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Abstract

Hail prediction still is a major challenge in atmospheric sciences, mainly because of the complex

interaction of various processes across a wide range of scales, limited knowledge in hail forma-

tion processes, and scarcely available direct observations. Machine learning, as a state-of-the-art

approach, is promisingly seen to potentially overcome obstracles in hail prediction, thereby advanc-

ing our understanding of environmental preconditions of hailstorms. This thesis investigates the

potential of using machine learning models for predicting the area affected by potential hailstorms

in Germany on a daily basis. The overarching goal is to improve the accuracy and reliability of

hailstorm prediction. ERA5 reanalysis data for convective parameters and radar-derived data for

hail-affected area are implemented to explore the relationship between the preconvective hailstorm

environment and hailstorm occurrence.

Initial analysis reveals that hail frequencies increase from the northern to the southern regions

due to more favourable convective environmental conditions. This investigation also identifies

potential convective parameters for hailstorm prediction such as Convective Available Potential

Energy (CAPE), Bulk Wind Shear (BULKSH), CAPE × BULKSH (CAPESHEAR). Among

18 pre-selected convective parameters, seven indicators are identified as the best predictors. In

particular, CAPESHEAR emerges as the best single predictive indicator.

The convolutional neural network (CNN) models used in this thesis are trained using 15 years of

ERA5 reanalysis and radar-derived potential hailstorm streaks with promising results. Notably,

these models outperform the other 2 reference models, climatology model and persistence model

respectively, demonstrating its lower Mean Absolute Errors (MAEs) to those traditional non-

machine learning models. And CNN models manage to realize the catagorical forecast of low vs.

high hail-affected area, with considerably moderate Heidke skill score of 0.66.

The results highlight the added value of the machine learning model compared to conventional

methods such as statistical regression. It is designed in this thesis to predict aggregated hailstorm

clusters across Germany rather than isolated storms, based on the additional class activation analysis.

Depending on this, the predictive performance of machine learning still remains relatively robust

and needs further optimization.

The machine learning model showcases remarkable potential in predicting the area affected by

radar-identified hailstorms. Even though uncertainties still persist, it is shown that machine learning

combined with other predictive model formats, such as ensemble forecasting, may significantly

enhance the accuracy of hailstorm prediction in the future research.
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1 Introduction

Numerous studies over recent decades have shown that the probability of severe convective storms

(SCSs) on the regional scale will increase with climate change in the future (Trapp et al., 2007a;

Cao, 2008; Kunz et al., 2009; Seneviratne et al., 2012; Diffenbaugh et al., 2013). These SCSs are

associated with various local extreme weather phenomena such as hail, wind gusts, tornadoes, and

heavy precipitation. Hail as one of the most destructive natural hazards in Central Europe and other

regions poses a substantial threat to the society by severely damaging buildings, infrastructures

and agriculture, leading to a large amount of economic damage. The insured losses caused mainly

by hail during two recent events in Germany (Kunz et al., 2018; Wilhelm et al., 2021) by a series

of SCSs sum up to e2.7 billion and e0.75 billion, respectively (MunichRE, 2020). In view of

the severe impact resulting from hail-related SCSs, an in-depth understanding of their favourable

environmental conditions is needed, aiming to improve the accuracy of hail prediction and to help

society to take preventive actions in a timely manner.

Organized convective storms such as multicells, supercells, or mesoscale convective storms (MCSs)

are frequently accompanied by hail (Auer, 1972; Markowski and Richardson, 2011). Different types

of observation data are essential for the most direct and accurate investigation on the characteristics

of hail-produced thunderstorms. Meanwhile, direct measurements of hail has always been facing

difficulties mainly because of the limited regions usually affected by hail in combination with a

lack of instruments to detect hail and their sizes. Although geostationary satellite measurements

can indirectly observe hail-producing clouds, they are still not able to precisely monitor hailstorm

occurrence under the cloud when capturing, for example, the overshooting top of thunderstorms

(Punge and Kunz, 2016). In Germany, weather radar networks with high spatial and temporal

resolutions are able to monitor both the intensity and the vertical structure or other signatures of

thunderstorm. However, the data suffer from several errors and inaccuracies, such as by beam

shielding and attenuation effects of the signal (Puskeiler et al., 2016; Wapler, 2017; Fluck et al.,

2021).

In addition, numerical model simulations, proximity soundings, or reanalysis data are widely used

to estimate the occurrence or frequency of SCSs, respectively (Lee, 2002; Brooks, 2013; Púčik

et al., 2015; Kunz et al., 2020). Trapp et al. (2007b), for example, offered a proof-of-concept

for dynamically downscaling global climate simulations to a horizontal grid spacing of 4 km

or less, at which parameterizations of deep convection are not necessary any more. Based on

that, Trapp et al. (2011) estimated the climatological occurrence distribution of SCSs through a

model proxy that combines the core of convective updraft with the presence of hail, damaging

surface winds and tornadoes. The authors found proxy occurrences coupled with information on
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1 Introduction

the large-scale atmospheric conditions could guide the trend in observed occurrences of SCSs.

However, knowledge in cloud microphysics and physical mechanisms on the convection initiation,

intensification and the life cycle of SCSs has not been completely understood yet. This results from

uncertainties regarding the initial conditions, the inability of numerical models to represent the

underlying processes and scale-interactions reliably, and the high computational costs required to

run ensembles of sophisticated, highly-resolved models over long time periods (Gensini and Mote,

2015).

Several studies have investigated the relationships between hail-related SCS and the large-scale

atmospheric environment (Trapp et al., 2007a; Aran et al., 2011; Piper and Kunz, 2017; Kunz

et al., 2020). A major obstacle in reliable analyses is still the difficulty of accurately predicting

hail occurrence. According to Prein and Holland (2018), machine learning algorithms recently

have demonstrated promising results in hail prediction with higher skill compared to the process-

driven numerical forecast models (Gagne et al., 2015; Czernecki et al., 2019; Gagne II et al.,

2019). Leveraging the robust data processing and information extraction capabilities of machine

learning, based on its outcome-driven model technique, provides a shift in how to approach the

complexities of SCS prediction, which is different to classical numerical weather prediction models.

This approach can bypass the complicated physical mechanisms and evolution of hailstorms. It

is also expected to look at the relationship between convective storms and their atmospheric

environment from a fresh and innovative perspective, and may promise to fundamentally reshape

our understanding and prediction of hail events when combined with other forecast methods.

To scrutinize relationships between environmental properties and observed hail damage, several

earlier studies utilized large-scale environmental conditions from reanalysis, convective parameters

derived from radiosonde data (Brooks, 2009; Mohr and Kunz, 2013), remote sensing data (Fluck

et al., 2021), or a combination thereof (Punge and Kunz, 2016). The objectives of this studies

were to examine the preconvective environment and to predict hail occurrence. These studies also

aimed to improve the skill of hail predictions. In this study, we provide a regional assessment of

hail hazard by quantifying the potentially impacted area by hailstorms using radar-identified hail

tracks. Further, the study facilitates the prediction of hail occurrences leveraging environmental

conditions, taking the advantage of the power of convolutional neural networks within a machine

learning framework. The thesis focus on the following research questions:

1. Is there a characteristic geographic distribution of the prevailing convective environ-
ment for hailstorms in Germany?

2. Is machine learning useful for hail prediction and for better understanding relation-
ships between ambient conditions and hailstorms? What is the predictive skill of the
machine learning models?

3. Which predictors yield the best model performance, and how do they modify the
accuracy of the model prediction?

4. When and why are machine learning models unable to predict hail occurrence?
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The structure of this Master’s thesis unfolds as follows: Chapter 2 presents theoretical concepts

considered in this thesis, covering aspects of convection mechanisms, types of convective systems,

radar measurements, and machine learning principles. In Chapter 3, we introduce the data used

in this thesis and elucidate the methods used in considerable detail. Subsequently, the findings of

the study are systematically displayed across Chapters 4–6. Chapter 4 kicks off this series with

a statistical analysis of the hailstorm environment. Building upon this groundwork, Chapter 5

critically analyses the performance evaluation of the prediction model. The insights gained from

this evaluation then inform the discussions in Chapter 6, where we explore the meteorological

interpretations from the machine learning model, with a particular focus on identifying errors within

the model predictions. The final chapter, Chapter 7, summarises the findings of this thesis and

suggests future directions for this research.
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2 Theoretical concepts

Hail-producing thunderstorms have a large vertical extent through the troposphere. They are formed

by thermodynamic processes of lifted air driving the vertical dynamics of the atmosphere. This

chapter introduces the theoretical concepts of thunderstorm and hail formation and the methods on

which this thesis builds upon. The fundamentals of convection are included in Section 2.1; Section

2.2 gives a brief overview of different types of convective storms; Section 2.3 introduces the basis

of radar measurement and a short introduction of machine learning algorithm is written in Section

2.4. The previous research on severe thunderstorms summarized in the end of this chapter (Section

2.5).

2.1 Convection

Convection in the atmosphere is the transfer of heat through the movement of air due to temperature

differences. The vertical stratification leads to the development of the convection that influences

weather patterns. Atmospheric instability, low-level moisture, and a trigger mechanism for the

lifting of air parcels to the level of free convection are three necessary, but not sufficient requirements

crucial for the development of deep moist convection (Markowski and Richardson, 2011). The

uneven distribution of vertical temperature gradient in the atmosphere contributes to the instability

of the atmosphere. Combining with the process of free convection further triggers deep convection.

2.1.1 Thermodynamic fundamentals

The three existent phases of water in the atmosphere are: solid (ice, hail, snow), liquid (raindrops,

cloud droplets), vapor (water vapor). Phase changes of water vapor in the atmosphere have a great

impact on the thermodynamic processes in clouds and on the atmospheric radiation in the energy

budget of Earth.

The equation of state for an ideal gas (dry) is

pd = ρdRdT, (2.1)

where pd is the pressure of dry air, ρd is the density of the dry air, T is the temperature, and

Rd = 287.04 Jkg−1 K−1 is the gas constant for dry air.
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2 Theoretical concepts

The most essential law for governing the gaseous water vapor and energy transfer is the first law of

thermodynamics

du = δq+δa , (2.2)

where du is the change of internal energy as a result from the variations of specific heat δq taken

into or released out of a specific volume and the work variations δa from its environment. If air is

compressible, δa can be expressed as:

δa =−pdα (2.3)

where α is the specific volume (= ρ−1). δq and δa are path-independent differentials and are

written with a d instead of a δ .

The variation of internal energy is determined by the temperature change, namely Joule’s second

law (du = cvdT ). With the enthalpy h = u+ pα , Eq.(2.2) becomes

dq = dh− pdα (2.4)

where dh = cpdT , with cp as the specifc hear capacity fro the constant pressure and an adiabatic

system. The specific heating rate can also contain the heating and cooling as a result of radiation,

molecular diffusion and phase change of water, can also decribes the change in internal energy, so

Eq.(2.4) can re-written as:

dq = cpdT −αdp. (2.5)

If a dry air parcel is lifted and experiences a lower pressure, it expands and, consequently, cools

dry-adiabatically according to the first law of thermodynamics. This quantity can be derived from

Eq.(2.5), and represents cooling (warming) of an air parcel resulting from expansion (compression)

as it ascends (descends) dry-adiabatically. When dq= 0, there is no exchange of heat between the air

parcel and the environment, referred to as adiabatic. Based on the assumption of hydrostatic balance,

which is assumed for the derivation of the temperature gradient in the barotropic atmosphere

(d p =−ρgdz), together with the equation of state for an ideal gas, yields

Γd ≡−dT
dz

=− g
cp

; (2.6)

which is for mid-latitudes Γd ≈ 9.8 K km−1. This gradient is valid for dry and also moist (unsatu-

rated) air with the specific heat capacity

cpm = xvcpv + xvcpd (2.7)

with indices m for the moist air, v for water vapor, d for dry air and xv for the mass fraction of water

vapor, if cpv ≈ cpd when the condensation does not occur.
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2.1 Convection

2.1.2 Thermal instability of the atmosphere

Convective stability or instability of the atmosphere can be related to vertical temperature differ-

ences, which can give an idea of the potential for thunderstorm development.

1) Potential temperature:

Integrating Eq. (2.4) from p to a reference pressure p0 and assuming δq = 0, the potential

temperature equation following a Possion’s equation is obtained:

θ = T (
p0

p
)

R
cp , (2.8)

where θ is known as the potential temperature. This quantity is conserved for adiabatic lifting or

descending of an unsaturated air parcel. It can be used to describe the stratification of an unsaturated

air mass.

2) Equivalent potential temperature:

During the expanding and cooling processes of lifting unsaturated air parcels, they rise adiabatically.

Compared to the dry adiabatic process, latent heat is released when air becomes saturated, reducing

the cooling effect. When δq = 0 is assumed and condensation is taken into account as an internal

heating process, then Eq. (2.4) can be written as:

dh = cpdT +Lvdrs −αd p = 0, (2.9)

where Lv ≈ 2.501×106 J kg−1 (temperature at 0°C) is the evaporation rate, and rs the saturation

mixing ratio. Therefore, lifting increases enthalpy with latent heat of condensation for saturated

ascend in comparison to a dry case.

Then the equivalent potential temperature is obtained by integrating Eq.(2.9):

θe ≈ θ · e(
rsLv
cpT )

. (2.10)

The equivalent potential temperature θe is the temperature an air parcel becomes when all of the

water vapor has completely condensed during lifting, and when the parcel descends to the original

position afterwards. The equation is simplified by the specific formula from Bolton (1980), which

gives an empirical relation between θe, temperature and mixing ratio. In a moist-adiabatic process,

θe is constant with height.

