

Modulhandbuch Meteorologie Master

SPO 2015 Sommersemester 2017 Stand: 31.05.2017

KIT-Fakultät für Physik

Inhaltsverzeichnis

	Module	4
1	Überprüfungen Voraussetzungen Abschlussarbeiten - M-PHYS-102290	4
2	Masterarbeit - M-PHYS-100956	6
3	Atmosphären- und Klimaprozesse Komponenten des Klimasystems - M-PHYS-100951	7 7 9
4	Angewandte und Experimentelle Meteorologie Experimentelle Meteorologie - M-PHYS-100953	11 11 13
5	Wissenschaftliches Arbeiten Spezialisierungsphase - M-PHYS-100955	15 15
6	Wahlpflichtbereich Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher Fernerkundung - M-BGU-103422 Moderne Theoretische Physik für Lehramt - M-PHYS-101664 Moderne Theoretische Physik I, Quantenmechanik I - M-PHYS-101707 Computer Vision und GIS - M-BGU-102757 GIS und Fernerkundung - M-BGU-102758 Computer Vision und Fernerkundung - M-BGU-102759 GIS und Geodateninfrastrukturen - M-BGU-102760 Fluidmechanik und Turbulenz - M-BGU-101876 Informatik für Studierende der Meteorologie - M-INFO-102980 Geophysikalische Untersuchung von Naturgefahren - M-PHYS-103336 Geoökologie - M-BGU-103398	16 17 18 19 20 21 22 23 25 26 27
7	Überfachliche Qualifikationen Überfachliche Qualifikationen - M-PHYS-102352	29 29
11	Teilleistungen Advanced Fluid Mechanics - T-BGU-106612 Analysetechniken für große Datenbestände - T-INFO-101305 Analysis of Turbulent Flows - T-BGU-103561 Angewandte Meteorologie - T-PHYS-101562 Atmosphärische Aerosole - T-PHYS-101549 Atmosphärische Chemie - T-PHYS-101548 Atmosphärische Prozesse - T-PHYS-101547 Bodenkundliche Geländeübung - T-BGU-101508 Data Analysis in Geoscience Remote Sensing Projects, Vorleistung - T-BGU-106633 Datenbanksysteme - T-INFO-101497 Die Mittlere Atmosphäre im Klimasystem - T-PHYS-101534 Einführung in die Vulkanologie, Prüfung - T-PHYS-103644 Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen - T-BGU-101681 Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung - T-BGU-103541 Einführung in Klassifizierungsverfahren der Fernerkundung - T-BGU-105725 Energetik - T-PHYS-101546	30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Energiemeteorologie - T-PHYS-101560	. 47
Exkursion - T-PHYS-101554	. 48
Experimentelle Meteorologie - T-PHYS-101555	. 49
Fernerkundung Atmosphärischer Zustandsgrößen - T-PHYS-101550	. 50
Fortgeschrittene Numerische Wettervorhersage - T-PHYS-101556	. 51
Fortgeschrittenenpraktikum - T-PHYS-101553	. 52
Gebäude- und Umweltaerodynamik - T-BGU-103563	
Geodateninfrastrukturen und Web-Dienste - T-BGU-101756	
Geodateninfrastrukturen und Web-Dienste, Vorleistung - T-BGU-101757	
Geological Hazards and Risk - T-PHYS-103525	
Geomorphologie und Bodenkunde - T-BGU-101507	
Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher Fernerkundung - T-BGU-1068	
Grundlagen der Schätztheorie, Vorleistung - T-BGU-106821	
Hauptseminar IPCC Sachstandsbericht - T-PHYS-101540	
Image Processing and Computer Vision - T-BGU-101732	
Ingenieurgeophysik - T-PHYS-104738	
Komponenten des Klimasystems - T-PHYS-101541	
Laserfernerkundung der Atmosphäre - T-PHYS-101552	
Masterarbeit - T-PHYS-101564	
Meteorologische Naturgefahren - T-PHYS-101557	
Methoden der Datenanalyse - T-PHYS-101561	
Mobile Computing und Internet der Dinge - T-INFO-102061	
Modellierung und Analyse des Klimasystems - T-PHYS-101539	
Moderne Theoretische Physik für Lehramt - T-PHYS-103204	
Moderne Theoretische Physik für Lehramt - Vorleistung - T-PHYS-103203	
Moderne Theoretische Physik I, Quantenmechanik 1 - T-PHYS-105134	
Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 - T-PHYS-102317	
Parallelrechner und Parallelprogrammierung - T-INFO-101345	
Polarmeteorologie - T-PHYS-101536	
Radarmeteorologie - T-PHYS-101551	
Remote Sensing in a Changing Climate, Prüfung - T-BGU-106334	
Remote Sensing in a Changing Climate, Vorleistung - T-BGU-106333	
Seminar zu aktuellen Fragen der Risikoforschung, ohne erw. Aufgaben - T-PHYS-106695	
Seminar zur geophysikalischen Risikoforschung - T-PHYS-105113	
Statistik in der Meteorologie - T-PHYS-101515	
Strahlung - T-PHYS-101545	
Strömungslehre - T-MACH-105023	
Strömungsmesstechnik - T-BGU-103562	
Tropische Meteorologie - T-PHYS-101535	
Turbulente Ausbreitung - T-PHYS-101558	
Verteiltes Rechnen - T-INFO-101298	
Visualisierung - T-INFO-101275	
Wechselwirkung Ozean-Atmosphäre - T-PHYS-101537	
Wissenschaftliche Konzeptentwicklung - T-PHYS-101563	
Wolkenphysik T PHVS 101543	02

Teil I

Module

1 Überprüfungen

M

Modul: Voraussetzungen Abschlussarbeiten [M-PHYS-102290]

Verantwortung:

Einrichtung: Universität gesamt

Curriculare Ver-

Pflicht

ankerung:

Bestandteil von: Überprüfungen

Leistungspunkte 70

Sprache Deutsch

Version 1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101563	Wissenschaftliche Konzeptentwicklung (S. 91)	30	

Wahlbereich

Wahlpflichtblock; Es müssen mindestens 40 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101515	Statistik in der Meteorologie (S. 82)	0	Peter Knippertz
T-PHYS-101534	T-PHYS-101534 Die Mittlere Atmosphäre im Klimasystem (S. 40)		Michael Höpfner, Miriam Sinn-
			huber
T-PHYS-101535	Tropische Meteorologie (S. 86)	0	Peter Knippertz
T-PHYS-101536	Polarmeteorologie (S. 76)	0	Christoph Kottmeier
T-PHYS-101539	Modellierung und Analyse des Klimasystems (S. 70)	0	Gerd Schädler
T-PHYS-101540	Hauptseminar IPCC Sachstandsbericht (S. 60)	0	Andreas Fink, Peter Knippertz
T-PHYS-101541	Komponenten des Klimasystems (S. 63)	12	Andreas Fink
T-PHYS-101543	Wolkenphysik (S. 92)	0	Corinna Hoose
T-PHYS-101546	Energetik (S. 46)	0	Andreas Fink
T-PHYS-101547	Atmosphärische Prozesse (S. 36)	12	Corinna Hoose
T-PHYS-101548	Atmosphärische Chemie (S. 35)	0	Roland Ruhnke
T-PHYS-101549	Atmosphärische Aerosole (S. 34)	0	Ottmar Möhler
T-PHYS-101550	Fernerkundung Atmosphärischer Zustandsgrößen	0	Johannes Orphal, Björn-Martin
	(S. 50)		Sinnhuber
T-PHYS-101551	Radarmeteorologie (S. 77)	0	Jan Handwerker
T-PHYS-101553	Fortgeschrittenenpraktikum (S. 52)	0	Christoph Kottmeier
T-PHYS-101554	Exkursion (S. 48)	0	Peter Knippertz
T-PHYS-101555	Experimentelle Meteorologie (S. 49)	14	Christoph Kottmeier
T-PHYS-101556	Fortgeschrittene Numerische Wettervorhersage	0	Peter Knippertz
T DIN (0 101	(S. 51)	_	
T-PHYS-101557	Meteorologische Naturgefahren (S. 67)	0	Michael Kunz
T-PHYS-101558	Turbulente Ausbreitung (S. 87)	0	Peter Knippertz, Bernhard Vogel, Heike Vogel
T-PHYS-101560	Energiameteorologia (S. 47)	0	Stefan Emeis
T-PHYS-101561	Energiemeteorologie (S. 47)	0	Miriam Sinnhuber
T-PHYS-101561 T-PHYS-101562	Methoden der Datenanalyse (S. 68)	10	Michael Kunz
1-6412-101205	Angewandte Meteorologie (S. 33)	10	iviichael Kunz

1 ÜBERPRÜFUNGEN

Voraussetzungen

Keine

2 Masterarbeit

М

Modul: Masterarbeit [M-PHYS-100956]

Verantwortung: Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Curriculare Ver-

Pflicht

ankerung:

Bestandteil von: Masterarbeit

Leistungspunkte	Turnus	Dauer	Sprache	Version
30	Jedes Semester	1 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101564	Masterarbeit (S. 66)	30	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt gemäß § 14 SPO Master Meteorologie und besteht aus der Bewertung der eigentlichen Masterarbeit und der zugehörigen Präsentation durch mindestens einen/eine Hochschullehrer/in, einem/einer habilitierten Wissenschaftler/in der KIT-Fakultät für Physik oder einen/eine leitende Wissenschaftler/in gemäß § 14 abs. 3 Ziff. 1 KITG und einen/eine weitere Prüfenden. Die Gesamtbewertung wird in einem schriftlichen Gutachten festgehalten.

Modulnote

Die Modulnote ist die Gesamtnote aus Masterarbeit und Präsentation.

Voraussetzungen

Gemäß § 14 Abs. 1 SPO Master Meteorologie ist Voraussetzung für die Zulassung zum Modul Masterarbeit, dass die/der Studierende Modulprüfungen im Umfang von 70 LP erfolgreich abgelegt hat. Insbesondere muss das Modul "Spezialisierungsphase" erfolgreich abgeschlossen worden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Das Modul [M-PHYS-100955] Spezialisierungsphase muss erfolgreich abgeschlossen worden sein.
- 2. Das Modul [M-PHYS-102290] Voraussetzungen Abschlussarbeiten muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studentinnen und Studenten sind in der Lage, ein weiterführendes Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten und die gewonnenen Erkenntnisse anschließend in einer schriftlichen Arbeit und in einem Vortrag verständlich und präzise darzustellen und kompetent zu diskutieren.

Inhalt

Dieses Modul soll Studierenden vertiefende Aspekte wissenschaftlichen Arbeitens, Schreibens und Präsentierens vermitteln. Die Themengebiete ergeben sich in der Regel aus aktuellen Forschungsschwerpunkten des Instituts für Meteorologie und Klimaforschung. Die schriftliche wissenschaftliche Arbeit beinhaltet eine Zusammenfassung des Standes der Literatur, Darstellung der Ziele, verwendeten Methoden und der gewonnen Ergebnisse sowie eine Diskussion des Erkenntnisgewinnes und der verbleibenden offenen Fragen.

