etwa 17° Richtung Westen von 58° W bis 75° W. Mit 11 km/h ist der Sturm in diesem Fall nicht nur langsamer als die Welle, sondern weist auch eine entgegengesetzte Bewegungsrichtung auf.

Seite 59 von 117
Abbildung 31: Hovmöller-Diagramme a, c, e) des absoluten Geopotentials sowie b, d, f) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 43, c, d) Sturm 48 und e, f)
Sturm 72. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie.

Der Meridionalwind und dessen Anomalie zu Sturm 43 in Abbildung 33a und b zeigen die zwei, den Sturm beeinflussende Wellen nicht so deutlich. Hier ist dies eher als eine Welle sichtbar. Der Südwind (positive Werte, grün), welcher zu dem Trog stromab des Sturms (siehe Abbildung 30a und b) gehört, ist nur schwach. Stark dagegen ist der Nordwind, welcher vorderseitig des stratosphärischen Rückens weht. Dieser bringt wärmere Luft aus der polaren Region heran. Durch Ausdehnung der Luftsäule und damit verbundener Absenkung der Troposphäre, trägt die Stratosphäre hier deutlich durch thermische Effekte zum Druckfall bei. Die stratosphärischen Winde in 50 hPa bezüglich der Stürme 48 und 72 (Abbildung 33c und e) sind eher schwach. Durch die Lage der Geopotentialtendenzen auf den Gradienten des Windes, ist auch hier einsehbar, dass sich die Stürme 48 und 72 im Bereich negativer Tendenzen bewegen. Starke Meridionalwinde in 50 hPa werden auch hier durch stärkere Anomalien begleitet, schwächere Winde durch schwächer ausgeprägte Anomalien.

4.2.4 Sturm 96

Bei Betrachtung des Hovmöller-Diagramms der Geopotentialtendenz (Abbildung 37b) wird noch einmal die Erwartung bestätigt, dass sich Sturm 96 in einem Feld positiver Tendenz bewegt. Lediglich direkt bei der Entstehung und auch bei der Auflösung sind die Tendenzen leicht negativ. Zu Beginn des Druckfalls war in der PTE-Analyse auch ein geringer positiver Beitrag von \(D\Phi \) auszumachen.

Die Welle in Abbildung 37a bezüglich Sturm 96 bewegt sich um 30° in zwei Tagen von 75° W nach 45° W und weist damit eine Phasengeschwindigkeit von 40 km/h auf. Sturm 96 bewegt sich in dieser Zeit mit 64 km/h um 48° und ist damit schneller als der stratosphärische Trog.

Abbildung 37: Hovmöller-Diagramme a) des absoluten Geopotentials sowie b) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von Sturm 96. Die Zugbahn des Sturms wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie.

Anomalien sind hier stattdessen verschwindend gering. Das hohe Geopotential des Rückens weicht nicht markant von der stratosphärischen Klimatologie ab.

Abbildung 38: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 96. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.

4.2.5 Interpretation

Mobile Wellen treten in der Stratosphäre doch sehr häufig auf. Von den 94 betrachteten Fällen, werden 56 Stürme und stratosphärische Situationen der Familie der mobilen Wellen zugeordnet.

Von den 9 näher betrachteten Stürmen, welche einen großen positiven Beitrag mit mehr als 50% von $D\Phi$ erfahren, werden 8 zu dieser Familie gezählt. Bei allen ist in der PTE-Analyse auch deutlich der Beitrag von $D\Phi$ zum Druckfall zu erkennen. Bei den Stürmen 43, 45 und 68 taucht der größte Beitrag jedoch erst unmittelbar nach dem raschen Druckfall, also bei Druckanstieg, auf. Von den 3 näher betrachteten Stürmen, welche einen großen negativen Beitrag mit weniger als –10% durch $D\Phi$ erfahren, wird 1 Sturm zu dieser Familie gezählt. Auch bei Sturm 96 ist, nach erstmals positivem Beitrag, auch ein deutlicher Beitrag von $D\Phi$ während der Vertiefungsphase zu erkennen. Hier wirkt die Stratosphäre dem Druckfall jedoch entgegen.

Die Mehrheit der in dieser Familie betrachteten Stürme entsteht und entwickelt sich vorderseitig stratosphärischer Rücken. Da sich Wellen von oben nach unten von Westen nach Osten hin fortsetzen, die Druckzentren also eine vertikal geneigte Achse aufweisen, befindet sich an der Stelle der stratosphärischen Rücken in der Troposphäre jeweils ein starker Trog. Dieser ist mit vertikal geneigter Achse mit dem stratosphärischen Trog westlich des Rückens verbunden. So kann die Stratosphäre durch eine Intensivierung des Troposphärentrogs zum bodennahen Druckentwicklung der Zyklonen beitragen. Ein Beitrag zum Druckfall durch die Stratosphäre kann jedoch

Die Mehrheit der Stürme dieser Familie tritt während eines positiven NAO-Index auf. Dieser begünstigt die Entstehung und Entwicklung intensiver Winterstürme über dem Nordatlantik. Es wird im Allgemeinen sogar ein positiver NAO-Index erwartet.