The motion of an air parcel in different environments:

The vertical displacement of an air parcel driven by buoyancy is determined by the thermal

instability. That is, an air parcel in a statically unstable environment is accelerated from its

equilibrium position by the buoyancy force in the vertical direction in cases where its temperature

or density, respectively, differ from the evironment (Markowski and Richardson, 2011).
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2 Theoretical concepts

The vertical momentum equation of air parcel presumed to assess the static instability is:

dw
dt

= B, (2.11)

where w is the vertical velocity and B is the buoyancy force. Here perturbations from pressure,

Coriolis force and friction are neglected. It is also assumed that the air parcel does not disturb or

influence the atmosphere environment during lifting. These assumption made above (Eq. 2.11) are

referred to as parcel theory (Markowski and Richardson, 2011).

The buoyancy force B can be expressed by the environmental temperature T and the temperature T

of an individual air parcel:

B ≈ g
T −T

T
(2.12)

neglecting pressure perturbations, water vapor, or condensate on the density of an air parcel. A

vertically displaced parcel rises from an initial level z0, where the parcel is in the equilibrium with

its environment (i.e., T (z0) = T0 = T). Combining Equations (2.11) and (2.12) leads to

d2∆z
dt2 = g

T −T
T

, (2.13)

with ∆z as the distance of the vertically displaced air parcel started from the initial level, thus

z = z0 +∆z at some time steps late. The temperature of the parcel at its new position derived from a

first-order Taylor series gives

T = T0 −Γpar∆z, (2.14)

where Γpar = −∂T/∂ z is the parcel’s lapse rate. If the parcel is saturated (unsaturated) during

ascent, then its lapse rate becomes the dry adiabatic lapse rate, (Γpar = Γd) otherwise the moist

adiabatic lapse rate (Γpar = Γm). The environmental temperature at the new position is (from a

first-order Taylor series approximation)

T = T0 − γ∆z, (2.15)

where γ = ∂T/∂ z is the environmental lapse rate. Therefore, based on Eq. (2.13) and Eq. (2.14),

Eq. (2.12) can be written as

d2∆z
dt2 =−g

Γpar − γ

T0 − γ∆z
∆z. (2.16)

For the reasonable estimation, due to T0 ≫ γ∆z when vertical movement is quite small regarding

the continuity of atmosphere, then Eq. 2.15 can be modified as

d2∆z
dt2 +

g
T0

(Γpar − γ)∆z = 0. (2.17)

8



2.1 Convection

Equation (2.17) is a second-order partial differential equation, which has a standard solution:

∆z(t) =C1ei[ g
T0
(Γpar−γ)]1/2t

+C2e−i[ g
T0
(Γpar−γ)]1/2t

. (2.18)

Here C1 and C2 are constants which are related to the magnitude and direction of the orginal

displacement of air parcel.

For γ < Γpar, the real part of Eq. (2.18), i[ g
T0
(Γpar − γ)]1/2, is imaginary and can be written as

∆z(t) =C
{

cos [
g
T0

(Γpar − γ)]1/2t
}
, (2.19)

which means that the parcel oscillates around its initial position z0, which is regarded as a statically

stable environmental lapse rate.

For γ > Γpar, the part i[ g
T0
(Γpar − γ)]1/2 is real and turned to be like below, as t becomes large, then

Eq. (2.18) turns out to be:

∆z(t) =C1e[
g

T0
(γ−Γpar)]

1/2t
, (2.20)

indicating the instability of exponentially increased displacement of the air parcel, therefore Eq.

(2.20) can not know where the air parcel stops rising and is only valid for relatively small ∆z,

as the infinite displacement of the parcel is not assumed with the linear profile of environmental

temperature.

According to Haurwitz (1941), four situations of static instability are distinguished here.

1) An environmental lapse rate, for which γ > Γd , is so-called absolutely unstable:

the lifted air parcel is warmer and less dense compared to its environment, therefore will be

accelerated away from its initial position depending on positive buoyancy.

2) When γ < Γm the environmental lapse rate, namely absolutely stable:

the lifted air parcel is colder (higher density) than the environment, thus returns to its initial position.

3) When Γm < γ < Γd , the environmental lapse rate is conditionally unstable:

a stable environment with respect to an unsaturated lifted air parcel, which become unstable in

case of saturated lifting. The air parcel can keep rising further after becoming saturated under such

conditions. This kind of instability therefore is most important for thunderstorm development.

4) When γ =Γd or γ =Γm, the environmental lapse rate is dry-neutral or moist-neutral, respectively:

the temperature of a lifted parcel remains similar to that of the (dry or moist) environment. Conse-

quently, the parcel stays at the lifted position without vertical acceleration by the buoyancy force in

such a situation.

9



2 Theoretical concepts

2.1.3 Condensation levels and parcel theory

The Convective Available Potential Energy (CAPE) represents the hypothetical energy an air parcel

would possess if it was pseudo-adiabatically lifted from the Level of Free Convection (LFC) to the

Equilibrium Level (EL). Essentially, CAPE represents the energy readily accessible for convection

and signifies the potential of an air parcel to gain buoyancy (Moncrieff and Miller, 1976). CAPE

can be calculated as:

CAPE = g
∫ EL

LFC

Tv −Tv

Tv
dz (2.21)

with Tv for the virtual temperature of the air parcel and Tv for the virtual temperature of environment.

Meanwhile, when an air parcel is accelerated in an conditionally unstable environment as described

in the previous section 2.1.2, it must overcome a certain amount of Convective Inhibition (CIN) and

rise to a certain height where condensation begins. CIN signifies the energy quantity that would

hinder an air parcel from ascending from the surface up to the Level of Free Convection (LFC). In

other words, CIN quantifies the energy needed to counteract the negative buoyant force exerted by

the surrounding environment on the air parcel.

A so-called Skew T - log p diagram (Figure 2.1) can give an illustrative overview of the identification

of the different important levels listed below.

Lifting condensation level:

When an air parcel is lifted by external forces, for example, by orographic lifting over a mountainous

barrier or by secondary circulation at a front, the height at which condensation commences is

referred to as the Lifting Condensation Level (LCL). In case of forced ascent, the LCL represents

the cloud base height. Using the Skew T - log p chart, the LCL is identifiable as the point where

the dry adiabatic curve (which originates from the temperature close to the surface) intersects with

the line representing a constant saturation mixing ratio (determined by the surface dew point or

mixed over a certain lower layer).

Level of free convection:

In a conditionally unstable atmospheric stratification, an air parcel may be externally forced to

ascend to a specific altitude. At this altitude, known as the Level of Free Convection (LFC), the

parcel becomes warmer than its surrounding environment and subsequently undergoes positive

acceleration by buoyancy force. This LFC can be pinpointed in a Skew T - log p diagram as the

intersection point between the moist adiabatic curve originating from the Lifting Condensation

Level (LCL) and the vertical temperature profile.

Equilibrium level:

The Equilibrium Level (EL) is virtually located at the second intersection where the air parcel’s

temperature matches temperature of its environment, causing its upward acceleration to cease.

10



2.1 Convection

Figure 2.1: Skew T - log p diagram obtained from the Del Rio, Texas, sounding at 1800 UTC 14 May 2008.
The profiles for temperature and dewpoint are represented by a solid green line, with dewpoints
ceasing to be plotted above 500 hPa due to their unreliability at such heights. The virtual
temperature profile is marked by a dashed green line. A solid blue line illustrates the temperature
of an air parcel being lifted from the surface to its LCL, LFC, and EL. The virtual temperature
of the air parcel is represented by a dashed blue line. Light orange and light blue shaded areas
correspond to positive and negative areas of the solid blue parcel trajectory, respectively. These
areas are proportional to CAPET and CINT . The positive area of the dashed blue parcel trajectory,
proportional to CAPET v (while the negative area is virtually nonexistent), extends over both
the light orange and the light green shaded areas. (originated from Figure 2.9 in textbook of
Markowski and Richardson (2011)).

The EL can be identified on a chart where the moist adiabatic curve and LFC, intersects with the

temperature curve. In cases of deep moist convection, this level often aligns with the tropopause

height. Due to the inertia of air parcels, the actual EL might extend a few hundred meters

above the EL, particularly when clouds penetrate into the tropopause, a distinctive trait of intense

cumulonimbus clouds.

In parcel theory, an air parcel encounters 3 thermodynamic stages, while it is lifted and rises through

the troposphere:

1) Dry adiabatic process: the moist unsaturated air parcel from the ground surface rises along the

dry adiabatic lapse rate until it becomes saturated and reaches the LCL, where condensation begins

(Lamb and Verlinde, 2011). During this process, the potential temperature and mixing ratio within

the air parcel keep constant.
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2) Moist adiabatic process: after reaching the LCL, the lifted air parcel ascends along the moist

adiabatic lapse rate. Latent heat is released through condensation of water vapor during further

ascent, so that its temperature decreases at a slower rate.

3) Buoyancy-driven process: in case of positive buoyancy, and after reaching the LCL, the air

parcel rises further along the moist adiabatic lapse rate. It is vertically accelerated by the positive

buoyancy force driven by release of CAPE away from its initial position.

Thermodynamic velocity:

To quantify the vertical velocity of an air parcle during ascent, both sides of Eq. (2.11) are multiplied

by w = dz/dt, leading to:

w
dw
dt

= B
dz
dt

(2.22)

d
dt

(
w2

2

)
= B

dz
dt

(2.23)

Next, Eq.(2.22) is integrated over the time the air parcel requires to be lifted from the LFC to the

EL; w = 0 at the LFC is also assumed as no buoyancy force is acting here. As a consequence of the

ongoing buoyancy and, thus the vertical acceleration of the air parcel during ascent, the maximum

vertical velocity wmax is assumed at the EL. The integration of Eq. (2.22) yields

∫ LFC

EL
dw2 = 2

∫ EL

LFC
Bdz (2.24)

w2
EL −w2

LFC = 2
∫ EL

LFC
Bdz (2.25)

w2
max = 2

∫ EL

LFC
Bdz (2.26)

wmax =
√

2CAPE (2.27)

The value of wmax calculated by Eq. (2.26) can be taken as the upper limit of vertical velocity when

the buoyancy force is only considered; sometimes wmax is also called the thermodynamic speed

limit.

However, this approximation is typically overestimating the observed velocities in the real atmo-

sphere owing to the absence of vertical perturbation pressures in the parcel theory, which plays an

important role in the energy transfer. The parcel theory also neglects the exchange of momentum,

moisture, and temperature between the parcel and its environment, referred to as entrainment

(Markowski and Richardson, 2011). The mixing of environmental air into the air parcel during its

rising leads to dilution and, thus, a slow down by decreasing the upward momentum and buoyancy.
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2.2 Types of convective organizations

2.2 Types of convective organizations

Thunderstorms are divided into four main types depending on their physical characteristics, for-

mation, intensity and also its posed threat. Single-cells, and supercells are isolated convective

systems, which are mostly commonly observed, whereas mesoscale convective systems (MCSs)

as any ensemble of thunderstorms, which can produce hail, such as squall lines and mesoscale

convetive complexes (MCCs), usually develop from isolated convection. They likely generate

significant lightning flash rates and heavy precipitation. Hail events usually occur in multi- and

supercells or mesoscale convective systems due to their large horizontal and vertical extension.

2.2.1 Single-cell convection

Single-cell convection is defined as a convective cell with only one single updraft without further

subsequent initiation of any other cells. In a low-shear environment, a single cell thunderstorm

can create a gust front, leading to shallow and weak updrafts. However, these conditions are not

sufficient to trigger new cells. Its diameter is normally between 2 and 10 km, with a relative short

longevity of about 30 minutes to 1 hour.

In an environment favorable for single-cell convection, a low vertical wind shear usually indicates

weak synoptic-scale forcing. It is given that normally the diurnal cycle of the boundary layer plays

an important role in the development of maintaining the single-cell convection rather than the

large-scale ascent or the advection of temperature and moisture. As a result, single-cell convection

is more likely to occur shortly after the maximum daytime heating is reached, and tends to dissipate

quickly in the early evening. There is low possibility that single-cell convection produces significant

hail or severe wind gusts (Markowski and Richardson, 2011).

The life cycle of this thunderstorm type constitutes of three stages (shown in Figure 2.2): towering

cumulus, mature and dissipating stage. During the early stage of cumulus, only an updraft is

present. Within an unstable environment, the air parcel is turning from unsaturated to saturated

ascent when condensation begins (See Section 2.1.3). Cloud droplets start to grow and further

increase their size. The mature stage is reached when the precipitation starts to fall from the cloud,

based on the Bergeron-Findeisen process which explained the growth of ice crystal in the mixed

phase cloud after reaching the freezing level. Precipitation particles, which also reduce the updraft,

grow to sufficiently large size and fall down to the ground. At this time, a cool downdraft is

generated in front of the precipitation area along the direction of movement with joint action of

falling precipitation and subsequent evaporation. It eventually comes to the dissipating stage until

the convection is entirely controlled by the downdraft. The updraft is cut off from the environment

due to the cold outflow, which is more or less symmetrical owing to the low vertical wind shear.
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Figure 2.2: Three stages of a single cell: (a) towering cumulus stage, (b) mature stage, and (c) dissipating
stage; (From Markowski and Richardson (2011), based on Byers and Braham (1949) and Doswell
(1985)).

2.2.2 Multicellular convection

What makes multicell convective storms different from the single-cell is a relatively large and

sufficiently strong gust front at one preferred flank that lifts air parcels to the LFC. Therefore

new cells can be initiated and developed repeatedly to maintain the development of the multicell

system. Multicells can persist between 30 minutes up to several hours, among which the most

severe multicells have the ability to produce damaging straight-line winds and hail with sizes of up

to several centimeters.