Empfehlungen

Besuch des Karlsruher Meteorologischen Kolloquiums und der Institutsseminare

Anmerkung

Die maximale Bearbeitungsdauer für die Masterarbeit beträgt sechs Monate.

Das Modul besteht aus der Masterarbeit und einer Präsentation. Die Präsentation hat spätestens vier Wochen nach Abgabe der Masterarbeit zu erfolgen, siehe § 14 Abs. 1a SPO Master.

3 Atmosphären- und Klimaprozesse

М

Modul: Komponenten des Klimasystems [M-PHYS-100951]

Verantwortung: Andreas Fink

Einrichtung: KIT-Fakultät für Physik

Curriculare Ver-

Pflicht

ankerung:

Bestandteil von: Atmosphären- und Klimaprozesse

Leistungspunkte	Turnus	Dauer	Sprache	Version
12	Einmalig	1 Semester	Deutsch	2

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101541	Komponenten des Klimasystems (S. 63)	12	Andreas Fink

Wahlpflichtblock

Wahlpflichtblock; Es müssen zwischen 3 und 5 Bestandteile belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101540	Hauptseminar IPCC Sachstandsbericht (S. 60)	0	Andreas Fink, Peter Knippertz
T-PHYS-101535	Tropische Meteorologie (S. 86)	0	Peter Knippertz
T-PHYS-101534	Die Mittlere Atmosphäre im Klimasystem (S. 40)	0	Michael Höpfner, Miriam Sinn- huber
T-PHYS-101536	Polarmeteorologie (S. 76)	0	Christoph Kottmeier
T-PHYS-101539	Modellierung und Analyse des Klimasystems (S. 70)	0	Gerd Schädler
T-PHYS-101537	Wechselwirkung Ozean-Atmosphäre (S. 90)	0	Andreas Fink
T-PHYS-101515	Statistik in der Meteorologie (S. 82)	0	Peter Knippertz

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Master Meteorologie über die ausgewählten Lehrveranstaltungen.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten sind in der Lage wesentliche Komponenten des Klimasystems zu beschreiben und ihre Eigenschaften physikalisch zu erklären. Sie sind fähig Ursachen von Klimaveränderung fachgerecht darzustellen und kritisch zu diskutieren. Die Studierenden können Beobachtungssysteme zur Klimaüberwachung benennen und die Funktionsweise von Klimamodellen erläutern. Die Studentinnen und Studenten können wesentliche Prozesse in der Atmosphäre und Ozean benennen und mit physikalischen undchemischen Gesetzmäßigkeiten erklären. Sie sind in der Lage an Hand von diagnostischen Methoden Klima- und Wetterdaten zu analysieren und zu interpretieren. Außerdem können sie erlernte bzw. selbst erarbeitete wissenschaftliche Erkenntnisse fachgerecht präsentieren und diskutieren.

Inhalt

Dieses Modul soll Studierenden einen Überblick über wichtige Komponenten des Klimasystems, ihre physikalischen und chemischen Hintergründe und ihre zeitlichen und räumlichen Veränderungen geben. Im Speziellen beinhaltet dies:

1) Physik und Chemie der mittleren Atmosphäre (Struktur, Strahlung, nicht-lokales thermodynamisches Gleichgewicht, Energiebilanz, Photolyse, Messungen, Wellen und Gezeiten, Zirkulationen, Stratosphärenerwärmung, Aerosole, polare stra-

tosphärische und leuchtende Nachtwolken, Ozon, Klimaänderung)

- 2) Dynamik und Klima der Tropen (tropische Zirkulationen, Hadley- und Walker-Zelle, Monsune, El Niño, äquatoriale Wellen, Madden-Julian Oszillation, "Easterly Waves", tropische Wirbelstürme, tropische Böenlinien)
- 3) Dynamik und Klima der Polargebiete (Geographische Merkmale der Polargebiete, Oberflächenbilanz polarer Eis-, Wasser- und Landoberflächen, Grenzschichtaufbau, Ausbildung typischer Windsysteme, allgemeine atmosphärische Zirkulation, Polargebiete im Klimawandel)
- 4) Wechselwirkung Ozean-Atmosphäre (Physikalische und chemische Eigenschaften von Meerwasser; Temperatur, Dichte und Salinität im Ozean; Schichtung und Stabilität im Ozean, Charakteristik ozeanischer Wassermassen; windgetriebene Ozeanzirkulation: Ekman u. Sverdrup Regime, Stommels Beitrag und Munks Lösung; Thermohaline Zirkulation; Beschreibung ozeanischer Strömungssysteme; Energieflüsse an der Grenzfläche Ozean-Atmosphäre)
- 5) Ursachen von Klimawandel und Paläoklima (Externe und interne Einflussfaktoren auf das Klima, Ergebnisse und Struktur einfacher Klimamodelle mit und ohne Rückkopplungen, Strahlungswirkung und Bedeutung der Treibhausgase, Ergebnisse von Modellprojektionen des globalen Klimas, Strukturierung des IPCC-Prozesses und Bedeutung für das Leben auf der Erde)
- 6) Numerische Modellierung und Analyse von Klima- und Klimaveränderung (Klimasystem, konzeptionelle Modelle für Prozesse und feedbacks, chaotische dynamische Sytseme, numerische Klimamodelle (EMICS, Globalmodelle, Regionalmodelle), (statistische) Analysemethoden)
- 7) Deskriptive Statistik, grundlegende Wahrscheinlichkeitskonzepte, Wahrscheinlichkeitsverteilungen, Parameterschätzung, Konfidenzintervalle, statistische Hypothesentests, lineare, multiple und nicht-lineare Regression sowie eine kurze Einführung in Zeitreihenanalyse.

Empfehlungen

Grundlagenkenntnisse über das Klimasystem sind hilfreich.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 120 Stunden
- 2. Vor-/Nachbereitung derselbigen: 120 Stunden
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 120 Stunden

Modul: Atmosphärische Prozesse [M-PHYS-100952]

Verantwortung: Corinna Hoose

KIT-Fakultät für Physik **Einrichtung:**

Curriculare Ver-

Pflicht

ankerung:

Bestandteil von: Atmosphären- und Klimaprozesse

Leistungspunkte	Turnus	Dauer	Sprache	Version
12	Einmalig	1 Semester	Deutsch	2

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101543	Wolkenphysik (S. 92)	0	Corinna Hoose
T-PHYS-101549	Atmosphärische Aerosole (S. 34)	0	Ottmar Möhler
T-PHYS-101547	Atmosphärische Prozesse (S. 36)	12	Corinna Hoose

Wahlpflichtblock

Wahlpflichtblock; Es müssen 2 Bestandteile belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101548	Atmosphärische Chemie (S. 35)	0	Roland Ruhnke
T-PHYS-101546	Energetik (S. 46)	0	Andreas Fink
T-PHYS-101545	Strahlung (S. 83)	0	Michael Höpfner

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Master Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können wesentliche Prozesse in der Atmosphäre benennen und mit physikalischen und chemischen Gesetzmäßigkeiten erklären. Insbesondere sind sie in der Lage die Struktur und Dynamik unterschiedlicher Wolkensysteme zu erläutern und mikrophysikalische Prozesse in Wolken abzuschätzen bzw. für idealisierte Bedingungen direkt zu berechnen. Darüber hinaus sind die Studierenden fähig, den Strahlungstransports in der Atmosphäre mathematisch zu beschreiben sowie die Bedeutung von Strahlungsprozessen für den Aufbau der Atmosphäre, für den Klimawandel und für die Messung verschiedener atmosphärischer Variablen zu erklären. Sie können zudem die chemische Struktur sowie die Zusammensetzung des Aerosols der Troposphäre und der Stratosphäre anhand der in der Atmosphäre ablaufenden physikalisch-chemischen Prozesse und Umwandlungen erklären. Sie sind in der Lage, die chemischen und physikalischen Ursachen des stratosphärischen Ozonlochs sowie dessen zukünftige Entwicklung zu erläutern, kennen die wichtigsten Aerosol-Wolkenprozesse und sind mit der Köhlertheorie und der klassischen Nukleationstheorie vertraut.

Dieses Modul soll Studierenden einen Überblick über wichtige physikalische und chemische Prozesse in der Atmosphäre vermitteln. Im Speziellen beinhaltet dies:

- 1) Wolkenphysik (Phänomenologie, Wolkendynamik stratiformer und konvektiver Wolken, Wolkenmikrophysik warmer und kalter Wolken, Kollisionen und Koaleszenz, primäre und sekundäre Eisbildung, Depositionswachstum)
- 2) Atmosphärenchemie (Vertiefung Reaktionskinetik und Photochemie, Konzept des katalytischen Zyklen und chemischen Familien, Bildung des stratosphärischen Ozonlochs und Sommersmogs) und Aerosole (Gas-Partikelprozesse (Kinetik, Dif-

fusion, Kondensation), Aerosoleigenschaften (Diffusion, Koagulation, Sedimentation, Impaktion), Aerosol-Thermodynamik (chemisches Potential, Löslichkeit, Kristallisation), Aerosol-Wolken-Prozesse (Köhlertheorie, Einukleation))

- 3) Strahlung in der Atmosphäre (Elektromagnetische Wellen, Polarisation, Reflexion, Emission, Strahlungsübertragung, Molekülspektroskopie, Linienverbreiterung, Streuung, optische Erscheinungen, Strahlungsbilanz, Klimawandel, Fernerkundung)
- 4) Energetik (Mittlere Meridionalzirkulation, stationäre und transiente "Eddies"; Grundformen, Bilanzgleichungen und Transportprozesse der Energieformen in der Atmosphäre; Prinzip der verfügbaren potentiellen Energie; Lorenz Energiezyklus: Energiereservoire und Umwandlungsprozesse)

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 113 Stunden
- 2. Vor-/Nachbereitung derselbigen: 87 Stunden
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 160 Stunden

4 Angewandte und Experimentelle Meteorologie

М

Modul: Experimentelle Meteorologie [M-PHYS-100953]

Verantwortung: Christoph Kottmeier

Einrichtung: KIT-Fakultät für Physik **Curriculare Ver**- Pflicht

Curriculare Verankerung:

Bestandteil von: Angewandte und Experimentelle Meteorologie

Leistungspunkte	Turnus	Dauer	Sprache	Version
14	Jedes Sommersemester	1 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101550	Fernerkundung Atmosphärischer Zustandsgrößen (S. 50)	0	Johannes Orphal, Björn-Martin Sinnhuber
T-PHYS-101553	Fortgeschrittenenpraktikum (S. 52)	0	Christoph Kottmeier
T-PHYS-101554	Exkursion (S. 48)	0	Peter Knippertz
T-PHYS-101555	Experimentelle Meteorologie (S. 49)	14	Christoph Kottmeier

Wahlpflichtblock

Wahlpflichtblock; Es müssen 1 Bestandteile belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101552	Laserfernerkundung der Atmosphäre (S. 65)	0	Thomas Leisner

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Master Meteorologie über die ausgewählten Lehrveranstaltungen.