4.3 Die Familie der stationären Wellen

In die Familie der stationären Wellen fallen 35 Stürme. Bezogen auf die ausgewählten 94 Stürme entspricht dies einem Anteil von 37,10%. Diese Familie ist gekennzeichnet durch stationäre Geopotentialwellen. Dieser stratosphärische Zustand wurde eingangs anhand der Klimatologie vermutet. Mit 37,10% tritt diese Situation in den betrachteten Fällen zwar nicht mehrheitlich auf, aber dennoch häufig.
Abbildung 41a und b zeigen zwei Geopotentialwellen dieser Familie. Dargestellt sind Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit der Stürme 40 und 76. Die schwarzen Linien in den Abbildungen zeigen die jeweilige Zugbahn der Stürme.

Abbildung 41: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die jeweilige Lebenszeit von a) Sturm 40 und b) Sturm 76

Die Mehrzahl der Stürme dieser Familie weist die Eigenschaften der ersten Situation auf. Sie entwickeln sich also vorderseitig eines stratosphärischen Troges. Die Stürme sind oft in Phase mit einer stratosphärischen Trögen, jedoch nicht mit stratosphärischen Rücken. Die Stürme, welche rückenvorderseitig entstehen und von hohem zu tiefem

Abbildung 43: Hovmöller-Diagramme der Geopotentialtendenz in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 40 und b) Sturm 76. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.

negativen Anomalien nur schwach ausgeprägt. Während der Lebenszeit dieses Sturmes trat in der Stratosphäre keine im Vergleich zur Klimatologie außergewöhnliche Situation auf.

Von den 3 Stürmen, die nach Anwendung der PTE ein Entgegenwirken der Stratosphäre mit einem Beitrag kleiner –10% erfahren, werden 2 zu dieser Familie gezählt. Von den 9 Stürmen mit einem stratosphärischen Beitrag größer als 50%, gehört einer zu dieser Familie. Auf diese wird nachfolgend näher eingegangen.

4.3.1 Stürme 60 und 81

Abbildung 44: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 40 und b) Sturm 76. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.
Abbildung 45: Ergebnis der PTE-Analyse der Stürme a) 60 vom 05.03. – 12.03.1995 und b) 81 vom 14.03. – 17.03.2003. Die Balken zeigen die jeweiligen Beiträge der Terme aus Gleichung (3) auf die Bodendruckentwicklung der Stürme.

In Abbildung 46a bis d ist die synoptische Situation der Stratosphäre abgebildet. Die Situation ist, wie bereits zuvor beschrieben, bezogen auf die Zeit der stärksten Vertiefung der beiden Stürme. Für Sturm 60 sind das vier Tage (06.03. – 09.03.1995), für Sturm 81 zwei (14.03. – 15.03.2003).

Abbildung 47: Hovmöller-Diagramme a und c) des absoluten Geopotentials sowie b) und d) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 60 und c, d) Sturm 81. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt.

Abbildung 48a, die Anomalien des absoluten Geopotentials bezüglich Sturm 60, zeigt stark ausgeprägte negative Anomalien. Das tiefe Geopotential, in welchem Sturm 60

In Abbildung 49c ist die stationäre Welle zu Sturm 81 zu erkennen. Durch die Lage der Geopotentialtendenzen auf den Gradienten des Meridionalwinds, ist diese Abbildung
der Abbildung 47d ähnlich. Obwohl die Meridionalwinde vergleichsweise geringe Geschwindigkeiten aufweisen und nur ein kleines, lokales Maximum von über 50 km/h, sind die negativen Anomalien des Meridionalwinds bezüglich Sturm 81 (Abbildung 49d) doch relativ stark ausgeprägt.

Abbildung 49: Hovmöller-Diagramme des Meridionalwinds von a) Sturm 60 und c) Sturm 81 und der Anomalie des Meridionalwinds von b) Sturm 60 und d) Sturm 81 in 50 hPa, bezogen auf die Lebenszeit der Stürme. Die schwarze Linie zeigt jeweils die Zugbahnen.

Der Blick auf die Hovmöller-Diagramme des Geopotentials in 50 hPa für die gesamte Nordhemisphäre (Abbildung 50a und b) der Stürme 60 und 81 zeigt noch einmal, wenn auch nicht sehr deutlich, dass Sturm 60 nicht richtig in Phase ist mit den Geopotentialwellen. Der Sturm entsteht in tiefem Geopotential, wandert aber rasch in eine Phase höheren Geopotentials. Sturm 81 befindet sich während seiner gesamten

Abbildung 50: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen der jeweiligen Stürme 60 und 81.