The preverred environment of multicellular convection is a medium degree of 0-6 km wind shear

difference vector in the range between 10 - 20 ms−1 , which is higher than in typical single-cell

convection environments (Markowski and Richardson, 2011). The gust-front lifting can lead to

the propagation of the multicell system. A characteristic evolution of multicellular convection is

shown in the Figure 2.3. Cell 1 is transiting into the dissipating stage, while cell 2 is currently in its

mature stage. At the same time, cell 3 is just in the stage where the precipitation starts to take place,

thus towards to the mature stage. The triggered new cell, cell 4, is forming usually at the right flank

of the cluster and strongly influenced the by presence of horizontal vorticity induced by vertical

wind shear and vorticity due to the cold pool (Marwitz, 1972; Weisman and Klemp, 1982). Every

initiated new cell experiences the life cycle of a single-cell. They follow this life cycle one-by-one,

e.g., Cell 3 in its early cumulus stage on the top panel into dissipating stage in the bottom panel.

2.2.3 Supercellular convection

Supercells are less commonly observed worldwide but burden on a large fraction for the respon-

sibility of the damage from natural disasters. They can generate the hail with the large diameter

due to the relative long-lived lifetime from 4 to 8 hours roughly. The widely accepted standard to
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Figure 2.3: Temporal evolution of multi-cells. Colored areas are radar reflectivity, in which more centered
location of area means stronger intensity; the initiated convection cells are numbered from 1-5;
from the top to bottom are scenarios changing with time. More description for the process from
Markowski and Richardson (2011), which is adapted from Doswell (1985).

identify a supercell is the presence of a long-lasting, deep mesocyclone within a strong updraft, with

a mesocyclone width in the range of 3-8 km (Markowski and Richardson, 2011). Mesocyclones

receive vertical vorticity from horizontal vorticity caused by large vertical wind shear, as a result of

the vorticity tilting.

Supercells contain two regions of downdraft (See Figure 2.4). One is located to the rear of the storm,

related to the hook echo region, which can often be identified in radar reflectivity data, indicating

the strong updraft region within the supercell. This downdraft is denoted to as rear-flank downdraft

or RFD. One possible explanation is that RFDs form when mid- and upper-level dry winds impinge

upon the backside of an updraft, resulting in evaporative cooling and negative buoyancy to further

enhance the downdraft. Another explanation is that dynamical vertical pressure gradient forces

on the upshear flank of supercells could also trigger RFDs in the downward direction. However,
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Figure 2.4: Schematic 3-D structure of the supercell. Black arrows is the streamlines. Blue-colored area on
the left (right) side is where RFD (FFD) located. Red-colored area represents the updraft region.
Green arrows represent 9 km flow while yellow arrows represent 4 km flow. (From Markowski
and Richardson (2011), adapted from Lemon and Doswell III (1979) ).

how strong the contributions from thermodynamic and dynamic forcings are in reality is still

debated. Another downdraft associated with the sublimation of ice and evaporation of rain is named

forward-flank downdraft or FFD and also heavily influenced by the low-level humidity and the

entrainment of environmental air. FFD is usually more important for the supercell dynamics.

2.2.4 Mesoscale convective systems

Mesocale convective systems (MCSs) define a group of thunderstorms that create a continuous

precipitation area with a spatial extent of at least 100 km on one axis (Markowski and Richardson,

2011). Mesoscale convective complexes (MCCs) as a sub-class of MCSs which are characterized

by the tepmerature and spatial extent of their anvils and the larger circular cold Cumulonimbus

(Maddox et al., 1986). Broad middle- and upper-tropospheric trough is a characteristic of synoptic

weather patterns that favor MCCs (Markowski and Richardson, 2011). Squall lines as another

sub-class of MCSs are a group of thunderstorms arranged in a line typically move swiftly, producing

the heavy precipitation. Their length can extend for hundreds of miles, although their width is

usually confined to about 10 to 20 miles (Markowski and Richardson, 2011).

Owing to their relatively large size and long duration, MCSs can produce a meso-α-scale (range

from 200 to 1000 km) circulation with a warm-core cyclonic eddy in form of a convergent inflow

below the level of convective heating, the so-called mesoscale convective vortex. Meanwhile, an

anticyclonic mesohigh is formed near the tropopause with the divergent outflow under the impact

of Coriolis acceleration. Figure 2.5 displays the configuration of different layers of MCCs as an

example.
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Figure 2.5: Vorticity distribution of MCCs from model simulation at 500 hPa (a) and 200 hPa (b), the shaded
denotes precipitation area. (From Markowski and Richardson (2011), modified from Chen and
Frank (1993) ).

2.3 Development of hail

The size increase of hailstones is influenced by the complex processes between the airflow inside

a deep convective cloud and precipitation particles. Hailstones primarily grow by accumulating

supercooled cloud droplets and raindrops. A strong updraft within a thunderstorm is crucial for

the development of hailstones, and deep convective storms have been observed to generate hail

with the updraft speeds of up to 40 m s−1 (Crook, 1996; Maddox et al., 1986). The updraft carries

the cloud droplets and small raindrops to the cold regions within the thunderstorms. Meanwhile,

these supercooled hydrometeors do not immediately freeze, but stay in the liquid phase until the

temperature of less − 20 °C, because of the limitation in the number of the ice nuclei particles. If

supercooled droplets collide with ice particles moving from the rear downdraft region to the updraft

region, the drops may freeze upon the surface of ice particles. This process causes the ice particles

to grow to a size of one to five millimeters, which are called graupel particles (Markowski and

Richardson, 2011). In this type of growth, growth is referred to as riming or collection growth and

increases dramatically as drop size increases (Pruppacher et al., 1998).

As the hailstone goes on with collection growth, its fall velocity continues to increase, and the rate

of growth also keeps increasing as long as the hailstone remains in a region where supercooled

liquid water content is large (Markowski and Richardson, 2011). Their fall velocity is dependent

on their diameter from the empirical derivation (Pruppacher et al., 1998) and defined as:

vt ≈ 9D0.8, (2.28)

where D is the diameter in cm and v in m s−1.

The formation of hail can be through 2 different types: in the process of dry growth, the hailstone’s

initial form, or embryo, does not reach or exceed the freezing/melting point, despite the latent

heat released by water droplets freezing on the surface of the graupel particles. As a result of this
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process, the hailstone develops an opaque structure due to the incorporation of air pockets within

its growing layer (Pruppacher et al., 1998).

The other type refers to the wet growth. If the surface temperature of the hailstones increases

above the melting point due to the latent heat releasing, the liquid water can flow into the air

pockets, leading to the structure of hailstones becomes transparent. Due to the continuous change

of different types of the formation, hailstones often have a layered structure within the convective

storms. Eventually, hailstones fall down after leaving the updraft at the front of thunderstorms, due

to their larger gravity compared to the drag force from the updraft (Markowski and Richardson,

2011).

2.4 Basics of radar measurements

Weather radars offer plenty of principal advantages compared to other atmospheric observation

methods, for example, the ability to monitor the vertical structure of thunderstorms, and relatively

high resolution in time and space. This section will first introduce the components of a meteorolog-

ical radar and then discuss how radar data is applied for the detection of hail events. The difficulties

and possible limitations causing the inaccuracy of hail detection are summarized in the last part of

this section.

2.4.1 Components of meteorological radar

The development and use of radars began before and during World War II (Marshall et al., 1955;

Brown, 1999). Radar stands for "Radio Detection And Ranging". A radar emits electromagnetic

waves to detect targets, such as aircraft, spacecraft, terrain or hydrometeors. The components of a

radar system are shown in Figure 2.6. They mainly consist of a transmitter, antenna, and receiver

(Skolnik, 1962).

The modulated short-pulsed radar signal is generated by the transmitter and radiated into the space

by the antenna until it detects the target. The received backscattering of targets, which is a small

portion of the emitted radar signal (Hughes, 1983), is caught by the antenna. This means that a

duplexer allows a single antenna transmitting and receiving the signal in time-parallel. The returned

echo is then collected and amplified by the receiver. The processed signal from backward scattering

is transmitted and calibrated specifically for target detection, which is then visualized on the display

monitor. This operation forms the core basis of radar functionality. A radar detect not only the

signal strength, but also the range and angle of a target. Moreover, the output of radar can also

provide information about the nature of a target.

How different the applied radar bands depend on the wavelength and the shape of the target. For

meteorological purposes, k-, X-, C-, S-, and L-band radars are basically can be used for the detection

of hydrometeors, even though the most common scanning radars operationally applied are C- and

S-band radars. The ranges of frequency and wavelength for different meteorological radar bands
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Figure 2.6: Block diagram of a meteorological radar. Modified from Fluck (2018) and Zrnić et al. (2014).

are summarized in Table 2.1. Bands with higher frequency such as K-, Ka-, Ku-, V- or W-band

radar are heavily attenuated by atmospheric gases, cloud particles, or precipitation, therefore are

usually used for other special detection of targets, e.g., for cloud observations.

Radar band Frequency(GHz) Wavelength(cm)

X 8 - 12.5 3.75 – 2.4

C 4 - 8 7.5 - 3.75

S 2 - 4 15 – 7.5

L 1 - 2 30 - 15

Table 2.1: Summary of different radar bands (Parker, 2010)

2.4.2 Radar detection of hail

In the short and medium distance of radar observations, the attenuation effect during the absorption

and backscattering significantly influence the characteristics of the signal received from various

targets. For meteorological observations, targets are usually hydrometeors both in liquid and solid

forms. Radar reflectivity η is the characteristic quantity of the target at standard wavelength, but it

is not able to represent the nature of the scattering medium (Sauvageot, 1992).

The radar reflectivity is defined as:

η =
∫ Dmax

Dmin

σ(D)N(D)dD (2.29)
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where N(D) is the particle size distribution, and σ(D) is the backscattering cross section with

diameter D of the targets.

For the quantification of the radar reflectivity, the so-called Rayleigh approximation is used when

the size parameter of the backscattering particles, α = πDλ , is much smaller than the wavelength

λ of the radar. This mainly depends on the wavelength (Sauvageot, 1992). The effective radar

reflectivity of a spherical particle is approximately calculated by an equivalent dipole with the same

diameter of the sphere. Then the cross section for the Rayleigh approximation can be simplified as:

σ =
π5

λ 4 |K|2D6 (2.30)

where K = |m2−1
m2+2 |

2 , and m represents the complex refractive index, which is related to the dielectric

permittivity and absorption coefficient of the scattering material. The actual value of |K|2 is also

influenced by the temperature and the wavelength of radar. Gunn and East (1954) presented

corresponding calculations: For liquid water, |K|2 is approximately 0.93, whereas for ice with

normal density (ρ = 0.92g cm−3), |K|2 ≈ 0.176, independent of the temperature (Sauvageot, 1992).

Eq. (2.30) is named as Rayleigh Law and is the basis for the application of microwaves to observe

clouds and precipitation. It is assumed that the backscattering of the particles is isotropic.

By inserting Eq.(2.30) into Eq.(2.29), we can derive the formula for the radar reflectivity under the

assumption of Rayleigh approximation:

η =
π5

λ 4 |K|2
∫ Dmax

Dmin

D6N(D)dD. (2.31)

The integral is the radar reflectivity factor Z:

Z =
∫ Dmax

Dmin

D6N(D)dD . (2.32)

The radar reflectivity factor Z is an average distribution of scattering targets in the pulse volume and

independent on the wavelength. This makes it easier to compare the outputs gained with different

radars (Sauvageot, 1992). Especially for hail detection, determining the true value of Z is facing

larger uncertainties, as the sixth power of the inhomogeneous diameter of hail is usually replaced

by an equivalent diameter of spherical liquid droplets for the measurement.

The different units between Z in m6 m−3 and size of precipitation in mm6 m−3 can be simply

transferred and the radar reflectivity is usually quantified in logarithmic units:

Z(dBZ) = 10 log[Z(mm6 m−3)] (2.33)

with the reference level Z = 1 mm6 m−3 = 0 dBZ.

As adumbrated above, the scattering also depends on the shape of the hydrometeors. Only small

liquid droplets in the atmosphere are spherical. The other forms of hydrometeors are either

nonspherical or near-spherical. For hail, as considered in this study, the dielectric factor also needs
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to be taken into account when the water layer grows with relatively positive surface temperature

and turns into transparent and dense ice progressively due to the release of latent heat. More

importantly, a more accurate scattering approximation of hail is supposed to use the cross section

of Mie scattering derived from the solutions of Maxwell’s equations (Chỳlek, 1976), owing to the

larger diameter of the scattering body compared to the wavelength. But Rayleigh approximation

is still used when detecting hail as a result of the missing information about hydrometeor sizes to

consider Mie scattering during the radar measurements (Jones, 1979).

Detecting hail by radar has always been facing difficulties in the past. Byers and Braham (1949)

and other scientists tried to detect hail for the first time to study the properties and structure of a

thunderstorm associated with the formation of hail. The complex relationships among the scattering

effects of particles, horizontal extent of hail tracks and surface conditions studied by (Changnon Jr,

1970) rose more confusion regarding this question. Recent studies have attempted to estimate hail

from radar by applying different approaches using both two- and three-dimensional (2D, 3D) radar

data (Kunz and Kugel, 2015; Fluck, 2018; Schmidberger, 2018), but eventually have not established

correlations between radar and hail characteristics.

The simplest criterion for assessing the presence of hail in a thunderstorm is quantifying the vertical

maximum value of the radar reflectivity factor Zmax. This is referred to as Mason’s criterion (Mason,

1971), when the radar reflectivity factor is

Z ≥ 55 dBZ . (2.34)

This criterion suggest that hail is occurring also at the surface. However, owing to the limitations of

radars as discussed below, the Mason criterion is only an estimate, and therefore a proxy of hail.

Also very large raindrops can also reach to this threshold. Still, it is a valuable approximation for

hail detection in plenty of studies (Kunz et al., 2020; Puskeiler et al., 2016; Holleman et al., 2000).