Modulnote

Die Modulote ist die Note der mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können die Funktionsweise moderner meteorologischer Messverfahren und Messprinzipien erklären und ihre Einsatzmöglichkeiten benennen. Dies gilt insbesondere für Fernerkundungsverfahren, moderne In-Situ-Verfahren sowie Spurenstoff- und Aerosolmesstechnik. Sie sind in der Lage, einfache Versuche im Labor oder im Feld nach Anleitung aufzubauen und durchzuführen, Daten zu erfassen und diese wissenschaftlich fundiert auszuwerten und die Ergebnisse zu interpretieren und zu präsentieren.

Inhalt

Dieses Modul soll Studierenden einen Überblick über moderne Messverfahren in der Meteorologie und praktische Aspekte zur Anwendung vermitteln. Insbesondere beinhaltet dies Fernerkundung (physikalische Grundlagen, Strahlungstransfer, inverse Methoden, Grundlagen der Satellitenfernerkundung, Techniken und Anwendungen), Radarverfahren (Streuung und Absorption elektromagnetischer Wellen, Radargleichung, Radarreflektivitätsfaktor und Regenrate, technische Aspekte, Radarstrahlen in einem geschichteten Medium, Windinformationen aus Doppler-Radardaten) und Laserverfahren (Eigenschaften und Ausbreitung von Licht, Grundlagen des Lasers, Funktionsprinzipien der Laserfernerkundung, technischer Aufbau von Lidar-Systemen, Überblick gängiger Lidar-Messverfahren, weltraumgestützte Lidar-Systeme). Zudem vermittelt das Modul den Studierenden anhand des Praktikums und der Exkursion einen Einblick in und praktische Erfahrung mit modernen Messmethoden wie sie in der Forschung am KIT und an anderen Institutionen verwendet werden.

4 ANGEWANDTE UND EXPERIMENTELLE METEOROLOGIE

Arbeitsaufwand

- Präsenzzeit in Vorlesungen, Übungen: 57 Stunden
 Präsenzzeit in Exkursion und Praktikum: 100 Stunden
- 2. Vor-/Nachbereitung derselbigen: 143 Stunden
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 120 Stunden

М

Modul: Angewandte Meteorologie [M-PHYS-100954]

Verantwortung: Michael Kunz

Einrichtung: KIT-Fakultät für Physik

Pflicht

Curriculare Verankerung:

Bestandteil von: Angewandte und Experimentelle Meteorologie

Leistungspunkte	Turnus	Dauer	Sprache	Version
10	Jedes Sommersemester	1 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101561 T-PHYS-101562	Methoden der Datenanalyse (S. 68)	0	Miriam Sinnhuber Michael Kunz
1-PH (3-101302	Angewandte Meteorologie (S. 33)	10	Michael Kunz

Wahlpflichtblock Angewandte Meteorologie

Wahlpflichtblock; Es müssen zwischen 2 und 3 Bestandteile belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101560	Energiemeteorologie (S. 47)	0	Stefan Emeis
T-PHYS-101558	Turbulente Ausbreitung (S. 87)	0	Peter Knippertz, Bernhard Vogel, Heike Vogel
T-PHYS-101557	Meteorologische Naturgefahren (S. 67)	0	Michael Kunz
T-PHYS-101556	Fortgeschrittene Numerische Wettervorhersage (S. 51)	0	Peter Knippertz

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Master Meteorologie über die ausgewählten Lehrveranstaltungen.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können wesentliche Anwendungsaspekte der Meteorologie fachgerecht erläutern und bestimmten Anwendungsgebieten zuordnen. Sie sind in der Lage die Funktionsweise eines modernen Wettervorhersagesystems tiefergehend zu beschreiben und können aus Vorhersagen Potential für Extremereignisse und ihre Auswirkungen auf die Bevölkerung und die Versicherungswirtschaft je nach Region und Jahreszeit abschätzen. Die Studierenden sind fähig aus Wetterinformationen Auswirkungen auf Luftbeimengungen und die Erzeugung regenerativer Energie abzuleiten. Sie sind in der Lage meteorologische Daten mit Hilfe von rechnergestützten statistischen und anderen Verfahren zu analysieren.

Inhalt

Dieses Modul soll Studierenden einen Überblick über wichtige Anwendungen der Meteorologie in Bereichen wie Wettervorhersage und –warnung, Versicherungs- und Energiewirtschaft, Luftqualität oder Datenanalyse vermitteln: Insbesondere behandelt das Modul folgende Aspekte:

- 1) Methoden der numerischen Wettervorhersage (hydrodynamische Gleichungssysteme, spektrale Approximationsverfahren, Differenzenapproximation auf irregulären Gittern, statistische Datenassimilationsverfahren, betriebliche Aspekte der Wettervorhersage)
- 2) Meteorologische Naturgefahren (Extremereignisse, außertropische und tropische Zyklonen, Konvektion, Gewitterstür-

4 ANGEWANDTE UND EXPERIMENTELLE METEOROLOGIE

me, Superzellen, Tornados, konvektive Starkwindböen, Derechos, Hagel, Klimaänderung und Extremereignisse)

- 3) Ausbreitung von Luftbeimengungen (relevante Spurengase, Tagesgänge von Emissionen und Konzentrationen, Temperaturverlauf und Bewegungsvorgänge in der unteren Atmosphäre, turbulente Diffusion, Turbulenzparametrisierung chemische Umwandlungsvorgänge, numerische Modelle)
- 4) Energiemeteorologie (Grundlagen des Energiesystems; Anwendung meteorologischen Fachwissens in der Energiewirtschaft insbesondere zur Integration der erneuerbaren Energien Windkraft, Solarenergie und Wasserkraft; Vertiefung einzelner meteorologischer Aspekte mit besonderer Relevanz)
- 5) Es werden Methoden der Datenanalyse, die in den Geowissenschaften und insbesondere in der Meteorologie / Klimaforschung häufige Anwendung finden, vorgestellt (z.B. statistische Methoden, Korrelationsanalysen, Least-squares-Verfahren (lineare, multi-lineare, und nichtlineare Regression), Hauptkomponentenanalyse, Fourieranalyse)

Empfehlungen

Grundlegende Kenntnisse in Statistik sind hilfreich.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 95 Stunden
- 2. Vor-/Nachbereitung derselbigen: 95 Stunden
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 120 Stunden

5 Wissenschaftliches Arbeiten

М

Modul: Spezialisierungsphase [M-PHYS-100955]

Verantwortung: Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Curriculare Ver- Pflicht

ankerung:

Bestandteil von: Wissenschaftliches Arbeiten

Leistungspunkte	Turnus	Dauer	Sprache	Version
30	Jedes Semester	1 Semester	Deutsch	2

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-101563	Wissenschaftliche Konzeptentwicklung (S. 91)	30	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines mündlichen Vortrags von i.d.R. 30 Minuten und ist eine Studienleistung nach § 4 Abs. 2 SPO Master. Die Bewertung erfolgt durch eine/einen Prüfenden nach § 17 Abs. 2–4 SPO Master und ein/e Beisitzende/r und wird in einem Protokoll festgehalten.

Modulnote

Dieses Modul ist unbenotet.

Voraussetzungen

Bei Anmeldung müssen mindestens drei der vier Modulprüfungen der Fächer "Atmosphären- und Klimaprozesse" und "Angewandte und Experimentelle Meteorologie" bestanden sein.

Qualifikationsziele

Die Studentinnen und Studenten sind in der Lage sich selbständig in ein gestelltes wissenschaftliches Thema einzuarbeiten. Sie sind fähig, relevante Literatur zielgerichtet zu identifizieren, zusammenzufassen, kritisch zu hinterfragen und daraus offen Forschungsfragen abzuleiten. Die Studierenden sind in der Lage ein stimmiges wissenschaftliches Konzept zu entwickeln und in einem Vortrag zu präsentieren und zu diskutieren.

Inhalt

Dieses Modul soll Studierenden die Fähigkeit vermitteln, ein stimmiges wissenschaftliches Konzept zu entwickeln und ggf. gegen Kritik zu verteidigen. Die wissenschaftlichen Inhalte orientieren sich im Allgemeinen an bestehenden Forschungsschwerpunkten am Institut für Meteorologie und Klimaforschung. Die/der Studierende wählt ein Thema nach Absprache mit einem/r Betreuer/in, der/die Hintergrundinformationen und Schlüsselveröffentlichungen zu diesem Thema zur Verfügung stellt. Auf Basis dessen entwickelt die/der Studierende einen Überblick über den Stand der Forschung, sich daraus ergebende offene Fragen und wissenschaftliche Ziele sowie schlussendlich eine methodische Herangehensweisen zum Erreichen dieser Ziele. Erste Tests mit bestehenden Methoden können dabei Teil der Entwicklungsarbeit sein. Am Ende des Moduls wird das Konzept dem Betreuer und einer/m Prüfenden in einem Seminarvortrag dargestellt und diskutiert. Dies bildet eine wichtige Grundlage für die sich anschließende Masterarbeit.

Empfehlungen

Besuch des Karlsruher Meteorologischen Kolloquiums und der Institutsseminare

Arbeitsaufwand

- 1. Eigenständiges wissenschaftliches Arbeiten: 820 Stunden
- 2. Vorbereitung Vortrag und Präsenz im zugehörigen Seminar: 80 Stunden

Meteorologie Master

15

6 Wahlpflichtbereich

M Modul: Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher Fernerkundung [M-BGU-103422]

Verantwortung: Jan Cermak, Stefan Hinz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Ver-

Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version	
8	Jedes Sommersemester	1 Semester	Deutsch	1	

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-106821	Grundlagen der Schätztheorie, Vorleistung (S. 59)	1	Stefan Hinz
T-BGU-106633	Data Analysis in Geoscience Remote Sensing Projects, Vorleistung (S. 38)	2	Jan Cermak
T-BGU-106822	Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher Fernerkundung (S. 58)	5	Jan Cermak, Stefan Hinz

Voraussetzungen

keine

Modul: Moderne Theoretische Physik für Lehramt [M-PHYS-101664]

Verantwortung: Stefan Gieseke

Einrichtung: KIT-Fakultät für Physik

Curriculare Ver-

Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jedes Wintersemester	1 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-103203	Moderne Theoretische Physik für Lehramt - Vorleis-	0	Stefan Gieseke
T-PHYS-103204	tung (S. 72) Moderne Theoretische Physik für Lehramt (S. 71)	8	Stefan Gieseke

Erfolgskontrolle(n)

Vorleistungen: optionale Varianten aus Vorrechnen, Übungsblättern, Klausur

Prüfung: mündliche Prüfung

Voraussetzungen

Module Klassische Theoretische Physik I und II

Qualifikationsziele

Kennen der Grundlagen der Theorie elektrischer und magnetischer Felder und der elektrischen und magnetischen Eigenschaften der Materie. Grundlagen der Quantenmechanik mit einfachen Anwendungen.