4.3.2 Sturm 58

Die Stratosphäre trägt deutlich und während der gesamten Vertiefungsphase zum Druckfall bei. Vergleicht man die Balken miteinander, so ist der stratosphärische Einfluss auf die Druckentwicklung ähnlich groß wie der Beitrag troposphärischer Effekte wie Temperaturadvektion oder Vertikalbewegungen, durch den roten Balken dargestellt.

Abbildung 53a und b zeigen das absolute Geopotential und die Geopotentialtendenz in 50 hPa bezüglich Sturm 58. Der Sturm entsteht und entwickelt sich im Bereich einer Welle hohen Geopotentials. Diese Welle ist stationär. Der Sturm zieht mit nordöstlicher Richtung unter der Geopotentialwelle hinweg und gelangt im Folgenden in den Bereich

Bei Betrachtung des Hovmöller-Diagramms der Geopotentialtendenz (Abbildung 53b) wird deutlich, dass sich Sturm 58 anfangs noch in einem Feld positiver Tendenzen befindet. Erst zu Beginn des starken Druckfalls gerät der Sturm in Bereiche negativer Tendenzen, was angesichts des starken Beitrags zum Druckfall so auch zu erwarten ist.

Trog und Rücken in Abbildung 53a sind stationär und weisen somit keine oder nur vernachlässigbar geringe Phasengeschwindigkeiten auf. Sturm 58 bewegt sich in elf Tagen um 96° von 76° W nach 20° O. Der Sturm bewegt sich demnach mit einer Geschwindigkeit von 23 km/h.

In Abbildung 54 sind die Anomalien des absoluten Geopotentials dargestellt. Sowohl positive als auch negative Anomalien sind hier stark ausgeprägt. Demnach weichen sowohl die stationäre Welle hohen Geopotentials als auch die ebenfalls stationäre Welle tiefen Geopotentials von der Klimatologie ab.

Bei der Betrachtung des gefilterten Hovmöller-Diagramms der gesamten Nordhemisphäre in Abbildung 56, wird noch einmal die Lage des Sturms in hohem Druck, zum Ende der Lebenszeit in tiefem Druck deutlich. Auch hier die Tatsache zu erkennen, dass der Sturm mit den Wellen nicht in Phase ist.

4.3.3 Interpretation

Die Stürme dieser Familie sind im Allgemeinen nicht in Phase mit der Geopotentialwelle der Stratosphäre in 50 hPa. Da die Wellen stationär sind, weisen die Stürme eine deutlich größere Bewegungsgeschwindigkeit auf. Sie bewegen sich oft unter den Wellen hindurch und gelangen so im Allgemeinen in den Einfluss von hohem und tiefem Geopotential. Die Stürme entstehen und entwickeln sich nahezu gleichermaßen in Bereichen tiefen oder hohen Geopotentials und lösen sich in entsprechend entgegengesetztem Geopotential auf.

Auch hier erfährt der überwiegende Teil der Stürme dieser Familie einen positiven Beitrag durch die Stratosphäre, gekennzeichnet durch den Anteil von $D\Phi$ in der PTE-Analyse. Ein sehr starker Beitrag zum Druckfall mit über 50% ist jedoch nur bei einem Sturm gegeben. In diese Familie fallen zudem auch einige Stürme mit negativem Beitrag von $D\Phi$ zur Druckentwicklung.

Auch hier tritt die Mehrheit der Stürme dieser Familie während eines positiven NAO-Index auf. Dieser begünstigt die Entstehung und Entwicklung intensiver Winterstürme über dem Nordatlantik. Es wird im Allgemeinen sogar ein positiver NAO-Index erwartet.

Es kann keine genaue Aussage gemacht werden bezüglich der Einwirkung der Stratosphäre auf die Entwicklung von intensiven Zyklonen. Bei einigen ist ein Beitrag zum Druckanstieg deutlich gegeben, jedoch ist es ohne tiefergehende Untersuchungen nicht möglich, eine Aussage darüber zu machen, ob der Einfluss der Stratosphäre wirksam ist, denn es ist unklar, ob der Bodendruck ohne diesen Einfluss noch geringer wäre, oder ob dieser sich genau so entwickelt hätte. Des Weiteren ist nur bei einem der Stürme der Anteil von $D\Phi$ größer als 50%, so dass die troposphärischen Effekte wie diabatische Effekte, Vertikalbewegungen oder Temperaturadvektionen den Einfluss auf die Druckentwicklung dominieren. Lediglich bei Sturm 58 dominiert nach der PTE-Analyse der stratosphärische Einfluss die Druckentwicklung, so dass hier auch tatsächlich ein Einfluss der Stratosphäre auf den Sturm angenommen werden kann. Allerdings ist auch hier der NAO-Index im Allgemeinen bei den betrachteten Stürmen positiv. Eine Aussage bezüglich eines direkten Einflusses der Stratosphäre auf einzelne Zyklonen in dieser Form ist auch hier noch nicht möglich. Es kann hier nicht unterschieden werden, ob die Stratosphäre die weitere Entwicklung der Stürme direkt begünstigt oder indirekt durch den ohnehin schon vorhandene NAO-Index.