2.4.3 Inaccuracies in radar and limitations

Ground clutter

Radar echoes from ground clutter mixed with the echoes of meteorological targets can result in

inaccuracies in radar data. This is particularly an issue for the hydrometeorological measurement

(precipitation scan) at low elevations, where objects like chains of hills and also high buildings in

the city or wind turbines are detected (Billingsley, 1993). This problem can be fixed by a Doppler
filter with zero frequency (Sauvageot, 1992).

Attenuation

Attenuation describes the signal loss by absorption and scattering between radar and targets by

hydrometeors and gases of the air.
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Mainly oxygen and water vapor lead to larger attenuation effects (Van Vleck, 1947a,b), which can

be described as a function of frequency, and their attentuation remains below 10 GHz (Bean and

Dutton, 1966). For hydrometeors, attenuation from cloud and precipitation is discussed separately.

The attenuation of cloud particles with adequately small radioelectric dimensions reach the criterion

of Rayleigh approximation. The attenuation in clouds increases with increasing temperature and

when wavelength decreases (Gunn and East, 1954). The attenuation by rain, snow and hail is

determined differently due to different particle sizes. Especially attenuation by hail with large

particles, due to its dielectric properties, non-spherical shape and unstable surface condition, can

not be calculated unless all of the physical properties can be sucifficiently obtained, which is usually

not the case (Sauvageot, 1992).

Beam shielding and other effects

The radar signal for regions behind mountains can be shielded by the obstacles, leading to lower

or gap composites in the reflectivity of the targets. This shielding effect can even distort certain

captured targets in specific situations.

In radar systems, nonuniform beam filling with hydrometeors can cause a reduction in the core

reflectivity. This is the case especially for relatively large beamwidth and pulse lengths, along with

power distribution across the beam. This nonuniformity can adversely affect the measurement of

precipitation such as rain or hail, because only a small portion of the total pulse volume might be

impacted by the targets (Atlas, 2015). At the same time, wide beam scanning can decrease the

spatial resolution to identify convective cells at very long distance.

2.5 Machine learning algorithm

In contrast to traditional numerical weather prediction (NWP) modes, which are to solve the govern-

ing equations by numerical methods, machine learning (ML) models are not directly programmed

but trained Chollet (2021). The models are presented with a massive number of relevant examples

related to the prediction task, and they find the statistical relationships which allow the system

to automatically come up with rules to tackle the task. The development of artificial intelligence

(AI) and ML can also benefit meteorological studies as an advanced tool to reveal the physical

mechanism behind certain phenomena. ML has already been widely used in many directions such

as prediction, classification and identification, and shown its potential worth in current atmospheric

researches.

Neural networks were successfully applied, for example, to predict El Niño related to climate change

(Hsieh and Tang, 1998), and also for climate attribution (Pasini et al., 2017). Since the convolutional

neural networks was developed by Krizhevsky et al. (2012), they become soon implemented into

different studies, for example, to analyze the spatial feature of severe hailstorm (Gagne II et al.,

2019). An example from Scher and Messori (2018) using convolutional neural networks in order to

estimate future forecast uncertainty from past forecasts displayed the improvement skill with lower
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computational costs compared with ensemble forecasts. More information on the convolutional

neural network used in this master thesis will be detailed in Section 3.2.5.

2.5.1 Three branches of Machine learning

ML can be separated into the following three learning strategies (Chollet, 2021):

Supervised learning:

It is the most common ML approach when finding the rules/relationships between the input data and

the explicit target, such as optical character recognition, speech recognition, image classification,

and language translation. It is also mainly used in this master’s thesis.

Unsupervised learning:

This branch consists of grasping transformation from the input data without the help of the labelled

target. Usually, it is used for data visualisation before supervised learning to better understand the

correlation within the present dataset. For example, clustering is basically a collection of objects on

the basis of similarity and dissimilarity between them as unsupervised learning.

Reinforcement learning:

Reinforcement learning refers to an agent added which can choose actions that maximize rewards

based on information obtained from its environment so as that the learning can automatically

continue towards the expected direction. Some more examples of reinforcement learning in

image processing include, for example, Robots equipped with visual sensors from to learn their

surrounding environment.

2.5.2 Overfitting and underfitting

The key point for the ML is to find the best position between optimization and generalization.

Optimization refers to the procedure of modifying a model until reaching its best performance on

the training data. Generalization reflects how well the trained model can perform on the untouched

new data. Underfitting, indicating a bad optimization of the model, means that the model can not

present a good performance neither on training data nor on the validation data. Overfitting refers to

the fact that the model achieves better performance on the training data than on the validation data

(Chollet, 2021). It happens when some noise in the training data is grasped up, which are treated

incorrectly as signals by the model, meaning that generalization of the model can not meet our

expectation.

In practice, overfitting is more common when training a model, and there are four common ways to

prevent the overfitting: 1) Get more training data; 2) Reduce the capacity of the network; 3) Add

weight regularization (Section 3.2.4); 4) Add dropout (Section 3.2.5).
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As mentioned in section 1, owing to the limitation of direct ground observation data for hail, this

study uses proxy data from two different data sets. The data set for the potential hail tracks is

estimated from 3D radar data from DWD, using the specific storm-track algorithm TRACE3D

(Handwerker, 2002; Schmidberger, 2018). The second data set characterizing ambient conditions

of the thunderstorms is the ERA5 reanalysis data from the European Centre for Medium-Range

Weather Forecasts (ECMWF). Here, only the time period from April to September (summer-half

year), when most of the damaging hail events occurs with high frequency (Kunz and Puskeiler,

2010; Punge and Kunz, 2016), is considered for the period 2005-2019. More information on both

data sets and the applied algorithm and methods are shown in the following subsections in this

chapter.

3.1 Hail data and Reanalysis data

3.1.1 Radar data

The German radar composites for the period 2005 to 2019 used in this study were provided by

DWD, which operates a network of 17 C-band radar systems in Germany. The DWD has operated

a radar network since 1994, which initially included five radar stations. Over the years, the network

expanded to a total of 16 radar stations by 2000. The radar units installed since 1994 are C-band

Doppler radars known as "METEOR 360 AC" with a wavelength of 5.4 cm, according to Bartels

et al. (2005). To enhance the time resolution of the volume scan and to aid in the development

of new, more effective algorithms, a precipitation scan strategy with 150 km radius for 5-minute

volume scanning was successfully introduced in late 2012 with frequency of 600 Hz (Seltmann et al.,

2013). As can be seen in Figure 3.1, Germany is almost completely covered by the precipitation

scan with a radial range of 150 km (Helmert et al., 2014). This was done alongside the process

of changing the radar system. The radar data, with an (interpolated) range resolution of 250

meters, is utilized in various applications including those related to warning management and

hydrological detections (Helmert et al., 2014). To ensure accurate scanning of the atmosphere

without interference from nearby obstacles, the radar units are usually placed on hills or towers.

From 2011 to 2015, the radar units were gradually replaced with dual-pole Doppler radars. In

2013, the DWD added the Memmingen station to the radar network, bringing the total number of

operational polarimetric radar systems from 16 to 17.
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Figure 3.1: DWDs radar network on the basis of the precipitation scan with 150 km range after the introduc-
tion of polarimetric C-Band Doppler radar systems (From Helmert et al. (2014)). The names and
location of radar stations are listed in Table 3.1.
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Name of radar station Abbreviation WMO Nr. Coordinate

Boostedt BOO 10132 54°00′15.8′′N

10°02′48.7′′E

Dresden BRS 10488 51°07′28.7′′N

13°46′07.1′′E

Eisberg EIS 10780 49°32′26.4′′N

12°24′10.03′′E

Emden EMD 10204 53°20′19.4′′N

07°01′25.5′′E

Essen ESS 10410 51°24′20.2′′N

06°58′01.6′′E

Feldberg FBG 10908 47°52′25′′N

08°00′13′′E

Flechtdorf FLD 10440 51°18′40.31′′N

08°48′07.2′′E

Hannover HNR 10339 52°27′36.2′′N

09°41′40.2′′E

Neuhaus NEU 10557 50°30′00.4′′N

11°08′06.2′′E

Neuheilenbach NHB 10605 50°06′00.4′′N

06°32′53.9′′E

Offenthal OFT 10629 49°32′26.4′′N

12°24′10.03′′E

Prötzel PRO 10392 52°38′55.22′′N

13°51′29.57′′E

Memmingen MEM 10950 48°02′31.7′′N

10°13′09.2′′E

Rostock ROS 10169 54°10′32.4′′N

12°03′29.1′′E

ISEN ISN 10832 48°10′28.9′′N

12°06′06.3′′E

Tükheim TUR 10832 48°35′07′′N

09°46′58′′E

Ummendorf UMD 10356 52°09′36.3′′N

11°10′33.9′′E

Table 3.1: Information of the radar network of the DWD
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3.1.2 Storm-track algorithm TRACE3D

Many different algorithms for tracking SCSs have been developed in recent decades. Real-time

automated tracking algorithms can manage to identify convective storms by defining the storms

as a continuous region with high reflectivity in every scan of weather radar (e.g., Dixon and

Wiener, 1993). TRACE3D, originally developed at IMK-TRO by Handwerker (2002) for a single

C-band radar in spherical coordinates, includes two main steps: i) identification, and ii) tracking of

reflectivity cores (RCs).

Almost all convective cells, accompanied within the large regions of intense precipitation (ROIP),

are first identified and extracted by using the tracking algorithm (Handwerker, 2002). In figure 3.2

it is shown how the first step of identification works. The presence of an ROIP is determined by

the first threshold dBZmin with ≥ 35 dBZ of radar reflectivity. This threshold value guarantees that

most of the thunderstorms are discovered and easily considered as a whole since the algorithm is

not able to capture all individual features of every storm. Then the difference dBZdi f f (≃ 10 dBZ)

is subtracted from their multiple relative maximum in every ROIP. Contiguous regions above the

second threshold in each ROIP are adaptively determined (dBZmax ≥ dBZmin +dBZdi f f (= 45 dBZ)

) as individual RCs. Note that RCs are only represented by the reflectivity values, but not by the

storm volume.

Tracking is recorded only when RCs are identified sustainably both in the last previous scan and

latest new scan with the condition of less than 30 minutes time lag in between. The parent RC in

the earlier scan is moving towards a certain direction with its own velocity and location information

at a known time point. Accordingly, the children RCs might show up and be captured in the later

scan near the location of parent RC. Then the size and intensity of children RCs is compared with

the parent’s to characterize the possible evolution of the thunderstorm. Cell merging or cell splitting

are thus also considered. Once merging or splitting happens, the further parents or children will be

subsequently searched in the next scan.

Later, with the aim of investigating hailstorms for entire Germany, it was necessary to adapt the

algorithm to the data of the German weather radar network from DWD. Three points form the major

differences compared to the original use of cell tracking in a single radar in spherical coordinates

(Schmidberger, 2018):

(i) Cell tracking for radar composite data,

(ii) Use of Cartesian coordinates (x, y, z) instead of the spherical coordinates (r,θ ,ϕ),

(iii) Cell tracking with discrete reflectivity classes.

Figure 3.3 shows the flowchart of the TRACE3D algorithm for the identification and tracking of

RCs.
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3.1 Hail data and Reanalysis data

Figure 3.2: This figure depicts the method for defining reflectivity cores (RCs) in a one-dimensional radar
data set. Reflectivity cores are defined as regions in which the radar reflectivity exceeds a certain
threshold, known as dBZmin (35 dBZ). a) considering all beam volume elements above the
reflectivity threshold as part of an RC, b) selecting the upper 10 dB of reflectivity (dBZdi f f )
as the RC, which may include lower regions of adjacent RCs, and c) searching for contiguous
regions with reflectivity above the threshold and using a second threshold, 10 dBZ below the
maximum reflectivity in each region and implemented by TRACE3D, is recommended as it
effectively defines RCs while minimizing overlap between adjacent regions. These threholds
serve as a basis for identifying and characterizing reflectivity cores in radar, more details see
(Handwerker, 2002).
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Figure 3.3: Flowchart illustrates the program structure and the interaction between the most important
routines in TRACE3D (Figure from Schmidberger, 2018).

Detecting as many potential hail tracks as possible and extracting their pathway is the main goal.

As to disregard uninterested weak convective events, S2 configuration (Schmidberger, 2018) is

therefore set to serve the purpose.

S2: Detection with dBZmax = 52 dBZ, dBZdi f f = 10 dBZ; RCs of class 59. 5 dBZ are detected here;

adjacent reflectivities of class 50.5 dBZ are added to them.

According to Schmidberger (2018), configuration S2 results in a significant reduction in the number

of cells and few cell divisions or cell fusions, while the S2 detects pathways of hailstorms already

promisingly.

Prevailing errors in TRACE3D are the one-time crossing of the thresholds of nearby cells. The

following corrections are implemented, with the aim to improve the accuracy of identifying

hailstorm paths. Firstly, the incorrect linkages are removed depending on the minimum distance

and pathway direction change criteria. Secondly, start point or end point of a pathway with errors is

deleted. Last, faulty links leading to the trajectory offsets are excluded.

3.1.3 Hail-affected area

Based on the storm track algorithm in the Section 3.1.2, in total of 8184 estimated hail streaks

is determined from 2005 to 2019 (Schmidberger, 2018). For each hail streak, its corresponding

date time, estimated length and averaged width of streak, duration, direction of propagation, center

location of the streaks and propagation velocity is extracted and recorded from the radar reflectivity

of 3D radar in the Section 3.1.1.

Estimation of the hail-affected area is necessary and helpful to prevent hail damage and impacts

in advance. While no storm detection and quantification technique can flawlessly capture every

storm event, the implementation of the tracking algorithms (Section 3.1.2) and the function in this
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Figure 3.4: Demonstrative polygons of the area affected by a single hail streak, the left (right) is the area on
a flat (curved Earth) surface, and the red dot is the centre of the hailstorm at a certain time, θ

shows the direction of the hail track.

section generates a substantial data set of hailstorm occurrences for comprehensive assessment and

evaluation. In this study, the hail-affected area for each hail streak is first estimated as a function

of its length and width, derived from data of the TRACE3D storm track algorithm (see Section

3.1.2). The objective is to evaluate the potential area-averaged hail threat in terms of the spatial

coverage at the local scale for the first time. Because of the large uncertainty included in both radar

observations and the hail detection algorithm, it cannot be assured that each radar-identified track

produced hail on the ground. Therefore we use here the term "potential" hail track.