Inhalt

Elektrostatik: Grundgleichungen, skalares Potential, Beispiele.

Magnetostatik: Grundgleichungen, Vektorpotential, Beispiele.

Spezielle Relativitätstheorie, relativistische Formulierung der Elektrodynamik.

Zeitabhängige Felder und Strahlungsphänomene: Grundgleichungen, Poynting-Theorem.

Elektromagnetische Wellen: ebene Wellen, Polarisation, Wellenpakete, sphärische Wellen, elektromagnetische Potentiale und Eichtransformationen, Hertzscher Dipol.

Grundgleichungen der Quantenmechanik. Unschärferelation. Interpretation der Wellenfunktion. Ein Teilchen in einer Dimension. Mehrteilchenzustände, Pauliprinzip. Energieeigenzustände des Wasserstoffatoms. Atombau und Periodensystem der Elemente im Modell wasserstoffähnlicher Atome.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Modul: Moderne Theoretische Physik I, Quantenmechanik I [M-PHYS-101707]

Verantwortung: Studiendekan Physik

Einrichtung: Curriculare VerKIT-Fakultät für Physik Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jedes Sommersemester	1 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-102317	Moderne Theoretische Physik I, Quantenmechanik 1,	4	Jörg Schmalian
T-PHYS-105134	Vorleistung 1 (S. 74) Moderne Theoretische Physik I, Quantenmechanik 1 (S. 73)	4	Frans Klinkhamer, Jörg Schma- lian

Voraussetzungen

keine

Qualifikationsziele

Der/die Studierende erlernt die grundlegenden Konzepte der Einteilchen-Quantenmechanik und wendet diese auf wichtige Fragestellungen an. Er/sie legt damit die Grundlage für ein fundamentales Verständnis der mikroskopischen Welt.

Inhalt

- Einführung: Historische Bemerkungen, Grenzen der klassischen Physik.
- Dualismus Teilchen und Welle: Wellenmechanik, Materiewellen, Wellenpakete, Unschärferelation, Schrödingergleichung, Qualitatives Verständnis einfacher Fälle.
- Mathematische Hilfsmittel: Hilbertraum, Bra und Ket, Operatoren, Hermitizität, Unitarität, Eigenvektoren und Eigenwerte, Observable, Basis, Vollständigkeit.
- Postulate der Quantenmechanik: Messprozess, Zeitentwicklung, Zeitentwicklung von Erwartungswerten, Ehrenfest-Theorem und klassischer Grenzfall.
- Eindimensionale Potentiale: Potentialtöpfe, harmonischer Oszillator.
- Gebundene Zustände in einem dreidimensionalen Potential: Separation der Variablen, Zentralpotential, Drehimpuls, Drehsymmetrie und Spin, Entartung, Teilchen im äußeren elektromagnetischen Feld, Wasserstoffatom.
- Zeitunabhängige Störungstheorie: Nichtentarteter und entarteter Fall, Feinstruktur des Wasserstoffspektrums, Stark-
- Grundlagen der Streutheorie: Differentieller Wirkungsquerschnitt, Bornsche Reihe und Bornsche Näherung, Partialwellen und Streuphasen, optisches Theorem.

Literatur

Lehrbücher der Quantenmechanik

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

М

Modul: Computer Vision und GIS [M-BGU-102757]

Verantwortung: Stefan Hinz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Ver- Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte Sprache Version
9 Deutsch 1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-101681	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (S. 43)	3	Norbert Rösch, Sven Wursthorn
T-BGU-103541	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung (S. 44)	3	Norbert Rösch, Sven Wursthorn
T-BGU-101732	Image Processing and Computer Vision (S. 61)	4	Uwe Weidner

Voraussetzungen

keine

М

Modul: GIS und Fernerkundung [M-BGU-102758]

Verantwortung: Stefan Hinz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Ver- Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte Sprache Version
9 Deutsch 1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-105725	Einführung in Klassifizierungsverfahren der Fernerkundung (S. 45)	4	Uwe Weidner
T-BGU-101681	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (S. 43)	3	Norbert Rösch, Sven Wursthorn
T-BGU-103541	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung (S. 44)	3	Norbert Rösch, Sven Wursthorn

Voraussetzungen

keine

Modul: Computer Vision und Fernerkundung [M-BGU-102759]

Jan Cermak, Uwe Weidner Verantwortung:

KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften Einrichtung:

Curriculare Ver-

Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jedes Wintersemester	2 Semester	Deutsch	2

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-105725	Einführung in Klassifizierungsverfahren der Fernerkundung (S. 45)	4	Uwe Weidner

Computer Vision und Fernerkundung für Meteorologen

Wahlpflichtblock; Es müssen zwischen 1 und 2 Bestandteile und müssen 4 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-BGU-106333	Remote Sensing in a Changing Climate, Vorleistung	1	Jan Cermak
T-BGU-106334	(S. 79) Remote Sensing in a Changing Climate, Prüfung (S. 78)	3	Jan Cermak

Voraussetzungen

keine

М

Modul: GIS und Geodateninfrastrukturen [M-BGU-102760]

Verantwortung: Stefan Hinz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Ver- Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

LeistungspunkteSpracheVersion10Deutsch1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-101681	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (S. 43)	3	Norbert Rösch, Sven Wursthorn
T-BGU-103541	Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung (S. 44)	3	Norbert Rösch, Sven Wursthorn
T-BGU-101756	Geodateninfrastrukturen und Web-Dienste (S. 54)	1	Stefan Hinz
T-BGU-101757	Geodateninfrastrukturen und Web-Dienste, Vorleistung (S. 55)	3	Stefan Hinz

Voraussetzungen

keine

Modul: Fluidmechanik und Turbulenz [M-BGU-101876]

Verantwortung: Olivier Eiff

KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften **Einrichtung:**

Curriculare Ver-

Wahlpflicht ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
9	Jedes Wintersemester	2 Semester	Deutsch	2

Wahlpflicht 1

Wahlpflichtblock; Es müssen 1 Bestandteile und müssen 6 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-BGU-106612	Advanced Fluid Mechanics (S. 30)	6	Olivier Eiff
T-BGU-103561	Analysis of Turbulent Flows (S. 32)	6	Markus Uhlmann

Wahlpflicht 2

Wahlpflichtblock; Es müssen 1 Bestandteile und müssen 3 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-BGU-103562	Strömungsmesstechnik (S. 85)	3	Bodo Ruck
T-BGU-103563	Gebäude- und Umweltaerodynamik (S. 53)		Bodo Ruck

Erfolgskontrolle(n)

Es ist eine Prüfung in einer der Teilleistungen "Analysis of Turbulent Flows" oder "Fluid Mechanics for Environmental Flows" und eine weitere Prüfung in einer der Teilleistungen "Strömungsmesstechnik" oder "Gebäude- und Umweltaerodynamik" abzulegen. Die Erfolgskontrollen hängen von den ausgewählten Teilleistungen ab (s. Teilleistungen).

- Teilleistung T-BGU-106612 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-103561 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-103562 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2
- Teilleistung T-BGU-103563 mit mündlicher Prüfung nach § 4 Abs. 2 Nr. 2

Einzelheiten zu den einzelnen Erfolgskontrollen siehe bei den jeweiligen Teilleistungen.

Modulnote

Modulnote ist gewichteter Durchschnitt aus Noten der Teilprüfungen aus Wahlpflichtblock 1, Advanced Fluid Mechanics oder Analysis of Turbulent Flows, und Wahlpflichtblock 2, Strömungsmesstechnik oder Gebäude- und Umweltaerodynamik.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Konzepte der Fluidmechanik mit adäquater Terminologie erläutern und auf physikalische Gesetzmäßigkeiten zurückführen. Sie sind mit Beispielen aus Anwendung, Modellierung und Messung vertraut.

Inhalt

1. Fluid Mechanics for Environmental Flows vermittelt die fortgeschrittenen Grundlagen der Strömungsmechanik und bildet die Basis für die Umweltfluidmechanik. Ausgehend von den zu Grunde liegenden lokalen Erhaltungssätzen werden die Phänomene der verschiedenen Strömungsklassen und deren mögliche analytische Lösungen behandelt. Dies umfasst die allgemeinen und speziellen Formen der Grundgleichungen, die Strömungskinematik, inkompressible viskose Strömungen, ideale Fluidströmungen, Flachwasserströmungen und Auftriebseffekte in Strömungen. Weiterhin

- werden Wellen und Turbulenz angesprochen und verschiedene Analysemethoden wie die Skalierung behandelt.
- 2. Analysis of Turbulent Flows vermittelt eine allgemeine Einführung zur Analyse turbulenter Strömungen. Es werden die mathematisch-physikalischen Grundlagen zur quantitativen Beschreibung turbulenter Strömungen erarbeitet, d.h. sowohl die Eigenschaften der Erhaltungsgleichungen selber, als auch die notwendigen mathematischen Werkzeuge und die gebräuchlichen Modellierungsansätze für Ingenieurprobleme. Im Kurs "Fluidmechanik turbulenter Strömungen" wird die Phänomenologie turbulenter Strömungen vorgestellt, die statistische Beschreibung eingeführt, Charakteristika von freien Scherströmungen und von wandnahen Strömungen definiert, und die turbulente Energiekaskade analysiert. Im Kurs "Turbulenzmodelle: RANS und LES" wird der statistische Modellansatz basierend auf Reynoldsscher Mittelung (RANS) vom einfachen algebraischen Modell bis zum Reynoldsspannungstransportmodell behandelt. Desweitern wird das Konzept der Grobstruktursimulation (LES) einführend behandelt.
- 3. Strömungsmesstechnik vermittelt die Grundlagen der Messung von Strömungsgeschwindigkeiten, wobei laseroptische Messverfahren, wie sie z.B. in Windkanälen eingesetzt werden, im Fokus des Interesses stehen.
- 4. Gebäude- und Umweltaerodynamik vermittelt die Grundlagen über natürliche Windverhältnisse und deren Wechselwirkung mit Bauwerken. Die Windwirkung auf Bauwerke und die ingenieurmäßige Lastbemessung werden eingehend dargestellt. Im zweiten Teil der Vorlesung wird eine Einführung in die Umweltaerodynamik gegeben, wobei insbesondere auf die Wechselwirkung von atmosphärischen Starkwindereignissen und natürlichen Strukturen eingegangen wird.

Empfehlungen

Grundkenntnisse in Höherer Mathematik und Hydromechanik;

Vorkenntnisse in der Programmierung mit Matlab sind hilfreich für die LV "Analysis of Turbulent Flows"

Anmerkung

Die Lehrveranstaltungen werden ab dem SS 2017 teilweise in Englisch angeboten.

Grundlage für

nicht spezifiziert

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. \times 15 Wo.):

je nach gewählten Lehrveranstaltungen bzw. Prüfungen:

- Advanced Fluid Mechanics Vorlesung/Übung: 60 Std.
- Fluid Mechanics of Turbulent Flows Vorlesung/Übung: 30 Std.
- Modeling of Turbulent Flows RANS and LES Vorlesung, Übung: 30 Std.
- Strömungsmesstechnik Vorlesung/Übung: 30 Std.
- Gebäude- und Umweltaerodynamik Vorlesung, Übung: 30 Std.