4.4 Familie „Rückläufige Wellen“

In dieser Familie befinden sich die Stürme alle vorderseitig eines stratosphärischen Troges in 50 hPa. Sie entstehen und entwickeln sich alle im Bereich tiefen Geopotentials und ziehen im weiteren Verlauf in Gebiete hohen Geopotentials. Dort findet auch die Auflösung der Stürme statt.

Nach Anwendung der PTE auf die Stürme (Abbildung 58), trägt die Stratosphäre mit 3,90% bei Sturm 95 zum Druckfall am Boden bei. Der Beitrag ist zwar vernachlässigbar klein, dennoch wird erwartet, dass sich der Sturm in einem Bereich negativer Geopotentialtendenzen bewegt. In Abbildung 59 ist die Geopotentialtendenz in 50 hPa bezüglich Sturm 95 dargestellt. Während der Entstehungsphasen befindet sich Sturm 95
noch im Bereich leicht negativer Geopotentialtendenzen. Bereits im Laufe der stärksten Vertiefung gerät der Sturm jedoch in einen Bereich positiver Tendenzen.

Geopotentialwelle kann als eher stationär betrachtet werden, während der Trog gen Westen mobil ist.

Abbildung 60: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 95. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.

Zu dieser Familie wird keiner der 12 Stürme, welche einen starken stratosphärischen Beitrag zur Druckentwicklung von mehr als 50% oder weniger als - 10% erwarten, gezählt.

4.4.1 Interpretation

Retrograde Wellen treten in der Stratosphäre, vor allem im Winterhalbjahr, aufgrund der starken Westwinde nur selten auf. Von den 94 betrachteten Fällen, tritt diese Situation lediglich dreimal auf. Auf den hier als Beispiel betrachteten Sturm 95 hat die Stratosphäre einen möglichen Einfluss auf die bodennahe Druckentwicklung von 3,90%. Dieser Einfluss ist vernachlässigbar klein. Auf die anderen beiden Stürme, die in diese Familie gezählt werden, hat die Stratosphäre nach Berechnungen mit der PTE einen Einfluss von – 6,92% auf Sturm 05 sowie 32,42% auf Sturm 62. Im ersten Fall wirkt die Stratosphäre dem Druckfall entgegen, ebenfalls mit eher geringem Beitrag. Im Fall von Sturm 62 weist die Stratosphäre einen nicht zu vernachlässigbaren Einfluss auf die Druckentwicklung auf. Bezugnehmend auf die Ergebnisse der PTE-Berechnung ist in dieser Familie keine Regel festzumachen.

Stürme dieser Familie erfahren eher zufällig einen Einfluss durch die Stratosphäre. Der Einfluss troposphärischer Faktoren wie diabatische Effekte, Vertikalbewegungen und Temperaturadvektion überwiegt die anderen Effekte und führt zu der explosiven Druckverringerung dieser Stürme.
5 Zusammenfassung

Zur Identifikation stratosphärische Wellen und der Betrachtung dieser Wellen, welche der PTE-Analyse zufolge Einfluss auf die Stürme nehmen, wurden fünf unterschiedliche Arten von Hovmöller-Diagrammen erstellt, ebenfalls mit dem Programm NCL. Anhand von Hovmöller-Diagrammen des absoluten Geopotentials wurden die stratosphärischen Situationen und damit auch die betrachteten Stürme in Familien unterteilt, welche untereinander Ähnlichkeiten beispielsweise in den Eigenschaften der Wellen und der Lage der Stürme aufweisen. Unterteilt wurde in die drei Familien der mobilen Wellen, der stationären Wellen und der retrograden Wellen. Die Hovmöller-Diagramme des absoluten Geopotentials geben Aufschluss darüber, ob Sturm und Welle in Phase sind und wie sich Sturm und Welle in anderen Angelegenheiten zueinander verhalten.

Um die Vermutungen über die Position der Stürme bezüglich Felder positiver oder negativer Geopotentialtendenz zu bestätigen, wurden Hovmöller-Diagramme der Geopotentialtendenz in 50 hPa erstellt. Damit lassen sich Aussagen über die lokalzeitliche Änderung des absoluten Geopotentials treffen. Allerdings wird in der Stratosphäre das Geopotential zumeist von den Tendenzen der darunter befindlichen Level beeinflusst.