The assessment of the hail-affected area is divided into two steps. According to Figure 3.4, the area

affected by a single potential hail streak can be obtained by multiplying its length by its averaged

width on a flat surface. At the same time, it can be further considered on the spherical curve

of the Earth to implement the spatial hail estimation at the local scale. Although there remains

some uncertainty due to the idealised features of hail streaks and their characteristics, it offers the

only possibility to obtain a predictable reference value for the areas affected by hailstorms and to

quantify the total coverage of potential hail threat. In this step, we focus only on daily aggregated

affected areas for entire Germany during the hail-favorable season as target data for the ML method

described later.

3.1.4 ERA-5 Reanalysis

Reanalysis data is a valuable tool for estimating the state of the atmosphere by combining the latest

observations with a state-of-the-art NWP model. The process of Earth System Data Assimilation

enables the creation of consistent and comprehensive data sets to understand weather patterns and

climate change over time. Reanalyses can help to identify weather extremes, to assess forecast

quality, and to understand climate change impacts by providing spatially complete and consistent

data.

ERA-5 data sets is the latest replacement of ERA-Interim from ECMWF within the Copernicus

Climate Change Service (C3S) and covers the period from 1950 to the present (Hersbach et al.,
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2020; ECMWF, 2023). The assimilation system of the ERA-5 reanalysis utilizes the Integrated

Forecasting System (IFS) Cy41r2 based on 4-dimensional variational analysis. Its spatial resolution

extends to 31 km globally and 137 levels in the vertical up to 1 Pa. The data of the deterministic

model is hourly recorded, and of the Ensemble of Data Assimilations (EDA) 3-hourly. Compared

to ERA-Interim, ERA-5 contains uncertainty estimates from the 10-EDA, and more factors (e.g.,

sea-ice cover, volcanic eruption and greenhouse gas concentrations) are taken into count as model

input (ECMWF, 2022). More updated details about ERA-5 is documented in Hersbach et al.

(2020). In this study, we mainly focus on the horizontal environmental fields in Germany (Latitude:

44°N −56°N; Longtitude: 4°W −16°E) by analyzing grid point data with the horizontal resolution

of 0.25°× 0.25° (longtitude × latitude). Besides, many non-standard meteorological variables

described in the next subsection 3.1.5 have been calculated at IMK-TRO from the raw reanalysis

data.

Full name Abbreviation Unit

Zonal wind at 500 hPa U500 m s−1

Temperature at 850 hPa T 850 K

Temperature at 2 meter above the ground T 2m K

Equivalent potential temperature at 850 hPa T HETAE850 K

Relative humidity at 850 hPa RH850 %

Specific humidity at 850 hPaa Q850 kg kg−1

Wind speed 6km above ground VV 6km m s−1

Bulk wind shear BULKSH m s−1

Lapse rate between 700 hPa and 500 hPa LAPSE700500 K km−1

Convective available potential energy CAPE J kg−1

Surface lifted index SLI K

Isothermal level of 0 degrees C. DEG0L m

Cape×wind shear CAPESHEAR m2 s−2

Vertical totals index V T K

Total totals index T T K

Total column water TCW kg m−2

Significant hail parameter SHIP -

Supercell composite Parameter SCP -

Table 3.2: Summary of environmental atmospheric parameters for ML.

3.1.5 Candidates of convective parameters

Numerous convective parameters, which play different roles in the convective mechanism or

evolution of different types of convective storms, diversely reflect the storm environments. Some

of the potential candidates covering different aspects are listed in Table 3.2. These convective
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parameters when correlating with the potentially hail-affected area can also provide the reference

for the ML model, to assist in identifying more favourable environments of hailstorms.

As background information for the ML model, the different atmospheric temperatures, humidity

and general wind speed of the lower and middle troposphere are selected to set up and represent the

large-scale atmosphere conditions (see Table 3.2).

Bulk wind shear

Bulk wind Shear is the difference in wind vectors over a layer of the atmosphere. When it

is measured between 0-6 km above ground level (AGL), it can effectively distinguish between

environments that are favorable for supercell thunderstorms and those that are not. The bulk wind

shear can be also highly related to the deep layer shear (DLS), which favors the development of

supercell thunderstorms (Wilhelm, 2022).

Lapse rate between 700 hPa and 500 hPa

The Lapse rate (defined in Section 2.1.1) provides information about the stability of an atmospheric

layer. The faster the temperature decreases with height the more unstable is the atmosphere, namely

decisive for parcel lifting (see Section 2.1.3) and the development of hailstorms. Here the lapse rate

between 700 and 500 hPa is considered as the representation of the potential atmospheric instability

(Kunz et al., 2020).

Convective available potential energy

CAPE describes the maximum amount of potential energy available for an air parcel for free

convection; more details are given in the Sections 2.1.1 and 2.1.3. The values of CAPE can range

from zero to over 5000 J kg−1, and different ranges indicate varying degrees of atmospheric

instability (Markowski and Richardson, 2011; Doswell III, 1987).

CAPE =



< 1000 J/kg weak instability

1000−2500 J/kg moderate instability

2500−4000 J/kg strong instability

> 4000 J/kg extreme instability

(3.1)

Surface lifted index

The surface lifted index (SLI) is an indicator of latent instability (Galway, 1956; Kunz et al.,

2020). SLI is defined as the temperature difference between the environment and the parcel at

500 hPa (details in Section 2.1.3). The more negative the SLI values are, the more unstable are

the atmospheric ambient conditions. Choosing SLI has the advantage for quantifying instability

independent of the height of the EL (other than CAPE), which normally has a large bias from model

output.

CAPE×wind shear
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The CAPESHEAR is a measure that combines both the CAPE and the bulk wind shear (computed

at ECMWF between 925 and 500 hPa). This parameter assesses the potential for well-organized

and long-lived convective storms such as MCSs and supercells: CAPESHEAR >1500 m2 s−2

suggests that there is potential for very active convection.

Vertical totals index

The Vertical Total (VT) is the temperature difference between the 850 and 500hPa levels and –

like the lapse rate – a parameter of the average temperature gradient. It describes the temperature

difference roughly between the top of the atmospheric boundary layer and the level halfway

through the air mass. A stronger vertical temperature difference indicates a higher likelihood of

thunderstorms. Typically, a threshold of 26 K is used to differentiate between weather conditions that

are conducive to thunderstorm formation and those that are not. This value of VT is approximately

equivalent to an average observed lapse rate of 0.65 K per 100 m (Grieser, 2012).

Total totals index

The Total Totals (TT) Index is a meteorological parameter that estimates the likelihood and intensity

of thunderstorms by measuring the vertical temperature and humidity gradient. It calculates the

temperature difference between the near-surface layer (850 hPa) and the mid-troposphere (500

hPa), similarly to the VT, and takes additionally into account the moisture content between these

two layers. The larger TT is, the higher the likelihood for deep convection or the formation of

thunderstorms (ECMWF, 2010b).

Total column water

Total column water (TCW) refers to the combined amount of water vapor, liquid water, cloud ice,

rain, and snow present in a vertical column extending from the Earth’s surface to the uppermost

part of the atmosphere (ECMWF, 2010a). It can also quantitatively reflect the regional precipitation

(e.g., hail, extreme rainfall) of thunderstorms and water vapor path during the development of

thunderstorms.

Significant hail parameter

The Significant Hail Parameter (SHIP) is used to differentiate between hail with diameters of at

least 2 cm (significant hail) and hail that is smaller (non-significant hail). SHIP values greater than

1 suggest that conditions are favorable for significant hail, with values greater than 4 considered

extremely high. Typically, SHIP values larger than 1.5 to 2 are associated with observed instances

of significant hail (Grieser, 2012; Prein and Holland, 2018) and is defined as below:

SHIP =
1

42 000 000
CAPEMU

J kg−1
QPARCEL,MU

g kg−1
LAPSE700500

K km−1
273.16 K −T500hPa

K
BULKSH

m s−1 . (3.2)

Supercell composite parameter
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The definition of the supercell composite parameter (SCP) is based on 3 important factors: CAPE,

Storm Relative Helicity (SRH) and DLS:

SCP =
CAPEMU

1000 J kg−1
SRH0−3km

100 m2 s−2
DLS

20 m s−1 , (3.3)

where SRH is a measure of storm-relative streamwise vorticity used for supercell forecasting

(Markowski and Richardson, 2011). Typically, when the SCP value is greater than 1, it indicates a

high likelihood of supercell storms. Conversely, SCP values below 1 are usually associated with

non-supercell storms. Thompson et al. (2003) conducted a study on this topic and reported that

the average SCP value for supercell storms was 4, while it was 0.2 for non-supercell storms (it is

refered to their study for more details).

3.2 Methods

3.2.1 Correlation analysis

One of the earliest and most widely used correlation coefficients is the Pearson correlation coefficient

(Boddy and Smith, 2009), which measures the linear relationship between two variables. In

meteorology, the Pearson coefficient has been used to study the relationship between various

meteorological variables and their impacts on weather phenomena, including hailstorms and severe

thunderstorms (Cohen et al., 2009; Zhang.Y and Niu.J, 2009). However, the Pearson correlation

coefficient requires a normal distribution of the sample.

If this is not the case, the Spearman’s coefficient should be used, which determines whether two

non-linear relationships can be described by monotonic functions, without making any assumptions

about the distribution of variables. Therefore, it is applied in this thesis to study relationships

between ambient conditions of hailstorms and hail streakes. It is also suitable for variables when

outliers are present (Hauke and Kossowski, 2011). The Spearman correlation coefficient ρs used in

this thesis is defined by

ρs =
∑i(Varenv,i −Varenv,i)(Haili −Haili)√

∑i(Varenv,i −Varenv,i)2 ∑i(Haili −Haili)2
(3.4)

where i is the corresponding grid point; Varenv,i and Haili is the average of convective parameters and

hail-related parameters respectively. Varenv,i is the variables corresponding to ambient conditions

of hailstorms and Haili is the hail-related parameters (here the hail-affected area is chosen).

3.2.2 Correlation among the convective parameters

A large number of convection-relevant atmospheric environmental variables are used to improve the

estimation of the expected life cycle characteristics of convective storms in the thesis of Wilhelm

(2022). For each of the radar-derived storms recorded, a spatial average around the storms’ location
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Figure 3.5: Correlation matrix of Spearman’s rank correlation coefficient rs. The definitions of abbreviations
used can be found in the Table E.1 of Wilhelm (2022). Red color indicates high correlations
(rs > 0), while blue color indicates anti-correlations (rs < 0). In addition, correlations with values
above 0.5 are given as percentages (%). Statistically non-significant correlations are marked with
a cross (Figure originally from Wilhelm, 2022).

and a temporal life-cycle average of the different ambient parameters are obtained for studying

the correlation among each other by calculating the correlation coefficient matrix. Figure 3.5

shows Spearman’s rank correlation matrix for the 33 ambient convective parameters used in the

aforementioned study.

Note that the deep layer shear (DLS) is the primary determinant of the absolute value of the

mid-tropospheric wind with stronger correlation coefficient (rs = 0.87) with the mid-tropospheric

mean wind between 3 and 6 km height above ground level U3−6, whereas the correlation coefficient

between DLS and the lower-tropospheric mean wind between 0 and 3 km U0−3 is much smaller. It

has also been found that some of the supercell-related convective parameters have stronger relations

to dynamical parameters. For example, the supercell composite parameter (SCP; Thompson et al.,

2003), based on the multiplied product of CAPE, DLS and storm relative helicity (SRH), correlates

more strongly with dynamical than thermodynamic parameters. The significant hail parameter

(SHIP) composed of CAPE, DLS, water mixing ratio and middle layer lapse rate and temperatures,

as another example, shows higher correlation with thermodynamic variables.

Areas of agglomeration in Figure 3.5 can be analyzed further using a non-hierarchical correlation

clustering with the method of k-medoids-clustering shown in Figure 3.6, which is similar to the

widely-used k-mean clustering. The distance metric is defined as d = 1− |rS| (rS, Spearman

correlation coefficient) and indicates how much different variables correlate with each other.

This clustering procedure enables a quick and concise overview of correlations and correlation-

based distances between variables of interest. The red cluster represents mainly mid-tropospheric
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Figure 3.6: Based on a k-medoids clustering, NC = 6 different clusters of ambient variables are represented.
The dissimilation metric is defined as d = 1−|rS|. The clusters have been projected onto the first
two principal axes of the eigenspace obtained from a multidimensional scaling analysis. The first
principal axis accounts for 52.1 % of the observed variability, while the second axis accounts for
15.7% (Figure originally from Wilhelm, 2022).

dynamical quantities, whereas the dark blue cluster mainly shows thermodynamic parameters. The

orange cluster contains mainly variables related to the mid-tropospheric instability. Note that this

clustering also serves as a reference for selecting predictor candidates during the sensitivity tests of

of the ML (see Section 3.1.4).

3.2.3 Mean absolute error

The root mean square error (RMSE) and the mean absolute error (MAE) are two different standard

statistical metrics to measure, for example, model performance (Willmott and Matsuura, 2005; Chai

and Draxler, 2014a). RMSE favors more in representing model performance than MAE when the

error fitted in Gaussian distribution, while MAE is an unambiguous measure of an average error in

a more natural way compared to RMSE (Chai and Draxler, 2014b). MAE is therefore used in this

thesis to monitor and evaluate model performance due to the Gaussian q-distribution of hail events.
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MAE is calculated by averaging the sum of the differences between the prediction values (xi) and

the observed values (x):

MAE =
1
n

n

∑
i=1

|xi − x| (3.5)

where n is the number of error and |xi − x| are the absolute errors at every grid point.