Selbststudium:

je nach gewählten Lehrveranstaltungen bzw. Prüfungen:

- Vor- und Nachbereitung Vorlesung/Übungen Advanced Fluid Mechanics: 20 Std.
- Bearbeitung von Übungsaufgaben Advanced Fluid Mechanics: 30 Std.
- Prüfungsvorbereitung Advanced Fluid Mechanics: 50 Std.
- Vor- und Nachbereitung Vorlesungen Fluid Mechanics of Turbulent Flows: 20 Std.
- Vor- und Nachbereitung Vorlesungen Modeling of Turbulent Flows RANS and LES: 30 Std.
- Prüfungsvorbereitung Analysis of Turbulent Flows: 50 Std.
- Vor- und Nachbereitung Vorlesung/Übungen Strömungsmesstechnik: 20 Std.
- Prüfungsvorbereitung Strömungsmesstechnik: 30 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Gebäude- und Umweltaerodynamik: 20 Std.
- Prüfungsvorbereitung Gebäude- und Umweltaerodynamik: 30 Std.

Summe: 240 Std.

М

Modul: Informatik für Studierende der Meteorologie [M-INFO-102980]

Verantwortung: Bernhard Beckert

Einrichtung: KIT-Fakultät für Informatik

Curriculare Ver- Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jährlich	2 Semester	Deutsch	1

Informatik für Meteorologen

Wahlpflichtblock; Es muss mindestens 1 Bestandteil und müssen mindestens 8 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-INFO-101345	Parallelrechner und Parallelprogrammierung (S. 75)	4	Achim Streit
T-INFO-101298	Verteiltes Rechnen (S. 88)	4	Achim Streit
T-INFO-102061	Mobile Computing und Internet der Dinge (S. 69)	5	Michael Beigl
T-INFO-101305	Analysetechniken für große Datenbestände (S. 31)	5	Klemens Böhm
T-INFO-101497	Datenbanksysteme (S. 39)	4	Klemens Böhm
T-INFO-101275	Visualisierung (S. 89)	5	Carsten Dachsbacher

Erfolgskontrolle(n)

siehe Teilleistung

Voraussetzungen

siehe Teilleistung

Modul: Geophysikalische Untersuchung von Naturgefahren [M-PHYS-103336]

Verantwortung: Ellen Gottschämmer

Einrichtung: KIT-Fakultät für Physik Wahlpflicht

Curriculare Verankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jedes Sommersemester	2 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-103553	Einführung in die Vulkanologie, Studienleistung (S. 42)	3	Ellen Gottschämmer
T-PHYS-103644 T-PHYS-106695	Einführung in die Vulkanologie, Prüfung (S. 41) Seminar zu aktuellen Fragen der Risikoforschung, ohne erw. Aufgaben (S. 80)	1 4	Ellen Gottschämmer Ellen Gottschämmer

Erfolgskontrolle(n)

Notenbildung erfolgt durch Einführung in die Vulkanologie (Prüfungsleistung anderer Art)

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verstehen fachliche Literatur zu aktuellen Fragen der Risikoforschung, können diese in einem eigenen Vortrag wiedergeben, erläutern und diskutieren. Sie sind in der Lage, thematisch ähnliche Vorträge zu verstehen und die erläuterten Methoden kritisch zu hinterfragen. Sie können aktuelle Forschungsergebnisse vergleichen und bewerten. Die Studierenden sind darüber hinaus in der Lage, die Forschungsergebnisse anschaulich zu präsentieren, klar zu gliedern und sauber darzustellen.

Inhalt

Intensive Beschäftigung mit aktuellen Fragen der Risikoforschung, Lesen von Fachliteratur, kritische Diskussion. Vortragen über ein selbstgewähltes Thema aus dem aktuellen Angebot.

26

М

Modul: Geoökologie [M-BGU-103398]

Verantwortung: Wolfgang Wilcke

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curriculare Ver- Wahlpflicht

ankerung:

Bestandteil von: Wahlpflichtbereich

Leistungspunkte	Turnus	Dauer	Sprache	Version
8	Jedes Wintersemester	2 Semester	Deutsch	1

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-BGU-101507	Geomorphologie und Bodenkunde (S. 57)	7	Wolfgang Wilcke
T-BGU-101508	Bodenkundliche Geländeübung (S. 37)	1	Wolfgang Wilcke

Erfolgskontrolle(n)

- Teilleistung T-BGU-101507 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO 2015 Master Meteorologie
- Teilleistung T-BGU-101508 mit einer Studienleistungen nach § 4 Abs. 3 SPO 2015 Master Meteorologie Einzelheiten zu den einzelnen Erfolgskontrollen siehe bei den jeweiligen Teilleistungen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die grundlegenden Begriffe, Konzepte und Theorien der Fächer Geomorphologie und Bodenkunde. Sie können wichtige morphologische Formen erkennen und fachkundig interpretieren. Sie kennen Zusammensetzung, Aufbau, Eigenschaften und Funktionen von Böden.

Inhalt

Das Modul vermittelt Grundlagen der Bodenkunde und Geomorphologie. Es besteht aus drei Lehrangeboten folgenden Inhalts:

- Geomorphologie und Bodenkunde: Dieses Teilmodul behandelt die wichtigsten exogenen Prozesse (Verwitterung, Karst, gravitative Massenbewegungen, glaziale und periglaziale Dynamik, äolische, fluviale und litorale Dynamik, Rumpfflächen und Schichtstufen). Es wird der Boden als Drei-Phasen-System eingeführt und die einzelnen Phasen (fest, flüssig, gasförmig) besprochen. Gegenstand des Teilmoduls sind die bodenbildenden Faktoren und Prozesse sowie der daraus resultierende Horizontaufbau von Böden. Es werden wichtige physikalische Bodeneigenschaften behandelt (Farbe, Textur, Struktur, mechanische Stabilität, Wasserspeicherung und -transport, Wärmehaushalt). Es werden wichtige physiko-chemische Bodeneigenschaften behandelt (Humuseigenschaften, Bodenazidität, Redoxpotential, Kationenaustausch). Es werden ökologische Bodenfunktionen besprochen. Dieses Teilmodul vermittelt einen Einstieg in den Mineralbestand von Böden. In diesem Teilmodul werden die wichtigsten Mineralbildungen in Böden erlernt, neben den Silikaten liegen weitere Schwerpunkte auf Oxiden und Sulfiden. Es werden die Wechselwirkungen zwischen Mikroorganismen und Mineralbestand in Böden behandelt.
- Böden Europas: Dieses Teilmodul stellt die deutsche Bodenklassifikation vor und nutzt sie zur Strukturierung. Es werden die World Reference Base of Soil Resources und die US Keys to Soil Taxonomy vorgestellt. Es werden die wichtigsten diagnostischen Eigenschaften von Böden vorgestellt (Ober- und Unterbodenhorizonte, spezifische Merkmale). Das Teilmodul stellt alle Bodentypen der Bodenkundlichen Kartieranleitung im Kontext der pedogenetischen Systematik vor. Das Teilmodul behandelt die merkmalsprägenden Prozesse und die aus diesen Prozessen resultierenden ökologischen Bodeneigenschaften.
- Bodenkundliche Geländeübung: Geländeübung "Bodenkundliche Geländeübung" besteht aus einer eintägigen Geländeübung in der Umgebung von Karlsruhe, in der in wichtige lokale Landschaftselemente und Böden eingeführt wird und die Studierenden die Interpretation von geomorphologischen Formen und die Bodenansprache üben.

27

Empfehlungen

Es wird empfohlen, zuerst die Lehrveranstaltung "Geomorphologie und Bodenkunde" zu besuchen. Die Teilnahme an der Übung Geomorphologie und Bodenkunde ist optional.

Anmerkung

Keine

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen und Übungen: 67,5 h
- 2. Vor-/Nachbereitung derselbigen: 142,5 h
- 3. Klausurvorbereitung und Präsenz in selbiger: 30 h

Überfachliche Qualifikationen

M Modul: Überfachliche Qualifikationen [M-PHYS-102352]

Verantwortung:

Einrichtung:

KIT-Fakultät für Physik

Curriculare Ver-

Pflicht

ankerung:

Bestandteil von:

Überfachliche Qualifikationen

Leistungspunkte

Sprache Deutsch

Version 1

Wahlbereich

Wahlpflichtblock; Es müssen mindestens 4 LP belegt werden.

Kennung	Teilleistung	LP	Verantwortung
T-PHYS-104675	Platzhalter Überfachliche Qualifikation 2 LP - benotet	2	
T-PHYS-104676	Platzhalter Überfachliche Qualifikation 2 LP - benotet	2	
T-PHYS-104677	Platzhalter Überfachliche Qualifikation 2 LP - unbenotet	2	
T-PHYS-104678	Platzhalter Überfachliche Qualifikation 2 LP - unbenotet	2	
T-PHYS-105700	Platzhalter Überfachliche Qualifikation 3 LP - benotet	3	
T-PHYS-105701	Platzhalter Überfachliche Qualifikation 3 LP - benotet	3	
T-PHYS-105702	Platzhalter Überfachliche Qualifikation 3 LP - unbenotet	3	
T-PHYS-105703	Platzhalter Überfachliche Qualifikation 3 LP - unbenotet	3	
T-PHYS-105704	Platzhalter Überfachliche Qualifikation 4 LP - benotet	4	
T-PHYS-105705	Platzhalter Überfachliche Qualifikation 4 LP - unbenotet	4	

Voraussetzungen

keine

Teil II

Teilleistungen

Teilleistung: Advanced Fluid Mechanics [T-BGU-106612]

Verantwortung: Olivier Eiff

Bestandteil von: [M-BGU-101876] Fluidmechanik und Turbulenz

LeistungspunkteTurnusVersion6Jedes Sommersemester1

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkung

keine

Teilleistung: Analysetechniken für große Datenbestände [T-INFO-101305]

Verantwortung: Klemens Böhm

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

LeistungspunkteSpracheTurnusVersion5DeutschJedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	24114	Analysetechniken für große Datenbestände	Vorlesung (V)	3	Klemens Böhm

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen

keine

Empfehlungen

Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme

Teilleistung: Analysis of Turbulent Flows [T-BGU-103561]

Verantwortung: Markus Uhlmann

Bestandteil von: [M-BGU-101876] Fluidmechanik und Turbulenz

LeistungspunkteTurnusVersion6Jedes Semester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016 WS 16/17	6221806 6221911	Fluidmechanik turbulenter Strömungen Modelling of Turbulent Flows - RANS and LES	Vorlesung (V) Vorlesung (V)	2 2	Markus Uhlmann Markus Uhlmann

Erfolgskontrolle(n)

mündliche Prüfung, ca. 45 min.