Mit Hovmöller-Diagrammen der Anomalie des Geopotentials können dominierende Hintergrundmuster entfernt und damit außergewöhnliche Situationen sichtbar gemacht werden. Die Anomalien zeigen demnach die Abweichungen der jeweiligen Situation von der stratosphärischen Klimatologie.

Als ergänzende Darstellung dienten Hovmöller-Diagramme des Meridionalwinds und auch dessen Anomalie. Aufgrund einer differentiellen Beziehung zueinander und der
daraus folgenden Phasenverschiebung, liegen die Geopotentialtendenzen auf den Gradienten des Meridionalwinds.

Es hat sich gezeigt, dass sich die Mehrzahl der Stürme vorderseitig stratosphärischer Rücken befindet. Die PTE betrachtet eine vertikale Luftsäule von der Troposphäre in die Stratosphäre. Wichtig für die Entwicklung der Stürme sind jedoch auch stratosphärische Ereignisse westlich der Stürme. Da die Druckzentren von Tröge und Rücken eine nach oben hin gen Westen geneigte Achse aufweisen, befindet sich an der Stelle des stratosphärischen Rückens in der Troposphäre ein starker Trog. Dieser wird durch den stratosphärischen Trog westlich des Rückens beeinflusst. So kann die Stratosphäre zum einen zum bodennahen Druckfall beitragen.

Im dritten Muster ist sowohl ein kohärentes Verhalten in der Stratosphäre als auch eine deutliche Phasenbeziehung zwischen Sturm und stratosphärischer Welle zu finden. Dieses Muster ist häufig in der Familie der mobilen Wellen zu finden. Hierbei stellt sich jedoch die große Frage nach Ursache und Wirkung, welche so nicht genau beantwortet werden kann. Es ist so noch nicht möglich ist, genaue Aussagen darüber zu treffen, ob die Stratosphäre einzelne Zyklonen beeinflusst. Durch die Analyse der 12 Stürme, welche nach der PTE-Analyse den größten sowohl negativen als auch positiven Beitrag der Stratosphäre auf die bodennahe Druckentwicklung aufweisen sowie durch die Betrachtung mehrerer Beispielstürme der jeweiligen Familien, kann angenommen werden, dass die Stratosphäre einen Einfluss auf Zyklonen und die dazugehörige Druckentwicklung hat. Viele Stürme entstehen vorderseitig eines stratosphärischen Rückens, welcher an dessen Stelle in der Troposphäre einen starken Trog impliziert. Nur kann hier nicht die Frage beantwortet werden, ob die Stratosphäre den Trog beeinflusst und intensiviert, oder ob der troposphärische Trog mit einer Absenkung der Tropopause zu einer thermischen Kompensation führt und die gegebenen stratosphärischen Muster erzeugt. Des Weiteren kann ebenfalls nicht geklärt werden, ob die negativen Tendenzen, in deren Bereichen die Stürme, welche einen deutlichen Beitrag der Stratosphäre zum Druckfall der PTE-Analyse zufolge erwarten, zu finden sein sollen, durch die Stratosphäre selbst erzeugt werden oder durch die Hebung der Tropopause im Bereich des Warmsektors einer Zyklone. Einige Stürme entstehen jedoch auch vorderseitig eines stratosphärischen Tros. In der Troposphäre befindet
sich an dessen Stelle ein Rücken, welcher eine weitere Entwicklung von Zyklonen bis hin zu intensiven Winterstürmen eigentlich verhindert. Hier müssen also andere Effekte für eine explosive Vertiefung sorgen. Ein Effekt könnte dabei die Stratosphäre sein.

Literaturverzeichnis

Pinto, J. et al., 2009. Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. *Climate Dynamics*.

Abbildungsverzeichnis

Abbildung 2: Jetstreak mit Konfluenz- und Diffuizeneffekt ... 10

Abbildung 4: Zusammenhänge zwischen stratosphärischem Polarwirbel, NAO, AO und Zyklonen .. 15

Abbildung 5: PTE Diagnostik (Fink, et al., 2012) ... 21

Abbildung 7: zeitlich konstantes absolutes Geopotential, "+" steht für Trog, "-" für Rücken; Meridionalwind durch grüne Pfeile dargestellt ... 24

Abbildung 8: zeitlich variables absolutes Geopotential; lineare räumliche Zunahme (links) und Abnahme (rechts) ... 25

Abbildung 9: räumlich konstante Geopotentialtendenz, links passend zu lineare räumliche Zunahme des Geopotentials, rechts passend zur Abnahme des Geopotentials ... 25

Abbildung 10: Propagation der Geopotentialwellen, blau steht für Trog, grün für Rücken ... 26

Abbildung 11: Geopotentialtendenz zu einer propagierenden Geopotentialwelle 27
Abbildung 12: Histogramm über die Beiträge von DPHI zur Druckentwicklung aller 100 Stürme

Abbildung 13: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die jeweilige Lebenszeit von a) Sturm 15 und b) Sturm 11

Abbildung 19: Hovmöller-Diagramme a, c und e) des absoluten Geopotentials und b, d und f) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 10, c, d) Sturm 13 und e, f) Sturm 68. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die der Welle durch die rote Linie.