3.2.4 Data pre-processing

Data pre-processing is required for the later data mining and ML with the purpose to scale the

data within the same range in the whole of data set, namely normalization (Ali et al., 2014).

Normalization takes place by casting the data to the specific range, usually between 0 and 1,

when there are big differences in the ranges of different data features. For output visualization,

de-normalization is also needed after normalization applied, to present the data in its original form

for interpretability. Moreover, a density-based weighting function is set up after normalization to

allow manual selection of weights for input data in ML.

Z-score normalization

There are many ways to normalize the input data. In this thesis, Z-score normalization is used to

scale data in the same range. Z-score normalization Zi is defined as:

Zi =
xi −µ

σ
, (3.6)

where µ and σ are the mean and standard deviation of the data set, respectively. Note that normal-

ization does not change the structure and distribution of the data set, therefore, a q-distribution of

hail events can not be changed to a normal distribution after data pre-processing.

Density-based weighting function

As a result of the q-distribution of hail events, the existence of a certain amount of the extremely

large hail-affected areas can reduce model performance. To address this situation, where hail events

do not ideally fit a normal distribution, adding a density-based weighting function (DWF) to the

input data modifies the weights of the extreme values. DWF is aimed to improve the training of

machine learning models for regression tasks that require more accurate prediction of rare target

values compared to more common ones (Steininger et al., 2021). This is particularly relevant in

cases where rare samples are of special interest, such as when estimating extreme precipitation

events or hail events with a very large affected area. The parameter α is used to adjust the weighting

scheme, with larger values of alpha emphasizing rare samples more strongly (while α = 0.0

indicates uniform weighting across all samples). DWF determines the rarity of a target value by

evaluating its density using Kernel Density Estimation (KDE).
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3.2.5 Convolutional neural network

Some previous applications of Machine Learning for analyzing or prediction severe thunderstorms

have shown promising results with higher prediction accuracy in the spatial and temporal scale

of thunderstorms (Czernecki et al., 2019; Gagne et al., 2017, 2015). Among different models

of ML, taking one of significant advantage of convolutional neural network (CNN) in studying

convective storms is to rapidly capture and identify the certain features from the spatio-temporal

meteorological data sets (Ren et al., 2021; Gagne II et al., 2019).

The advantage of using a CNN in this thesis is its outcome-orientated application, which offers

an opportunity to directly investigate the potential relationship between hailstorms and ambient

conditions including spatial information, rather than firstly to parameterize the complicated physical

process between environmental conditions of hailstorm and characteristics of hailstorms in Germany.

Here, different sets of candidate predictors in Table 3.2) with 3D ambient fields (longitude, latitude

and date time, respectively) from ERA5 are determined. The CNN is also applied for sensitivity

tests for candidate predictors to search for the best proxies of environmental parameters according

to the lowest validation accuracy and validation loss during the training process.

The CNN in this study (see Figure 3.7) is set up with one consecutive convolutional layer, connected

to a max-pooling and then a dropout layer followed after. This set of three layers is repeated once

and another consecutive convolutional layer is added behind. All consecutive convolutional layers

in this neural network have a 3×3 kernel size and use the ReLU activation function. The ReLU

activation function introduces the property of non-linearity to a deep learning model and solves

the vanishing gradients issue. Also, it only interprets the positive part of its argument, as the

hail-affected area in reality is always positive. The first and last two convolutional layers have

32 and 64 filters, respectively. The network also includes two max-pooling layers, which is to

aggressively downsample feature maps, with a 2×2 pooling size and stride of 2. Two dropout layers

are used with dropout rates of 0.2. The dropout rate is the fraction of the features that are zeroed

out. The first dense layer with ReLU activation and the second dense layer without activation

function have 64 and 1 nodes, each separately. Also note that the optimizer ’Adam’ is used during

the training of CNN. According to Kingma and Ba (2014), Adam optimization is a stochastic

gradient descent method, based on adaptive estimation of first-order and second-order moments. It

is favorable for high computational cost and noisy sparse gradients within the data processing.

3.2.6 Stepwise feature selection and sensitivity test

Stepwise feature selection is a commonly used technique in machine learning and data mining.

It aims to select a subset of relevant features that can increase the accuracy, performance, and

interpretability of the model by reducing the dimensionality of the input data set. The process

consists of three main branches: forward selection, backward deletion, and two-way deletion, in

which elements are iteratively added or removed based on their contribution to the prediction action.

This technique can be particularly useful in multivariate data sets, where the number of features
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Figure 3.7: Schematic structure of convolutional neural network with different layers used in this Master’s
thesis and the number of nodes in this ML model is reduced.

is much larger than the number of cases. By selecting information features, incremental feature

selection can improve model performance and interpretation by identifying the most important

variables affecting forecasting activities. However, it is important to carefully evaluate the feature

selection results and to ensure that the selected features are robust and representative of the

underlying data distribution.

In this thesis, the forward selection method (Mohr et al., 2015) is conducted to find in the first step

the best single predictor with the lowest MAE of model performance among all of the environmental

parameters listed in Table 3.2. In the next step, the second predictor is determined by the lowest

MAEs of the model output, adding one more parameter among the candidates and using the MAEs

to monitor model performance. Further predictors are determined by continuously following the

rule step by step (shown in Figure 3.8). If the accuracy of the model cannot be improved when

adding one more parameter, feature selection ends. This process, so-called sensitivity test, also

provides the information on model sensitivity as to which convective parameters are more beneficial

to the forecast accuracy of the hail prediction and therefore should be considered as a potential

proxy of hailstorms.

In an attempt to avoid confusion, the difference between “candidate parameters” and “predictors”

is clarified in this paragraph. The candidate of convective parameters is highly related to convective

storms and essentially play an important role for the development of hailstorms, but is not used

in the final machine learning model. Predictors are chosen from the best result of the sensitivity

test which confirmed the improvement of ML model prediction when using the stepwise feature

selection method.

3.2.7 Class activation map

Although ML models are commonly viewed as “black boxes”, there are techniques to visualize

the learned representations in CNNs. One such technique is the gradient-weighted class activation
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Figure 3.8: The flow chart illustrates each step of the stepwise feature selection and sensitivity test in details.
N = 18 is the total number of candidates of environmental convective parameters, m is the total
number of the chosen predictors which starts with zero.

mapping (Grad-CAM), which can help determine which parts of an input contribute to its final

classification decision (Chollet, 2021).

Instead of using traditional RGB images, this thesis employs seven features that correspond to

different colors, resulting in an image with seven float values at each timestep rather than three.

Grad-CAM utilizes gradient information from the last convolutional layer to generate a coarse

localisation map, which highlights important regions in the 2D input data for predicting how large

the hail-affected area will be on the certain days. By overlaying the coarse localisation map with

the features (Selvaraju et al., 2017), areas of particular importance can be visually identified. The

resulting heatmaps show which predictors have more significant weighting in the combination of

best predictors for model output, implying that the location of the variables are seemingly more

important indicators for predicting hail storms to the machine learning model.

3.2.8 Reference prediction models

Two classic forecast models without any machine learning techniques are implemented as reference

models to compare the prediction performance with machine learning models. One reference model

is based on the climatological distribution of potential hail events, and the other model is to apply

the persistence forecast on the daily potential hail events. Here, they are named as climatology

forecast model and persistence forecast model.

Climatological reference forecast
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The purpose of the climatological reference forecast is to predict long-term climate conditions, based

on the analysis of historical data and statistics so as to determine the probability of future weather

conditions over a given period of time, typically months to years beforehand (Murphy, 1992). It

assumes that past climate conditions can be used to predict future weather under the assumption that

the long-term climate remains stationary. Despite its potential benefits, the drawback of this model

in reducing the large uncertainty of model performance is still the main challenge, as the model

only relies on many simplified assumptions of the atmosphere, and is therefore heavily influenced

by errors and biases. Here, the climatological reference forecast is the daily mean of the potentially

hail-affected area averaged over the 13-year period (2005–2017), to predict daily hail-affected areas

during 2018–2019. It is smoothed by a 31-day moving window. The skill of the reference forecast

is compared to the ML model forecast by calculating the MAE between forecast and observations.

Persistence forecast model

Short-term weather patterns can be predicted using persistence forecasting by assuming that weather

conditions persist for a few days. The principle of persistence forecasting is the continuity of

atmospheric motion and weather patterns with little or no change in the overall weather pattern,

and therefore, the current conditions are likely to continue for a period of several hours to days.

The challenge for persistence forecast is mainly that it does not account for the sudden change in

weather and the influence of large-scale atmosphere patterns, which can significantly affect local

weather conditions. Here, 1-day ahead hail-affected area is used to predict the hail-affected area

on the current day for the test periods. Therefore, the MAE between 1-day ahead forecast and

observation in the same time periods (2018-2019) as climatology model is computed as well to

estimate the performance of model.

3.2.9 Categorical verification

It has been common practice to verify non-probabilistic forecasts for discrete variables (Murphy,

1996). Categorical verification involves predicting a categorical or discrete variable in order to

assess the accuracy of a forecast. To determine the quality of a forecast, accuracy, bias, and various

skill scores are calculated by comparing forecasts to observations. It is widely used in fields such

as prediction of precipitation, cloud cover, or severe weather events. The data sets are entered

into a 2× 2 contingency table after determining an appropriate threshold. This threshold here

refers to a specific value of the potentially hail-affected area (shown in Section 5.3). The elements

a−d are classified in Figure 3.9 based on whether an event was observed (Yes/No) and whether it

was predicted (Yes/No). It shows the relationship between the counts of forecast/event pairs for

dichotomous non-probabilistic verification (Wilks, 2011). However, it can also be used for the

evaluation of thunderstorm quantities, as applied, for example, by Doswell et al. (1990) or Kunz

(2007).

In categorical validation, a hail event is deemed to have taken place or not, based on a predefined

threshold. The crucial aspect of this validation process lies in identifying the optimal threshold that
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Figure 3.9: The elements in the 2× 2 contingency table provide an understanding of how forecasts and
observations are related in non-probabilistic verification situations.

maximizes the occurrences of correct forecast a while simultaneously minimizing the number of

occurrences of false alarms b and surprise events c.

Many different scalar attributes have been created and utilized to describe the performance of

forecasts based on the contingency table (Figure 3.9). The widely used scalar attributes to compre-

hensively evaluate the forecast model performance are listed below.

Accuracy

The accuracy values indicate the correspondence between the forecast and the event intended to

predict. A perfect forecasting in the contingency table displays the situation b = c = 0, meaning that

Yes/No forecasts perfectly match the Yes/No observations in the reality (Wilks, 2011). Therefore,

as the most intuitive measure to estimate the proportion correct (PC), namely accuracy, is defined

as:

PC =
a+d

n
, (3.7)

where n is the sample size (n = a+b+c+d). It is seemingly not an ideal attribute especially when

Yes events are infrequent in the sample (Wilks, 2011).

Critical success index (CSI)

The Critical success index (CSI) as an alternative to the PC is particularly applied when the correct

forecast for the Yes observations appears less commonly than non-events (Wilks, 2011). It is also

sometimes called T hreat score (TS) and defined as:

CSI = T S =
a

a+b+ c
. (3.8)

In many studies, the CSI is utilized to evaluate spatial forecasts that are issued simultaneously,

such as warnings for severe weather (Doswell et al., 1990; Ebert and McBride, 2000; Kunz, 2007).
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However, it does not provide an unbiased indication of forecast skill, but rather shows a proportional

relationship with the frequency of the event to be forecasted (Schaefer, 1990). Therefore, more

forecast skill scores need to be taken into account while using CSI at the same time.

Probability of detection (POD)

Detection probability (also known as hit rate, See Eq. 3.9) is a measure of how often accurate

correct forecasts are made relative to the total number of the Yes observations. Alternatively, it

can be described as the proportion of situations happened in which the predicted event actually

occurred and was also for the forecast.

POD = H =
a

a+ c
(3.9)

Heidke skill score (HSS)

The Heidke skill score (HSS) measures the proportion of correct forecasts obtained by random

forecasts which are statistically independent of the observations. It is widely applied in the

evaluation of thunderstorm-related phenomena (Kunz, 2007; Gagne II et al., 2019; Czernecki et al.,

2019). A perfect HSS value receives a score of 1, a total random forecast gets a score of 0, and a

worst forecast gets a score of -1 (Heidke, 1926; Wilks, 2011).

HSS =
2(ad −bc)

(a+ c)(c+d)+(a+b)(b+d)
(3.10)

Peirce skill score (PSS)

The Peirce skill score (PSS) is a measure that involves subtracting two conditional probabilities in

the likelihood-based rate factorization of the joint distribution between POD and the probability

of false detection (POFD). It is akin to the HSS but differs in that the denominator features the

reference POD for unbiased, random forecasts (Wilks, 2011).

PSS =
ad −bc

(a+ c)(b+d)
(3.11)

False alarm ratio (FAR)

It is also crucial for the forecast to quantify the uncertainty and bias of model prediction. False

alarm ratio (FAR) is the fraction of the miss forecast that should predict yes but fail in the situation
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with the Yes observations. FAR is commonly used for analyzing the forecast performance skill and

defined as:

FAR =
b

a+b
. (3.12)

Probability of false detection (POFD)

In an attempt to analyze the discrimination skill of the model forecast, the probability of false

detection (POFD), also named as False alarm rate (F), discriminates incorrect forecast for the

non-events:

POFD = F =
b

b+d
. (3.13)

Noted that the definitions of FAR and POFD are sometimes confusing, therefore it is necessary to

clarify the difference. The FAR quantifies how many cases the Yes observations in reality are not

successfully predicted by the model forecast, evaluating the ability of the model to predict correct

forecast, while the POFD assess how bad the ability of model is to identify correctly the non-events

in the observations.
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4 Statistics between hail events and
ambient condition

The development of a hail prediction model based on ML, a statistical analysis of 15 years of radar-

based hail track identification and the corresponding environmental conditions with 18 candidates of

convective parameters in Germany is a necessary first step to investigate their possible relationships.