Voraussetzungen

keine

Empfehlungen

Vorkenntnisse in der Programmierung mit Matlab

Anmerkung

keine

Teilleistung: Angewandte Meteorologie [T-PHYS-101562]

Verantwortung: Michael Kunz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

Leistungspunkte Version 10

Voraussetzungen

Die Anmeldung zur Prüfung ist erst möglich, wenn Studienleistung "Methoden der Datenanalyse" und weitere Studienleistungen in ausreichender Höhe erbracht wurden. Für letzteres gibt es zwei verschiedene Wege:

- 1 LV mit 2V1Ü und 1 LV mit 2V
- 3 LVs mit 2V

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-PHYS-101561] Methoden der Datenanalyse muss erfolgreich abgeschlossen worden sein.
- 2. Es müssen 1 von 2 Bestandteile erfüllt werden:
 - (a) Es müssen die folgenden Bestandteile erfüllt werden:
 - i. Es müssen die folgenden Bestandteile erfüllt werden:
 - Die Teilleistung [T-PHYS-101558] Turbulente Ausbreitung muss erfolgreich abgeschlossen worden
 - ii. Es müssen 1 von 3 Bestandteile erfüllt werden:
 - A. Die Teilleistung [T-PHYS-101556] Fortgeschrittene Numerische Wettervorhersage muss erfolgreich abgeschlossen worden sein.
 - B. Die Teilleistung [T-PHYS-101557] Meteorologische Naturgefahren muss erfolgreich abgeschlossen worden sein.
 - C. Die Teilleistung [T-PHYS-101560] Energiemeteorologie muss erfolgreich abgeschlossen worden sein.
 - (b) Es müssen die folgenden Bestandteile erfüllt werden:
 - i. Die Teilleistung [T-PHYS-101556] Fortgeschrittene Numerische Wettervorhersage muss erfolgreich abgeschlossen worden sein.
 - ii. Die Teilleistung [T-PHYS-101557] Meteorologische Naturgefahren muss erfolgreich abgeschlossen worden
 - iii. Die Teilleistung [T-PHYS-101560] Energiemeteorologie muss erfolgreich abgeschlossen worden sein.

Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Atmosphärische Aerosole [T-PHYS-101549]

Verantwortung: Ottmar Möhler

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100952] Atmosphärische Prozesse

LeistungspunkteSpracheTurnusVersion0DeutschUnregelmäßig1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052031	Atmosphärische Aerosole	Vorlesung (V)	2	Thomas Leisner, Ottmar Möhler
WS 16/17	4052032	Übungen zu Atmosphärische Aerosole	Übung (Ü)	1	Thomas Leisner, Ottmar Möhler, N. N.

Erfolgskontrolle(n)

Vergabe von 4 LP erfolgt nach >50% der Punkte in den Übungen.

Voraussetzungen

keine

Ersetzt

Fortgeschrittene Chemie und Aerosole

Т

Teilleistung: Atmosphärische Chemie [T-PHYS-101548]

Verantwortung: Roland Ruhnke

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100952] Atmosphärische Prozesse

 $\begin{array}{ccc} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ & 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Erfolgskontrolle(n)

keine

Ersetzt

Strahlung

Т

Teilleistung: Atmosphärische Prozesse [T-PHYS-101547]

Verantwortung: Corinna Hoose

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100952] Atmosphärische Prozesse

LeistungspunkteTurnusVersion12Jedes Wintersemester1

Erfolgskontrolle(n)

Siehe Modul

Voraussetzungen

Anmeldung ist erst möglich, wenn die Studienleistungen "Wolkenphysik" und "Atmophärische Aerosole" erbracht wurden. Außerdem müssen zwei Studienleistungen aus dem Wahlblock "Strahlung", "Atmosphärische Chemie" und "Energetik" erbracht werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-PHYS-101543] Wolkenphysik muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung [T-PHYS-101549] Atmosphärische Aerosole muss erfolgreich abgeschlossen worden sein.
- 3. Es müssen 2 von 3 Bestandteilen erfüllt werden:
 - (a) Die Teilleistung [T-PHYS-101548] Atmosphärische Chemie muss erfolgreich abgeschlossen worden sein.
 - (b) Die Teilleistung [T-PHYS-101546] Energetik muss erfolgreich abgeschlossen worden sein.
 - (c) Die Teilleistung [T-PHYS-101545] Strahlung muss erfolgreich abgeschlossen worden sein.

Teilleistung: Bodenkundliche Geländeübung [T-BGU-101508]

Verantwortung: Wolfgang Wilcke

Bestandteil von: [M-BGU-103398] Geoökologie

Erfolgskontrolle(n)

Teilnahme

Empfehlungen

Keine

Anmerkung

Keine

Teilleistung: Data Analysis in Geoscience Remote Sensing Projects, Vorleistung [T-BGU-106633]

Verantwortung: Jan Cermak

Bestandteil von: [M-BGU-103422] Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher

Fernerkundung

LeistungspunkteTurnusVersion2Jedes Sommersemester1

Voraussetzungen

Teilleistung: Datenbanksysteme [T-INFO-101497]

Verantwortung: Klemens Böhm

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

> Leistungspunkte **Sprache** Turnus Version 4 Deutsch Jedes Sommersemester 1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016	24516	Datenbanksysteme	Vorlesung (V)	2	Klemens Böhm, Jutta Mülle, Martin Schäler

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1

Voraussetzungen

Keine.

Empfehlungen

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Die Mittlere Atmosphäre im Klimasystem [T-PHYS-101534]

Verantwortung: Michael Höpfner, Miriam Sinnhuber

[M-PHYS-102290] Voraussetzungen Abschlussarbeiten Bestandteil von:

[M-PHYS-100951] Komponenten des Klimasystems

Leistungspunkte **Sprache** 0 Deutsch Unregelmäßig

Version 1

Veranstaltungen

Turnus

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052061	Die mittlere Atmosphäre im Klimasystem	Vorlesung (V)	2	Michael Höpfner, Miriam Sinnhuber

Erfolgskontrolle(n)

keine

Voraussetzungen

Teilleistung: Einführung in die Vulkanologie, Prüfung [T-PHYS-103644]

Verantwortung: Ellen Gottschämmer

Bestandteil von: [M-PHYS-103336] Geophysikalische Untersuchung von Naturgefahren

[M-PHYS-102531] Ingenieurgeophysik und Vulkanologie

LeistungspunkteSpracheVersion1Deutsch1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016	4060252	Übungen zu Einführung in die Vulkanologie	Übung (Ü)	1	Ellen Gottschämmer
SS 2016	4060251	Einführung in die Vulkanologie	Vorlesung (V)	2	Ellen Gottschämmer

Voraussetzungen

Erfolgreiche Teilnahme an "Einführung in die Vulkanologie, Studienleistung"

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

■ Die Teilleistung [T-PHYS-103553] *Einführung in die Vulkanologie, Studienleistung* muss erfolgreich abgeschlossen worden sein.

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Einführung in die Vulkanologie, Studienleistung [T-PHYS-103553]

Verantwortung: Ellen Gottschämmer

Bestandteil von: [M-PHYS-103336] Geophysikalische Untersuchung von Naturgefahren

[M-PHYS-102531] Ingenieurgeophysik und Vulkanologie

LeistungspunkteSpracheVersion3Deutsch1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016	4060252	Übungen zu Einführung in die Vulkanologie	Übung (Ü)	1 2	Ellen Gottschämmer
SS 2016	4060251	Einführung in die Vulkanologie	Vorlesung (V)		Ellen Gottschämmer

Voraussetzungen

Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen [T-BGU-101681]

Verantwortung: Norbert Rösch, Sven Wursthorn

Bestandteil von: [M-BGU-102760] GIS und Geodateninfrastrukturen

[M-BGU-102758] GIS und Fernerkundung [M-BGU-102757] Computer Vision und GIS

LeistungspunkteTurnusVersion3Jedes Wintersemester1

Voraussetzungen

bestandene Vorleistung in Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (online-Test: T-BGU-103541)

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

• Die Teilleistung [T-BGU-103541] Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung muss erfolgreich abgeschlossen worden sein.

Meteorologie Master 43

Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung [T-BGU-103541]

Verantwortung: Norbert Rösch, Sven Wursthorn

Bestandteil von: [M-BGU-102760] GIS und Geodateninfrastrukturen

[M-BGU-102758] GIS und Fernerkundung [M-BGU-102757] Computer Vision und GIS

Leistungspunkte

Turnus

Version

3 Jedes Wintersemester

1

Voraussetzungen

Teilleistung: Einführung in Klassifizierungsverfahren der Fernerkundung [T-BGU-105725]

Verantwortung: Uwe Weidner

Bestandteil von: [M-BGU-102759] Computer Vision und Fernerkundung

[M-BGU-102758] GIS und Fernerkundung

LeistungspunkteTurnusVersion4Jedes Sommersemester1

Voraussetzungen

Teilleistung: Energetik [T-PHYS-101546]

Verantwortung: Andreas Fink

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100952] Atmosphärische Prozesse

LeistungspunkteTurnusVersion0Jedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052121	Wechselwirkung Ozean-Atmosphäre	Vorlesung (V)	2	Andreas Fink

Erfolgskontrolle(n)

keine

Voraussetzungen

T Tei

Teilleistung: Energiemeteorologie [T-PHYS-101560]

Verantwortung: Stefan Emeis

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

LeistungspunkteTurnusVersion0Unregelmäßig1

Voraussetzungen

Teilleistung: Exkursion [T-PHYS-101554]

Verantwortung: Peter Knippertz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100953] Experimentelle Meteorologie

Leistungspunkte

0

Version

Erfolgskontrolle(n)

Vergabe von 2LP erfolgt nach für gut befundenem Vortrag.

Voraussetzungen

Teilleistung: Experimentelle Meteorologie [T-PHYS-101555]

Verantwortung: Christoph Kottmeier

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100953] Experimentelle Meteorologie

Leistungspunkte

14

Version

Voraussetzungen

Anmeldung zur Prüfung ist erst möglich, wenn die Studienleistungen "Fernerkundung Atmosphärischer Zustandsgrößen", "Radarmeteorologie", "Fortgeschrittenenpraktikum" und "Exkursion" erbracht wurden.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-PHYS-101550] Fernerkundung Atmosphärischer Zustandsgrößen muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung [T-PHYS-101551] Radarmeteorologie muss erfolgreich abgeschlossen worden sein.
- 3. Die Teilleistung [T-PHYS-101553] Fortgeschrittenenpraktikum muss erfolgreich abgeschlossen worden sein.
- 4. Die Teilleistung [T-PHYS-101554] Exkursion muss erfolgreich abgeschlossen worden sein.

Teilleistung: Fernerkundung Atmosphärischer Zustandsgrößen [T-PHYS-101550]

Verantwortung: Johannes Orphal, Björn-Martin Sinnhuber

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100953] Experimentelle Meteorologie

LeistungspunkteTurnusVersion0Jedes Sommersemester1

Erfolgskontrolle(n)

Vergabe von 3 LP erfolgt bei >50% der Punkte aus den Übungen.