Abbildung 20: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 10, b) Sturm 13 und c) Sturm 68. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms.
Abbildung 21: Hovmöller-Diagramme des Meridionalwinds von a) Sturm 10, c) Sturm 13 und e) Sturm 68 und der Anomalie des Meridionalwinds von b) Sturm 10, d) Sturm 13 und f) Sturm 68 in 50 hPa, bezogen auf die Lebenszeit der Stürme. Die schwarze Linie zeigt jeweils die Zugbahnen. ... 47

Abbildung 22: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen der jeweiligen Stürme 10, 13 und 68. 48

Abbildung 25: Hovmöller-Diagramme a und c) des absoluten Geopotentials sowie b und d) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 45 und c, d) Sturm 64. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie. 51

Abbildung 26: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 45 und b) Sturm 64. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms... 52

Abbildung 27: Hovmöller-Diagramme des Meridionalwinds von a) Sturm 45 und c) Sturm 64 und der Anomalie des Meridionalwinds von b) Sturm 45 und d) Sturm 64 in 50 hPa, bezogen auf die Lebenszeit der Stürme. Die schwarze Linie zeigt jeweils die Zugbahnen. .. 54

Abbildung 28: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen der jeweiligen Stürme 45 und 64. 55
Abbildung 29: Ergebnis der PTE-Analyse der Stürme a) 43 vom 26.01. – 01.02.1990, b) 48 vom 03.12. – 09.12.1991 und c) 72 vom 16.02. – 22.02.2000. Die Balken zeigen die jeweiligen Beiträge der Terme aus Gleichung (2) auf die Bodendruckentwicklung der Stürme. ... 56

Abbildung 31: Hovmöller-Diagramme a, c, e) des absoluten Geopotentials sowie b, d, f) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a, b) Sturm 43, c, d) Sturm 48 und e, f) Sturm 72. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie. 60

Abbildung 32: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 43, b) Sturm 48 und c) Sturm 72. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms. ... 62

Abbildung 34: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen der jeweiligen Stürme 43, 48 und 72. 64

Seite 103 von 117

Abbildung 37: Hovmöller-Diagramme a) des absoluten Geopotentials sowie b) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von Sturm 96. Die Zugbahn des Sturms wird durch die schwarzen Linien dargestellt, die Phasengeschwindigkeit der Welle durch die rote Linie... 67

Abbildung 38: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 96. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms. .. 68

Abbildung 39: Hovmöller-Diagramme des Merdionalwinds von Sturm 96 und der Anomalie des Merdionalwinds in 50 hPa, bezogen auf die Lebenszeit des Sturms. Die schwarze Linie zeigt jeweils die Zugbahnen. .. 69

Abbildung 40: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen von Sturm 96. .. 69

Abbildung 41: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa, bezogen auf die jeweilige Lebenszeit von a) Sturm 40 und b) Sturm 76 ... 72

Abbildung 42: Ergebnis der PTE-Analyse der Stürme a) 40 vom 28.12.1989 – 01.01.1990 und b) 76 vom 20.01. – 24.01.2002. Die Balken zeigen die jeweiligen Beiträge der Terme aus Gleichung (2) auf die Bodendruckentwicklung der Stürme..... 74

Abbildung 43: Hovmöller-Diagramme der Geopotentialtendenz in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 40 und b) Sturm 76. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms. ... 74

Abbildung 44: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 40 und b) Sturm 76. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms... 75

Abbildung 45: Ergebnis der PTE-Analyse der Stürme a) 60 vom 05.03. – 12.03.1995 und b) 81 vom 14.03. – 17.03.2003. Die Balken zeigen die jeweiligen Beiträge der Terme aus Gleichung (3) auf die Bodendruckentwicklung der Stürme 76
Abbildung 46: Synoptische Entwicklung von a) Sturm 60 und b) Sturm 81 im Zeitraum der stärksten Vertiefung. Die schwarzen Linien sind das absolute Geopotential, farbig ist die Geopotentialtendenz. Die roten Linien sind die Zugbahnen der Stürme. Der gelbe Punkt verweist auf das jeweilige aktuelle Datum, a: 06.03.1995, b: 09.03.1995 c: 14.03.2003, d: 15.03.2003, jeweils 12 UTC ... 76

Abbildung 47: Hovmöller-Diagramme a und c) des absoluten Geopotentials sowie b) und d) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von a) Sturm 60 und c), d) Sturm 81. Die Zugbahn der Stürme wird durch die schwarzen Linien dargestellt... 78