Section 4.1 gives an overview over the 15 years of hail frequency, the trend of hail occurrence, the

hail seasonal cycle and also their characteristics during this period. In Section 4.2, the mean fields

of the hail-related convective parameters are further analyzed to identify spatial features favourable

for hailstorms. In the next Section 4.3, correlation maps between the hailstorms and convective

parameters in different regions of Germany are calculated in order to select appropriate candidates

for the next step of setting up the machine learning model.

Note that "hailstorms" in this thesis are not directly the hail-produced thunderstorms recorded by

radar, but the identified hail tracks by the TRACE3D algorithm (Section 3.1.2) potentially develop

to the thunderstorms that can produce the hail (Section 3.1.3).

4.1 Overviews of hail tracks

Hail frequency

Hail frequency as one of the most important features of hail-producing thunderstorms is firstly

analyzed to study their annual variability (Punge and Kunz, 2016). The most direct approach

involves quantifying the number of instances of hail that take place annually in a particular location

(Eulerian perspective). In this thesis, the hail frequency in Germany is statistically represented by

the number of hailstorms (hail tracks) per year.

Figure 4.1 illustrates the total number of hailstorms recorded per year using the radar-derived

hail data set from 2005 to 2019 from a Lagrangian perspective (see Section 3.1.2). The slightly

increasing trend in the 15-year hail climatology in Germany (red line in Figure 4.1) is very weak

and not statistically significant, although the annual variability is relatively large among each year.

Note the pronounced drop in 2012 with the lowest number of hail events caused by a technical

problem from the radar stations during that year, so that several potential hailstorms were not

recorded.

Seasonal cycle
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Figure 4.1: Annual frequency of radar-derived pontential hailstorms for the period 2005-2019. The red solid
line is the linear regression for the number of hailstorms per year.

Hail season is defined by the historical statistics rather than a clear definition, mainly due to the

variety of hail characteristics (e.g., hail-affected area, maximum size of hailstones, hail accumula-

tion) and regional discrepancies. Based on earlier studies, for example, by Gudd (2004); Punge and

Kunz (2016); Kunz et al. (2018, 2020), hailstorms typically occur between April and September

in Germany. Figure 4.2 shows the cumulative daily average of radar-derived potential hail events

that occurred during the hail seasons with a 14-day moving average window. Two significant peaks

of hail events appeared in June and July, which is in agreement to the radar-based analyses of

hailstorms by other authors (Gudd, 2004; Kunz and Puskeiler, 2010). There is also a relatively

high probability for hailstorm occurrence in early August and September under suitable conditions.

Besides, since 2015, hailstorms occurred more frequently in ealier June. The reasonable explanation

could be an earlier-starting summer season due to the temperature increases regarding climate

change. It is subject to further investigations, but not the purpose of this study.

Characteristics of hail tracks

After determining the certain periods by data availability for the ML model set-up to predict the

hail-affected area, the target to represent the hailstorm-affected area is determined by analyzing

the characteristics of hail tracks derived from radar data. During the study period from 2005 to

2019 a total of 7702 hailstorms on 911 days were identified. On 1591 days no hail days (i.e., no

track identified in the radar data) were registered. Figure 4.3 shows the distribution of different

hailstorm-related parameters. An approximate Gaussian distribution for the propagation speed

of the hailstorms overlaps the result with a peak at 26–38 km h−1 (about 25% occurrence) and

a minimum at ≥ 98 km h−1 (of > 1% occurrence in total). Meanwhile, roughly 67 % of the

hailstorms lasted 45–90 minutes. The width of a hailstorm is determined by identifying the largest
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Figure 4.2: Cumulative daily hail occurrence with an 14-day moving average of radar-derived hail days
during the hail season in Germany.

reflectivity core (≥ 55 dBZ). Over 61 % of all potential hailstorms have a width of 3–8 km. The

results may be over- or underestimated after averaging, but may still reflect the characteristics of the

hailstorms to some extent. Estimates of the area affected are based on a function of the length and

width of the hail tracks (Section 3.1.3) to quantify the spatial area affected by potential hailstorms.

More than 52% of the hail-affected areas for the single haistorms is of up to 400 km2, while it is

not in the agreement with the mean area of 20.5 km2 from the ealier research of Changnon (1977).

More severe events may result in larger affected areas in the approximate rectangle shape of the

tracks.

In general, any features of hail tracks can be considered as a prediction target for the ML model.

Here, the hail-affected area rather than just the width or length of hail tracks or others are chosen to

represent the potential hailstorm threat for two reasons. Firstly, assuming a positive relationship

between the potential hailstorm threat and hail track length or width, it may be exceptional, for

example, that some severe hailstorms are shorter in length but wider in width. Secondly, while

the estimated area of these rectangles may introduce some level of uncertainty, their larger values

could still potentially show a correlation with the higher potential hailstorm threat. Moreover,

these rectangles can provide the local quantitative information, serving as a practical reference for

insurance companies. At the same time, before building up the machine learning model, it still

remains an open task to explore the convective environmental conditions that may be conducive to

the development of hailstorms.

4.2 Comparison among environmental mean fields

Since hail-producing convective storms are relatively rare even during the hail season, the spatial-

averaged mean fields on convective pre-conditions based on the ERA5 reanalysis data are obtained
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Figure 4.3: Histograms of different parameters of hail tracks from 2005 to 2019. The left top (bottom) is the
storm propagation speed (lifetime) during tracking of the single hailstorms; The right top is the
averaged width for single hailstorms and the right bottom is the estimated affected area for single
tracks based on Section 3.1.3.

beforehand for 18 different potential candidates in order to better zoom in on the general convective

conditions related to hail occurrence.

Here, CAPESHEAR is exemplarily discussed in detail (Figure 4.4) as it turns out to be the best

single predictor in the ML model sensitivity tests (Section 6.1). In addition, this quantity also

estimates the likelihood of well-organized and long-lived convective storms (Section 3.1.5). The

diurnal cycle of convection is primarily influenced by near-surface temperature fluctuations and

the subsequent changes in the atmospheric boundary layer (Punge and Kunz, 2016). Key triggers,

such as low-level convergence due to thermal circulations in complex terrains, land use variations,

or coastal land-sea breezes, also intensify in relation to the diurnal temperature cycle, although

occasionally with a time lag (Markowski and Richardson, 2011). According to Bedka (2011),

hailstorms in Europe are more likely to occur in the afternoon and early evening (See Figure A.1,

Schmidberger, 2018), with some variations depending on terrain features and proximity to the

coast. To match the remote sensing measurement of hailstorm detection, 12 UTC (14 CEST, central

European summer time) is the empirical time point for representing the pre-convective conditions

of hailstorms in the radar-based hail data set (Kunz and Puskeiler, 2010; Mohr and Kunz, 2013).

Figure 4.4a illustrates the mean field of CAPESHEAR during the hail season (April - October)

from 2005 to 2019. The area with larger CAPESHEAR is mostly located in southern Germany,

especially in Baden-Württemberg and the southern part of Bavaria, while pre-convective conditions

are weaker in the northern part of Germany. It is because the lower temperature and less moisture
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leads to the lower CAPE associated with CAPESHEAR in the northern Germany (Section 3.1.5).

Another possible explanation for this is that the general climatology of weather conditions for the

hail season diluted the pre-conditions of hailstorms in the northern Germany, although hailstorms

are more frequent during these periods (Section 4.1).

Therefore, the mean field only for hail days (identified tracks) is shown in Figure 4.4b to focus only

on the convective conditions prior to hail occurrence. Higher CAPESHEAR values can be seen in

northern, central and southern Germany, but the spatial trend from north-to-south remains similar,

which is also consistent with the statement that the hail frequency in Germany increases from north

to south (Punge and Kunz, 2016). Also note that when hail events occurred, there would be the

higher CAPESHEAR in the environmental conditions during the hail season (See Figure 4.4c).

To further test our assumption that larger affected areas are associated with higher potential hailstorm

threat, the hail-only situation (Figure 4.4b) is therefore subsampled and divided into 3 terciles

(large, medium, small) based on the values of the affected area by daily accumulations. Figure 4.4d

shows the lower tercile with small daily affected areas, while Figure 4.4e is upper tercile with large

daily affected areas. One interesting finding is that CAPESHEAR with small daily affected areas

is much weaker than that with large affected areas, which is in agreement with our expectations.

Another point is that orographic features like mountains and slope terrains in Baden-Württemberg,

Bavaria, and also northern Hesse (Figure 4.4e) exhibit seemingly a higher convective predisposition

with higher CAPESHEAR values, presumably because of the higher wind shear in complex terrain.

The prominent features with high CAPESHEAR overlap the potential hail hot spots in Figure 4.4f.

Flow deflections in horizontal and vertical directions caused by mountains can trigger thunderstorm

initiation, including for those producing hail, and help them to persist in favorable conditions.

Therefore, topographical features of a region can greatly influence the frequency of hailstorms,

with mountain ranges, especially locations downstream, usually being the most common location

for hail hot spots(Punge and Kunz, 2016; Fluck et al., 2021).

However, the individual contribution of either CAPE or BULKSH to the CAPESHEAR is more

dominated by the distribution of CAPE (Figure A.2, Figure A.5, Section 3.1.5). Some mean fields

of parameters such as CAPE, SHIP, TT (Figure A.2, A.4, A.3) show a north-to-south gradient

similar to that of CAPESHEAR. The candidates that offer the general atmospheric conditions

during the hail season as background, such as U500, T850, BULKSH (Figure A.5) do not show

such a north-to-south gradient difference between the mean field distributions.

The investigation of the climatological environmental conditions of hailstorms partly show the

potential connection that more favorable convective conditions can lead to the higher potential

hailstorm threat. However, the analysis only showed the general pre-conditions of hailstorms and

lacks the sufficient quantitative evidence related to the hail-affected area.
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Figure 4.4: Mean fields of CAPESHEAR during the hail season from 2005-2019. (a) is the mean field
including the dates with non-hail events happened, while (b) is the same as (a) but excluding
the dates without hail occurrence; (c) is the result of (b) − (a). For the further sub-sampling
under the condition of (b), (d) is the mean of just the dates below the lower tercile ranking of the
affected area by daily accumulation, and (e) is just in place of the dates above the upper tercile
ranking like (d); (f) is the difference of (d) − (e). The contoured black lines in (a,b,d,e) only
highlight where the values of CAPESHEAR larger than 1500, indicating the tendency of very
active convection (Grieser, 2012).
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4.3 Correlation maps between convective parameters
and hailstorms

To further investigate the link between hail tracks and convective parameters for the optimization of

the ML model, all 18 atmospheric parameters listed in Section 3.1.5 are correlated with the daily

hail-affected area (Section 3.2.1). Noted that the correlation analysis here does not correspond to

the location of the individual hailstorms, but rather to the temporal correlation analysis between

convective parameters and daily hail-affected area in Germany at a certain location. Therefore, if

there are high correlation coefficients at certain locations, the correlation analysis is relative reliable,

but conversely, no or weak correlations do not seem to be a complete indication that the parameters

are not related to hailstorms.

CAPESHEAR, as the most interesting candidate, is exemplarily discussed in detail, rather than

showing the spatial features of correlation for all the convective candidates. Here, the daily affected

area from the centre location of the hailstorms (Figure 3.4) is taken separately for different regions

(Northern: ≥ 52.0°N; Southern: ≤ 49.5°N; Central: in between) of Germany, in order to avoid

diluting the spatial information of hail hot spots when considering Germany as a whole. In addition,

the non-hail days are also added in the samples because the ML model should be able to identify

the pre-conditions of hailstorms from the general weather conditions individually.

In northern Germany (Figure 4.5a), several areas with higher correlation coefficients are located

in the north-east of Lower Saxony and also in the east of Northrhine-Westphalia. This indicates a

moderate relation between CAPESHEAR and the daily hail-affected areas. Meanwhile, the region

on the eastern edge of Northrhine-Westfalia, with high hail-affected areas in the central Germany

(Figure 4.5b) overlapped somewhat with the areas in the northern Germany, but with a slightly

stronger relationship. In Figure 4.5c, the higher correlation values for the region are located in

Baden-Württemberg and Bavaria in the southern region of Germany, where can potentially observe

the higher CAPESHEAR (Figure 4.4), and the higher daily hail-affected area .

In fact, several studies have found indications that suggest that areas with enhanced hail hazard

show a connection to specific terrain features (Giaiotti et al., 2003; Kunz and Puskeiler, 2010;

Punge and Kunz, 2016). Note that the areas of the high CAPESHEAR convective environments

that occur in the mean field (Figure 4.4b) correspond to some extent to the geographical distribution

of hot spots with the higher daily hail-affected area in the correlation maps in the three different

sub-regions of Germany (Figure 4.5).

However, the correlation between hailstorm-favoring environments and hailstorms is somewhat

weakened, when CAPE (Figure A.6) or BULKSH (Figure A.7) is considered separately. It seems

that the q-distribution of CAPE carry with BULKSH mainly dominates the correlation with hail.

Other storm-orientated convective candidates such as SHIP (Figure A.8), with more or less the

same range of maximum correlation coefficients, show a similar positive correlation distribution to

CAPESHEAR. Likewise SLI shows a relative strong negative correlation with the daily affected

area associated with hailstorms (Galway, 1956), based on the fact that low SLI values represent
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high instability of the atmosphere (Section 3.1.5). Other candidates for the general atmospheric

conditions such as wind speed U500, temperature T850, humidity Q850 remained poorly associated

with hail occurrence. The possible reason could be the q-distribution of the daily area affected

to represent the hail occurrence, leading to a higher correlation with the similar distributions of

convective parameters, such as CAPE, SHIP, etc.