Voraussetzungen

Teilleistung: Fortgeschrittene Numerische Wettervorhersage [T-PHYS-101556]

Verantwortung: Peter Knippertz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

LeistungspunkteTurnusVersion0Jedes Sommersemester1

Voraussetzungen

Teilleistung: Fortgeschrittenenpraktikum [T-PHYS-101553]

Verantwortung: Christoph Kottmeier

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100953] Experimentelle Meteorologie

Leistungspunkte0

Version

Erfolgskontrolle(n)

Vergabe von 5 LP erfolgt nach fristgerechter Abgabe und Gutbefund der Praktikumsauswertung.

Voraussetzungen

Teilleistung: Gebäude- und Umweltaerodynamik [T-BGU-103563]

Verantwortung: Bodo Ruck

Bestandteil von: [M-BGU-101876] Fluidmechanik und Turbulenz

LeistungspunkteTurnusVersion3Jedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17 WS 16/17		Gebäude- und Umweltaerodynamik Übungen zu Gebäude- und Umweltaerody- namik	Vorlesung (V) Übung (Ü)	1 1	Bodo Ruck Bodo Ruck

Erfolgskontrolle(n)

Mündliche Prüfung mit 30 Minuten

Voraussetzungen

keine

Empfehlungen

Keine

Anmerkung

Keine

Teilleistung: Geodateninfrastrukturen und Web-Dienste [T-BGU-101756]

Verantwortung: Stefan Hinz

Bestandteil von: [M-BGU-102760] GIS und Geodateninfrastrukturen

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

■ Die Teilleistung [T-BGU-101757] Geodateninfrastrukturen und Web-Dienste, Vorleistung muss erfolgreich abgeschlossen worden sein.

Teilleistung: Geodateninfrastrukturen und Web-Dienste, Vorleistung [T-BGU-101757]

Verantwortung: Stefan Hinz

Bestandteil von: [M-BGU-102760] GIS und Geodateninfrastrukturen

LeistungspunkteTurnusVersion3Jedes Sommersemester1

Erfolgskontrolle(n)

Unbenotete Projektbearbeitung mit schriftlicher Ausarbeitung

Voraussetzungen

keine

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Geological Hazards and Risk [T-PHYS-103525]

Verantwortung: Ellen Gottschämmer

Bestandteil von: [M-PHYS-102529] Geophysikalische Naturgefahren und Risikoforschung

Leistungspunkte 6

Version 1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4060122	Übungen zu Geological Hazards and Risk	Übung (Ü)	1	James Daniell, Ellen Gottschämmer, Friedemann Wenzel
WS 16/17	4060121	Geological Hazards and Risk	Vorlesung (V)	2	James Daniell, Ellen Gottschämmer, Friedemann Wenzel

Voraussetzungen

Teilleistung: Geomorphologie und Bodenkunde [T-BGU-101507]

Verantwortung: Wolfgang Wilcke

Bestandteil von: [M-BGU-103398] Geoökologie

LeistungspunkteSpracheTurnusVersion7DeutschJedes Sommersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016 WS 16/17 WS 16/17		Böden Europas (F6-1) (GP3-3) Geomorphologie und Bodenkunde Geomorphologie (F2-1)	Vorlesung (V) Vorlesung (V) Übung (Ü)	2 2 2	Wolfgang Wilcke Stefan Norra, Wolf- gang Wilcke Sophia Leimer, Andre Velescu

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 90 Minuten

Empfehlungen

Keine

Anmerkung

Keine

Teilleistung: Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher Fernerkundung [T-BGU-106822]

Verantwortung: Jan Cermak, Stefan Hinz

Bestandteil von: [M-BGU-103422] Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher

Fernerkundung

Leistungspunkte	Turnus	Version
5	Jedes Sommersemester	1

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-BGU-106821] Grundlagen der Schätztheorie, Vorleistung muss erfolgreich abgeschlossen worden
- 2. Die Teilleistung [T-BGU-106633] Data Analysis in Geoscience Remote Sensing Projects, Vorleistung muss erfolgreich abgeschlossen worden sein.

58

Teilleistung: Grundlagen der Schätztheorie, Vorleistung [T-BGU-106821]

Verantwortung: Stefan Hinz

Bestandteil von: [M-BGU-103422] Grundlagen der Schätztheorie und ihre Anwendung in geowissenschaftlicher

Fernerkundung

Voraussetzungen

Teilleistung: Hauptseminar IPCC Sachstandsbericht [T-PHYS-101540]

Verantwortung: Andreas Fink, Peter Knippertz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

Leistungspunkte Turnus
0 Unregelmäßig

Version

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052194	Hauptseminar IPCC Sachstandsbericht	Hauptseminar (HS)	2	Andreas Fink, Mi- chael Höpfner

Erfolgskontrolle(n)

Teilleistung: Image Processing and Computer Vision [T-BGU-101732]

Verantwortung: Uwe Weidner

Bestandteil von: [M-BGU-102757] Computer Vision und GIS

LeistungspunkteTurnusVersion4Jedes Wintersemester1

Voraussetzungen

T-BGU-106333 und T-BGU-106334 dürfen nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-BGU-106333] *Remote Sensing in a Changing Climate, Vorleistung* darf nicht begonnen worden sein.
- 2. Die Teilleistung [T-BGU-106334] Remote Sensing in a Changing Climate, Prüfung darf nicht begonnen worden sein.

Teilleistung: Ingenieurgeophysik [T-PHYS-104738]

Verantwortung: Friedemann Wenzel

Bestandteil von: [M-PHYS-102531] Ingenieurgeophysik und Vulkanologie

Leistungspunkte

4

Version 1

Voraussetzungen

Teilleistung: Komponenten des Klimasystems [T-PHYS-101541]

Verantwortung: Andreas Fink

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

Leistungspunkte	Turnus	Version
12	Jedes Wintersemester	1

Erfolgskontrolle(n)

Die Vergabe von 12 LP erfolgt nach bestandener mündlicher Prüfung (siehe Modulbeschreibung).

Voraussetzungen

Im Modul "Komponenten des Klimasystems" werden LVs mit Übungen (2V1Ü) und ohne Übungen (2V) angeboten. Die Anmeldung zu dieser Teilleistung ist erst möglich, wenn Studienleistungen in ausreichender Höhe erbracht wurden. Dafür gibt es verschiedene Wege:

- 3LV mit 2V1Ü
- 2LV mit 2V1Ü und 2LV mit 2V
- 1LV mit 2V1Ü und 4LV mit 2V

Modellierte Voraussetzungen

Es müssen 1 von 3 Bestandteile erfüllt werden:

- 1. Es müssen die folgenden Bestandteile erfüllt werden:
 - (a) Die Teilleistung [T-PHYS-101535] Tropische Meteorologie muss erfolgreich abgeschlossen worden sein.
 - (b) Die Teilleistung [T-PHYS-101539] *Modellierung und Analyse des Klimasystems* muss erfolgreich abgeschlossen worden sein.
 - (c) Die Teilleistung [T-PHYS-101515] Statistik in der Meteorologie muss erfolgreich abgeschlossen worden sein.
- 2. Es müssen die folgenden Bestandteile erfüllt werden:
 - (a) Es müssen 2 von 3 Bestandteilen erfüllt werden:
 - i. Die Teilleistung [T-PHYS-101535] *Tropische Meteorologie* muss erfolgreich abgeschlossen worden sein.
 - ii. Die Teilleistung [T-PHYS-101539] *Modellierung und Analyse des Klimasystems* muss erfolgreich abgeschlossen worden sein.
 - iii. Die Teilleistung [T-PHYS-101515] *Statistik in der Meteorologie* muss erfolgreich abgeschlossen worden sein.
 - (b) Es müssen 2 von 4 Bestandteilen erfüllt werden:
 - i. Die Teilleistung [T-PHYS-101540] *Hauptseminar IPCC Sachstandsbericht* muss erfolgreich abgeschlossen worden sein.
 - ii. Die Teilleistung [T-PHYS-101534] *Die Mittlere Atmosphäre im Klimasystem* muss erfolgreich abgeschlossen worden sein.
 - iii. Die Teilleistung [T-PHYS-101536] Polarmeteorologie muss erfolgreich abgeschlossen worden sein.
 - iv. Die Teilleistung [T-PHYS-101537] Wechselwirkung Ozean-Atmosphäre muss erfolgreich abgeschlossen worden sein.
- 3. Es müssen die folgenden Bestandteile erfüllt werden:
 - (a) Es müssen 1 von 3 Bestandteile erfüllt werden:
 - i. Die Teilleistung [T-PHYS-101515] *Statistik in der Meteorologie* muss erfolgreich abgeschlossen worden sein.
 - ii. Die Teilleistung [T-PHYS-101539] *Modellierung und Analyse des Klimasystems* muss erfolgreich abgeschlossen worden sein.
 - iii. Die Teilleistung [T-PHYS-101535] Tropische Meteorologie muss erfolgreich abgeschlossen worden sein.
 - (b) Es müssen die folgenden Bestandteile erfüllt werden:
 - i. Die Teilleistung [T-PHYS-101540] *Hauptseminar IPCC Sachstandsbericht* muss erfolgreich abgeschlossen worden sein.
 - ii. Die Teilleistung [T-PHYS-101534] *Die Mittlere Atmosphäre im Klimasystem* muss erfolgreich abgeschlossen worden sein.
 - iii. Die Teilleistung [T-PHYS-101536] Polarmeteorologie muss erfolgreich abgeschlossen worden sein.
 - iv. Die Teilleistung [T-PHYS-101537] Wechselwirkung Ozean-Atmosphäre muss erfolgreich abgeschlossen worden sein.

Meteorologie Master 64

Teilleistung: Laserfernerkundung der Atmosphäre [T-PHYS-101552]

Verantwortung: Thomas Leisner

Bestandteil von: [M-PHYS-100953] Experimentelle Meteorologie

 $\begin{array}{c|c} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Voraussetzungen

Teilleistung: Masterarbeit [T-PHYS-101564]

Verantwortung:

Bestandteil von: [M-PHYS-100956] Masterarbeit

Leistungspunkte Version 30 1

Voraussetzungen

siehe Modul

Teilleistung: Meteorologische Naturgefahren [T-PHYS-101557]

Verantwortung: Michael Kunz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

Leistungspunkte	Turnus	Version
0	Jedes Sommersemester	1

Teilleistung: Methoden der Datenanalyse [T-PHYS-101561]

Verantwortung: Miriam Sinnhuber

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

Leistungspunkte 0

Version

Voraussetzungen

Teilleistung: Mobile Computing und Internet der Dinge [T-INFO-102061]

Verantwortung: Michael Beigl

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

LeistungspunkteSpracheTurnusVersion5DeutschJedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	2400051	Mobile Computing und Internet der Dinge	Vorlesung / (VÜ)	Übung 2+1	Michael Beigl

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO, in der auch Übungsresultate bewertet werden.