Abbildung 48: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von a) Sturm 60 und b) Sturm 81. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms... 79

Abbildung 49: Hovmöller-Diagramme des Merdionalwinds von a) Sturm 60 und c) Sturm 81 und der Anomalie des Merdionalwinds von b) Sturm 60 und d) Sturm 81 in 50 hPa, bezogen auf die Lebenszeit der Stürme. Die schwarze Linie zeigt jeweils die Zugbahnen. ... 80

Abbildung 50: Hovmöller-Diagramme des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0°N bis 90° N. Die schwarze Linie zeigen die Zugbahnen der jeweiligen Stürme 60 und 81. 81

Abbildung 53: Hovmöller-Diagramme a) des absoluten Geopotentials sowie b) der Geopotentialtendenz in 50 hPa bezogen auf den Lebenszeitraum von Sturm 58. Die Zugbahn des Sturms wird durch die schwarzen Linien dargestellt. 83
Abbildung 54: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 58. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms. ... 84

Abbildung 56: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa der gesamten Nordhemisphäre von 180° W bis 180° O sowie von 0° N bis 90° N. Die schwarze Linie zeigen die Zugbahnen von Sturm 58. ... 85

Abbildung 57: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 95. Die schwarze Linie zeigt die Zugbahn des Sturms... 88

Abbildung 59: Hovmöller-Diagramm der Geopotentialtendenz in 50 hPa, bezogen auf die Lebenszeit von Sturm 95. Die schwarze Linie ist die Zugbahn des Sturms........... 89

Abbildung 60: Hovmöller-Diagramme der Anomalie des absoluten Geopotentials in 50 hPa, bezogen auf die Lebenszeit von Sturm 95. Die schwarze Linie ist die Zugbahn des jeweiligen Sturms. ... 90

Abbildung A 1: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 02. Die schwarze Linie beschreibt die Zugbahn des Sturms...I

Abbildung A 2: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 03. Die schwarze Linie beschreibt die Zugbahn des Sturms...I

Abbildung A 3: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 04. Die schwarze Linie beschreibt die Zugbahn des Sturms...I

Abbildung A 4: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 05. Die schwarze Linie beschreibt die Zugbahn des Sturms...I
Abbildung A 5: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 06. Die schwarze Linie beschreibt die Zugbahn des Sturms. II

Abbildung A 6: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 07. Die schwarze Linie beschreibt die Zugbahn des Sturms. II

Abbildung A 7: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 08. Die schwarze Linie beschreibt die Zugbahn des Sturms. II

Abbildung A 8: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 09. Die schwarze Linie beschreibt die Zugbahn des Sturms. II

Abbildung A 15: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 22. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... IV

Abbildung A 26: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 34. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... VII

Abbildung A 30: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 38. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. VIII

Abbildung A 31: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 39. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. VIII

Abbildung A 32: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 41. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. VIII

Abbildung A 33: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 42. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. IX

Seite 109 von 117
Abbildung A 34: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 44. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. I X

Abbildung A 36: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 47. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. I X

Abbildung A 41: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 54. Die schwarze Linie beschreibt die Zugbahn des Sturms. .. XI

Abbildung A 52: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 71. Die schwarze Linie beschreibt die Zugbahn des Sturms... XIII

Abbildung A 53: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 73. Die schwarze Linie beschreibt die Zugbahn des Sturms... XIV

Abbildung A 54: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 74. Die schwarze Linie beschreibt die Zugbahn des Sturms... XIV

Abbildung A 55: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 75. Die schwarze Linie beschreibt die Zugbahn des Sturms... XIV

Abbildung A 56: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 77. Die schwarze Linie beschreibt die Zugbahn des Sturms... XIV

Abbildung A 57: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 78. Die schwarze Linie beschreibt die Zugbahn des Sturms... XV

Abbildung A 58: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 79. Die schwarze Linie beschreibt die Zugbahn des Sturms... XV

Abbildung A 59: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 80. Die schwarze Linie beschreibt die Zugbahn des Sturms... XV

Abbildung A 60: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 82. Die schwarze Linie beschreibt die Zugbahn des Sturms... XV
Abbildung A 61: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 83. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVI

Abbildung A 62: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 84. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVI

Abbildung A 63: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 85. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVI

Abbildung A 64: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 86. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVI

Abbildung A 65: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 87. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVII

Abbildung A 67: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 89. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVII

Abbildung A 68: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 90. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVII

Abbildung A 69: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 91. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVIII
Abbildung A 70: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 92. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVIII

Abbildung A 71: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 93. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVIII

Abbildung A 72: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 94. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XVIII

Abbildung A 73: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 97. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XIX

Abbildung A 74: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 98. Die schwarze Linie beschreibt die Zugbahn des Sturms. ... XIX

Abbildung A 76: Synoptische Situation in 50 hPa bezüglich Sturm 10 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC....... XX

Abbildung A 77: Synoptische Situation in 50 hPa bezüglich Sturm 13 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC....... XX

Abbildung A 78: Synoptische Situation in 50 hPa bezüglich Sturm 43 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC....... XXI
Abbildung A 79: Synoptische Situation in 50 hPa bezüglich Sturm 45 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC......XXI

Abbildung A 80: Synoptische Situation in 50 hPa bezüglich Sturm 48 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC......XXI

Abbildung A 81: Synoptische Situation in 50 hPa bezüglich Sturm 58 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC......XXII

Abbildung A 82: Synoptische Situation in 50 hPa bezüglich Sturm 60 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC......XXII

Abbildung A 83: Synoptische Situation in 50 hPa bezüglich Sturm 64 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.... XXIII

Abbildung A 84: Synoptische Situation in 50 hPa bezüglich Sturm 68 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.... XXIII

Abbildung A 85: Synoptische Situation in 50 hPa bezüglich Sturm 72 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.... XXIII

Abbildung A 86: Synoptische Situation in 50 hPa bezüglich Sturm 81 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.... XXIV

Abbildung A 87: Synoptische Situation in 50 hPa bezüglich Sturm 96 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.... XXIV
Formelverzeichnis

Gleichung (1) .. 8
Gleichung (2) .. 19
Gleichung (3) .. 20
Gleichung (4) .. 22
Gleichung (5) .. 26
Gleichung (6) .. 28
Tabellenverzeichnis

Tabelle 1: Prozentualer Anteil von $D\Phi$ an der Bodendruckentwicklung auf Grundlage der Anwendung der PTE auf die Stürme sowie der NAO-Index. Die fünf außerhalb des Winterhalbjahrs auftretenden Stürme wurden in dieser Tabelle außer Acht gelassen. .. 32
Anhang

Abbildung A 26: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 34. Die schwarze Linie beschreibt die Zugbahn des Sturms.

Abbildung A 34: Hovmöller-Diagramm des absoluten Geopotentials in 50 hPa bezüglich der Lebenszeit von Sturm 44. Die schwarze Linie beschreibt die Zugbahn des Sturms.

Abbildung A 76: Synoptische Situation in 50 hPa bezüglich Sturm 10 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Abbildung A 77: Synoptische Situation in 50 hPa bezüglich Sturm 13 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.
Abbildung A 78: Synoptische Situation in 50 hPa bezüglich Sturm 43 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC

Abbildung A 79: Synoptische Situation in 50 hPa bezüglich Sturm 45 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC

Abbildung A 80: Synoptische Situation in 50 hPa bezüglich Sturm 48 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC
Abbildung A 81: Synoptische Situation in 50 hPa bezüglich Sturm 58 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Abbildung A 82: Synoptische Situation in 50 hPa bezüglich Sturm 60 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.
Abbildung A 83: Synoptische Situation in 50 hPa bezüglich Sturm 64 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Abbildung A 84: Synoptische Situation in 50 hPa bezüglich Sturm 68 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Abbildung A 85: Synoptische Situation in 50 hPa bezüglich Sturm 72 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Seite XXIII von XXIV
Abbildung A 86: Synoptische Situation in 50 hPa bezüglich Sturm 81 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.

Abbildung A 87: Synoptische Situation in 50 hPa bezüglich Sturm 96 zum Zeitpunkt des stärksten Druckfalls in a) 1 hPa, b) 10 hPa, c) 20 hPa und d) 100 hPa. Die rote Linie zeigt die Zugbahn des Sturms, der gelbe Punkt das aktuelle Datum um 12 UTC.
Erklärung

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, wörtlich oder inhaltlich übernommene Stellen als solche kenntlich gemacht und die Regeln des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, den 22. Januar 2018
Danksagung

Schlussendlich möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben.

Herrn Prof. Dr. Peter Knippertz danke ich für die Übernahme des Referats und die Bereitstellung des Themas. Danke für die konstruktive Kritik, die zielführenden Gespräche und die gute Betreuung. Dies hat maßgeblich zum Gelingen dieser Arbeit beigetragen.

Herrn Prof. Dr. Peter Braesicke danke ich für die Übernahme des Koreferats und die Bereitschaft, mir bei Fragen zur Seite zu stehen.

Ich bedanke mich bei Dr. Gregor Pante für die wertvolle Hilfe beim Programmieren und die Beschaffung der Daten.

Auch bei der restlichen Arbeitsgruppe möchte ich mich bedanken für die stets freundliche Atmosphäre und Hilfsbereitschaft.

Schlussendlich noch ein Dank an Dr. Melanie Karremann und nach Köln zu PD Dr. Joaquim Pinto und Sven Ulbrich für die Bereitstellung der Daten der 100 intensivsten Zyklonen, die für diese Arbeit grundlegend waren.