Voraussetzungen

Keine

Teilleistung: Modellierung und Analyse des Klimasystems [T-PHYS-101539]

Verantwortung: Gerd Schädler

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

 $\begin{array}{c|c} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052092	Übungen zu Modellierung und Analyse des Klimasystems	Übung (Ü)	1	NN, Gerd Schädler
WS 16/17	4052091	Modellierung und Analyse des Klimasystems	S Vorlesung (V)	2	Gerd Schädler

Erfolgskontrolle(n)

keine

Voraussetzungen

т

Teilleistung: Moderne Theoretische Physik für Lehramt [T-PHYS-103204]

Verantwortung: Stefan Gieseke

Bestandteil von: [M-PHYS-101664] Moderne Theoretische Physik für Lehramt

Leistungspunkte	Sprache	Turnus	Min. Sem.	Max. Sem.	Version
8	Deutsch	Jedes Wintersemester	4	6	1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4012131	Moderne Theoretische Physik für Lehramts- kandidaten	Vorlesung (V)	4	Stefan Gieseke
WS 16/17	4012132	Übungen zu Moderne Theoretische Physik für Lehramtskandidaten	Übung (Ü)	2	Stefan Gieseke, Hendrik Mantler

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

■ Die Teilleistung [T-PHYS-103203] *Moderne Theoretische Physik für Lehramt - Vorleistung* muss erfolgreich abgeschlossen worden sein.

Teilleistung: Moderne Theoretische Physik für Lehramt - Vorleistung [T-PHYS-103203]

Verantwortung: Stefan Gieseke

Bestandteil von: [M-PHYS-101664] Moderne Theoretische Physik für Lehramt

LeistungspunkteSpracheVersion0Deutsch1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4012131	Moderne Theoretische Physik für Lehramts- kandidaten	Vorlesung (V)	4	Stefan Gieseke
WS 16/17	4012132	Übungen zu Moderne Theoretische Physik für Lehramtskandidaten	Übung (Ü)	2	Stefan Gieseke, Hendrik Mantler

Voraussetzungen

Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1 [T-PHYS-105134]

Verantwortung: Frans Klinkhamer, Jörg Schmalian

Bestandteil von: [M-PHYS-101707] Moderne Theoretische Physik I, Quantenmechanik I

LeistungspunkteSpracheTurnusVersion4DeutschJedes Sommersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016	4010142	Übungen zu Moderne Theoretische Physik I	Übung (Ü)	2	Viacheslav Eme- Iyanov, Frans Klink- hamer
SS 2016	4010141	Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)	Vorlesung (V)	4	Frans Klinkhamer

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

■ Die Teilleistung [T-PHYS-102317] Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 muss erfolgreich abgeschlossen worden sein.

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 [T-PHYS-102317]

Verantwortung: Jörg Schmalian

Bestandteil von: [M-PHYS-101707] Moderne Theoretische Physik I, Quantenmechanik I

Leistungspunkte Version 4 1

Voraussetzungen

Teilleistung: Parallelrechner und Parallelprogrammierung [T-INFO-101345]

Verantwortung: Achim Streit

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

LeistungspunkteSpracheTurnusVersion4DeutschJedes Sommersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
SS 2016	24617	Parallelrechner und Parallelprogrammierung	Vorlesung (V)	2	Hartmut Häfner, Achim Streit

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse zu Grundlagen aus der Lehrveranstaltung Rechnerstrukturen sind hilfreich.

Teilleistung: Polarmeteorologie [T-PHYS-101536]

Verantwortung: Christoph Kottmeier

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

 $\begin{array}{c|ccc} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ & 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Erfolgskontrolle(n)

Teilleistung: Radarmeteorologie [T-PHYS-101551]

Verantwortung: Jan Handwerker

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

LeistungspunkteTurnusVersion0Unregelmäßig1

Voraussetzungen

Teilleistung: Remote Sensing in a Changing Climate, Prüfung [T-BGU-106334]

Verantwortung: Jan Cermak

Bestandteil von: [M-BGU-102759] Computer Vision und Fernerkundung

LeistungspunkteTurnusVersion3Jedes Wintersemester1

Voraussetzungen

T-BGU-106333 (Remote Sensing in a Changing Climate, Vorleistung) bestanden T-BGU-101732 (Image Processing and Computer Vision) darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- 1. Die Teilleistung [T-BGU-106333] *Remote Sensing in a Changing Climate, Vorleistung* muss erfolgreich abgeschlossen worden sein.
- 2. Die Teilleistung [T-BGU-101732] Image Processing and Computer Vision darf nicht begonnen worden sein.

Teilleistung: Remote Sensing in a Changing Climate, Vorleistung [T-BGU-106333]

Verantwortung: Jan Cermak

Bestandteil von: [M-BGU-102759] Computer Vision und Fernerkundung

Voraussetzungen

T-BGU-101732 darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

■ Die Teilleistung [T-BGU-101732] *Image Processing and Computer Vision* darf nicht begonnen worden sein.

Teilleistung: Seminar zu aktuellen Fragen der Risikoforschung, ohne erw. Aufgaben [T-PHYS-106695]

Verantwortung: Ellen Gottschämmer

Bestandteil von: [M-PHYS-103336] Geophysikalische Untersuchung von Naturgefahren

LeistungspunkteTurnusVersion4Jedes Semester1

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

• Die Teilleistung [T-PHYS-105113] Seminar zur geophysikalischen Risikoforschung darf nicht begonnen worden sein.

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Seminar zur geophysikalischen Risikoforschung [T-PHYS-105113]

Verantwortung: Ellen Gottschämmer

Bestandteil von: [M-PHYS-102529] Geophysikalische Naturgefahren und Risikoforschung

Leistungspunkte Version 2 1

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

• Die Teilleistung [T-PHYS-106695] Seminar zu aktuellen Fragen der Risikoforschung, ohne erw. Aufgaben darf nicht begonnen worden sein.

Teilleistung: Statistik in der Meteorologie [T-PHYS-101515]

Verantwortung: Peter Knippertz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

LeistungspunkteSpracheVersion0Deutsch1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17 WS 16/17		Statistik in der Meteorologie Übungen zu Statistik in der Meteorologie	Vorlesung (V) Übung (Ü)	2 1	Peter Knippertz Peter Knippertz, Peter Vogel

Erfolgskontrolle(n)

Die Vergabe von 4 LP erfolgt bei >50% der Punkte in den Übungen.

Voraussetzungen

Teilleistung: Strahlung [T-PHYS-101545]

Verantwortung: Michael Höpfner

Bestandteil von: [M-PHYS-100952] Atmosphärische Prozesse

Voraussetzungen

Teilleistung: Strömungslehre [T-MACH-105023]

Verantwortung: Bettina Frohnapfel

Bestandteil von: [M-MACH-102503] Strömungslehre

LeistungspunkteTurnusVersion8Jedes Semester1

Voraussetzungen

Teilleistung: Strömungsmesstechnik [T-BGU-103562]

Verantwortung: Bodo Ruck

Bestandteil von: [M-BGU-101876] Fluidmechanik und Turbulenz

LeistungspunkteTurnusVersion3Jedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	6221907	Strömungsmesstechnik	Vorlesung / Ü (VÜ)	lbung 2	Bodo Ruck

Erfolgskontrolle(n)

mündliche Prüfung, ca. 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkung

Teilleistung: Tropische Meteorologie [T-PHYS-101535]

Verantwortung: Peter Knippertz

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100951] Komponenten des Klimasystems

 $\begin{array}{ccc} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ & 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	4052112	Übungen zu Tropische Meteorologie	Übung (Ü)	1	Titike Bahaga, Enrico Di Muzio, Sarah Jones, Peter Knippertz
WS 16/17	4052111	Tropische Meteorologie	Vorlesung (V)	2	Sarah Jones, Peter Knippertz

Teilleistung: Turbulente Ausbreitung [T-PHYS-101558]

Verantwortung: Peter Knippertz, Bernhard Vogel, Heike Vogel

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100954] Angewandte Meteorologie

LeistungspunkteTurnusVersion0Unregelmäßig1

Teilleistung: Verteiltes Rechnen [T-INFO-101298]

Verantwortung: Achim Streit

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

LeistungspunkteSpracheTurnusVersion4DeutschJedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	2400050	Verteiltes Rechnen	Vorlesung (V)	2	Christopher Jung, Achim Streit

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Empfehlungen

Das Modul: Einführung in Rechnernetze wird vorausgestzt.

Teilleistung: Visualisierung [T-INFO-101275]

Verantwortung: Carsten Dachsbacher

Bestandteil von: [M-INFO-102980] Informatik für Studierende der Meteorologie

LeistungspunkteSpracheTurnusVersion5DeutschJedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17	24183	Visualisierung	Vorlesung (V)	2	Carsten Dachsba- cher, Boris Neubert

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung über die Vorlesung im Umfang von i.d.R. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

Empfehlungen

Vorkenntnisse aus der Vorlesung "Computergraphik" (24081) werden vorausgesetzt.

Meteorologie Master Modulhandbuch Stand 31.05.2017 für Sommersemester 2017

Teilleistung: Wechselwirkung Ozean-Atmosphäre [T-PHYS-101537]

Verantwortung: Andreas Fink

Bestandteil von: [M-PHYS-100951] Komponenten des Klimasystems

 $\begin{array}{ccc} \textbf{Leistungspunkte} & \textbf{Turnus} & \textbf{Version} \\ & 0 & \textbf{Unregelm\"{a}B\'{i}g} & 1 \end{array}$

Voraussetzungen

Teilleistung: Wissenschaftliche Konzeptentwicklung [T-PHYS-101563]

Verantwortung:

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100955] Spezialisierungsphase

Leistungspunkte Version 30 1

Voraussetzungen

siehe Modul

Modellierte Voraussetzungen

Es müssen 3 von 4 Bestandteilen erfüllt werden:

- 1. Das Modul [M-PHYS-100951] Komponenten des Klimasystems muss erfolgreich abgeschlossen worden sein.
- 2. Das Modul [M-PHYS-100952] Atmosphärische Prozesse muss erfolgreich abgeschlossen worden sein.
- 3. Das Modul [M-PHYS-100953] Experimentelle Meteorologie muss erfolgreich abgeschlossen worden sein.
- 4. Das Modul [M-PHYS-100954] Angewandte Meteorologie muss erfolgreich abgeschlossen worden sein.

Teilleistung: Wolkenphysik [T-PHYS-101543]

Verantwortung: Corinna Hoose

Bestandteil von: [M-PHYS-102290] Voraussetzungen Abschlussarbeiten

[M-PHYS-100952] Atmosphärische Prozesse

LeistungspunkteTurnusVersion0Jedes Wintersemester1

Veranstaltungen

Semester	LV-Nr.	Veranstaltungen	Art	SWS	Dozenten
WS 16/17 WS 16/17		Wolkenphysik Übungen zu Wolkenphysik	Vorlesung (V) Übung (Ü)	2 2	Corinna Hoose Constanze Fischer- keller, Corinna Hoo- se, N. N.

Erfolgskontrolle(n)

Die Vergabe von 4 LP erfolgt bei >50% der Punkte aus den Übungen.

Voraussetzungen