For the further preparation of the machine learning setup, the correlation maps as a reference

can give a hint which single convective parameter potentially contribute the most to the machine

learning model. Note that the maximum values of the correlation maps within the moderate limits

are mainly influenced by the fact that most of the non-hail days (defined in Section 4.1) dominate

the general weather conditions. Moreover, parameters such as BULKSH, U500 and VV6km, which

do not have a significant correlation with the hail affected-areas according to the present analysis,

still may play an important role locally for the occurrence and development of hailstorms and, thus,

shall also be considered in the ML model.

In addition to the correlation analysis between ambient conditions and hail-affected area, our

selection of candidates also considers the independence among convective parameters from different

clusters, which represent dynamic, thermodynamic and mid-tropospheric instability quantities,

respectively, according to Wilhelm (2022) in Section 3.2.2. Choosing independent parameters

enables the machine learning model to capture the variety of environments of hailstorms in different

aspects as much as possible.
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(a) Northern Germany (b) Central Germany

(c) Southern Germany

Figure 4.5: Correlation maps between CAPESHEAR and the daily affected area at 12 UTC during the hail
season from 2005 to 2019 including non-hail events.
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5 Evaluation of ML model performance
on hail prediction

The integration of disparate data sources from reanalysis data and the radar-based remote sensing

data, in conjunction with the implementation of machine learning techniques, represents a promising

approach for augmenting the dependability of large hail-affected area, with the high possibility

to surpass the performance of any individual product that is typically employed in the context

of operational forecasting at the present (Czernecki et al., 2019). Here, the convolutional neural

network (CNN) is implemented to predict the daily affected area for hailstorms. The training is

conducted only during the hail season (April to September) from 2005 to 2017 and 2 years were

used as validation data from the 13 years of training data. The 2 years of test data are also taken

during the hail season, but from 2018 to 2019. The performance of a machine learning model is

always monitored using the Mean Absolute Error (MAE) to quantitatively measure the difference

between model prediction and observation.

In the following Section 5.1, the result from ML output is firstly presented and the adjustments of

the model set-up are discussed as well. Section 5.2 presents the performances of the non-machine

learning models in the same test period as a reference, and also other adjustments of the ML model

set-up to compare the model prediction ability of the machine learning model. The evaluation of the

machine learning output for the deterministic forecasts of rare binary events using the categorical

verification is explicitly discussed in Section 5.3. Finally the potential limitations to achieving the

goal of this study using the machine learning are well justified in Section 5.4.

5.1 Output and adjustment of the ML model

As mentioned in the earlier Sections 3.2.4 and 4.3, the q-distribution, or the uneven distribution of

hail events across different magnitudes, poses a challenge to ML models in accurately forecasting

the occurrence of extreme events. To address this issue, an essential consideration lies in the

allocation of greater significance to infrequent hail events in the input data processing. To this end,

an auxiliary weighting function known as the density-based weighting function α (Section 3.2.4) is

incorporated into the CNN.

Figure 5.1a shows the daily affected area predicted from the convolutional neural network in the test

period, where α = 0.0 means that a uniform weighting across all samples during the training periods

is decided. The graph highlights that ML models show relatively improved MAEs in predicting

non-hail events, while struggling to achieve comparable performance in predicting extreme hail
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events, particularly those of exceptional spatial extent (daily affected area ≥ 20,000 km2). These

challenges might stem from a lack of adequate data and the non-linear relationship between

hailstorms and environmental conditions.

From Figure 5.1b, assigning a value of 0.5 for α does not significantly improve the ability of the

ML model to accurately predict very severe hail days in terms of large affected areas that exceed

the 20,000 km2 threshold. Nevertheless, the predictions for the large spatial extend of the affected

areas (≤ 20,000 km2) show a moderate level of improvement and a greater closeness to the actual

observations. By gradually increasing the assigned value up to α=1.5 (Figure 5.1c), the machine

learning model achieves improved detection of the affected area of hail events, but at the cost

of significantly overestimating the prediction of non-hail events. This overprediction of non-hail

events has a largely negative impact on the overall MAE of the prediction.

Thus, the weighting function for the machine learning model should have a dual capability, encom-

passing an increased predictive performance in identifying non-hail events, while at the same time

achieving a minmum degree of MAE in predicting the affected area associated with hail events.

Given the aforementioned observations in Figure 5.1d, the α value of 0.5 was considered optimal,

as it yielded better model performance with the lower MAEs in subsequent training rounds. At the

same time, the MAEs remained stable for the original structure of input data for the ML model.

The values ≥ 1.0 for α already degrade the performance of the ML model and therefore should not

be used.

While Figure 5.1 exhibits an encouraging visualization of the outputs from the machine learning

model, the determination of its superiority and its ability to compare favorably with alternate

forecast models remains inconclusive. It therefore requires extensive further research.

5.2 Comparison of different model results

To compare the performance of ML models with traditional non-machine learning forecasting

models, and the climatology forecast and the persistence forecast as reference models, respectively,

Table 5.1 provides explicit evidence that the predictive ability of the ML model is superior to the

other two models. The lowest averaged MAE of ML reflects its higher predictive ability. Notably,

the improved performance is associated with remarkably low MAEs, further demonstrating its

higher predictive skill among these three models.

Name of model Range of MAEs Averaged MAE

CNN 0.20−0.30 0.22

Climatology model 0.40−0.82 0.63

Persistence model 0.46−0.50 0.48

Table 5.1: Summary of the performance measures for all models (CNN, climatology and persistence model).
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(a) (b)

(c) (d)

Figure 5.1: The outputs of the convolutional neural network. (a)-(c) affected area predicted for environmental
conditions at 12 UTC in the test period (2018-2019) during the hail season with different values
of the density-based weighting function α ; the blue solid line is the ML prediction and the black
dashed line is the observation for comparison. (d) is the validation MAEs of model performance
as a function of training epochs during the model training with different values of α .

On the other hand, it is crucial to delve into the intricacies of refining the settings of the machine

learning model in order to assess its optimal performance capabilities. The granular details of these

settings can potentially hold the key to extracting the maximum predictive power from the model.

12 vs. 18 UTC:

The 12 UTC is empirically determined to represent the prevailing hailstorm environment (Mohr

and Kunz, 2013), while 18 UTC typically corresponds to when the nighttime hailstorms begin to

form. The model performance between these two times is compared to test the better ability of the

model to predict the hail-affected areas at both times. This is due to the potential for significant

changes in hailstorm environmental conditions within this time period (Punge and Kunz, 2016),

which could act as an important signal to the machine learning model.

Figure 5.2a provides a comparative performance attribute of the machine learning models designated

as 12 and 18 UTC during their respective training phase. It is noteworthy to observe that the 12 UTC

model exhibits a marginally superior performance in predicting the area of extreme large hail-

affected area relative to its 18 UTC counterpart (Figure 5.2b). However, the disparity in the data

distribution between these two model predictions with respect to the observed values do not show

significant deviations (Figure 5.2c).
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5 Evaluation of ML model performance on hail-affected area prediction

Based on these findings, the rationale for using the 12 UTC machine learning model for hail

prediction in this study has been substantiated. This choice is largely influenced by the observation

that the majority of storms identified as hail by radar detection systems are predominantly manifested

during daylight hours (12− 18 UTC), seen in Figure A.1 in the Appendix. Consequently, the

environmental preconditions represented by the 12 UTC model are closer in time to the occurrence

of the hail event. This proximity ensures that the prediction is reasonably close to the actual

observed value.

Note that radar records essentially capture the threshold of the radar reflectivity larger than 55 dBZ

within storm events. For those thunderstorms recorded after 12 UTC, the predominant trends and

signals within the environmental conditions are often possibly discernible earlier before 12 UTC.

Non-linear activation vs linear activation:

Note that in the training process of the above machine learning model, nonlinear activation functions

(ReLU) are employed to diminish the interdependence between input data from different layers of

the model and prevent excessive cluttering of data information from interfering with the learning

capabilities of model (Pedamonti, 2018; Section 3.2.5). However, the study of Wilhelm (2022)

summarized the presence of correlations among various types of environmental convective variables,

including dynamical, thermodynamical, and atmospheric variables. Therefore, this thesis also

undertakes an investigation into the impact of these correlations on the predictive sensitivity of

machine learning models. This investigation involves the use of linear activation functions within

machine learning models at 12 UTC. it is found that the use of a linear activation function provided

machine learning models with limited information about hailstorm environmental conditions to

predict hail-affected areas, while introducing more instability and model bias with high MAE (see

the suddenly negative values in Figure A.10).

Thus, the inclusion of non-linear activation functions becomes indispensable as it enables the

network to take into account non-linear associations between hailstorms and environmental con-

ditions during the decision-making process. While there is a possibility that correlations among

environmental parameters could potentially provide valuable information regarding hailstorms

for machine learning, the introduction of the non-linear activation function remains imperative to

adequately capture and model the complex relationships involved.

5.3 Categorical verification of ML model predictions

Categorical verification offers a systematic approach for evaluating the predictive accuracy of

ML-based hail prediction models and determining suitable thresholds (Wilks, 2011). The datasets

are organized into a 2×2 contingency table (Figure 3.9 in Section 3.2.9). In the earlier study of Kunz

(2007), various convective indices are quantitatively compared to investigate the preconvective

environment and to assess the predictive skill of the convective parameters and indices in forecasting

thunderstorms and related impacts such as hail or flood damage.
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(a) (b)

(c)

Figure 5.2: The results of the ML model for 12 (the blues) and 18 UTC (the oranges). (a) is shows the
validation MAEs during the training; (b) shows the daily affected area predicted in the test
periods; (c) is a scatter plot between observations and predictions.

In contrast, this study focuses on directly evaluating the accuracy of ML-based hail predictions in

relation to the actual hail target generated by the model. As the magnitude of the potential hailstorm

threat can directly relate to the strength of the hail-favorable environment on a daily basis (Section

4.2). It is important to note that the daily affected area of hailstorms refers to the region potentially

at risk of hail, rather than the actual ground area experiencing hail (Section 3.1.3). Thus, it becomes

necessary to establish a specific threshold to accurately identify the occurrence of hail events in

radar-based scenarios. The selection of this threshold directly impacts the predictive capability of

the machine learning model for hail prediction.

Furthermore, the process of identifying appropriate thresholds requires an initial quantification

of the uncertainty within the machine learning model. By eliminating any inherent biases in

the model, the resulting threshold outcomes are more likely to align with the actual value of the

hail-affected area. The different skill scores depicted in Figure 5.3 demonstrate the variations

observed in performance after reducing model biases. The threshold for optimal performance was

determined based on a comprehensive analysis of the 1740 km2 daily affected area by hailstorms.

The evaluation criteria included maximising the Heidke skill score (HSS) and Peirce skill score

(PSS) while minimising the false alarm rate (FAR). At this threshold, HSS was 0.66, PSS was

0.69 and FAR was only 0.3. For the same threshold of the hail-affected area, HSSs of climatology

forecast and persistence forecast were 0.51 and 0.36, respectatively. The accuracy of the model was

even found to be 88% with POD = 0.78 and CSI = 0.58. The slightly superior mode performance

at 18 UTC is listed in the Appendix for the purpose of comparison (Figure A.11, Figure A.12).
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5 Evaluation of ML model performance on hail-affected area prediction

Figure 5.3: Different skill scores as a function of the daily affected area by hailstorms.

Figure 5.4: Contingency table for the optimal threshold of 1740 km2 for the daily hail-affected area.

However, as already discussed in Section 5.2, the application of the model still focuses on 12 UTC

because of the potential for the prediction purpose based on the pre-condtion.

In addition, detailed information about the number of observed and predicted events for each of the

four cases of the contingency table (a-d) with the optimal threshold can be found in Figure 5.4. It is

attempted to shed light on the core of the machine learning model by investigating how it succeeds

or fails in predicting hail events, with a particular focus on gaining knowledge of the environmental

preconditions associated with hail occurrence (correct forecast a and surprise event c) in Section

6.2 of the next Chapter.
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5.4 Potential limitations

5.4 Potential limitations

Despite achieving commendable performance in prediction skill scores, machine learning is not yet

a perfect tool for hail forecasting. The accuracy of machine learning predictions is highly dependent

on the availability and quality of convective environmental field information included in the input

data. Hence, it is essential to further investigate the potential limitations that may arise regarding

the predictive ability of the machine learning model, particularly in relation to the structural aspects

of the input data.

First, the predictive performance of machine learning is directly influenced by convective environ-

mental variables, which are carefully selected based on statistical correlations and the previous

research (Wilhelm, 2022). While statistical methods have demonstrated correlations between

atmospheric ambient conditions and hail, certain variables such as BULKSH and VV6km exhibit

relatively low correlations, indicating unsatisfactory connections with hail (see Section 4.3). This is

primarily attributed to the q-distribution of hail events, underscoring the need to consider factors

beyond correlation coefficient analysis when identifying suitable parameters. Additionally, limi-

tations in data availability prevent the inclusion of highly correlated environmental variables like

SRH or KO-index (Kunz, 2007; Ukkonen et al., 2017), potentially hindering the optimization of

machine learning model performance. Inserting these variables may hold the promise for further

enhancing the predictive capabilities of the machine learning model.

Second, the current model exclusively examines the convective field at a specific time point, leading

to a temporal bias in a portion of the hailstorm environmental field predictions. Consequently,

this bias can have a significant impact on the accuracy of the machine learning predictions. For

example, consider a scenario where a SCS with a lifetime of only one hour develops at 11 UTC. In

such a case, the environmental field information available at 12 UTC may not provide the machine

learning model with the relevant data needed to make accurate forecasts. By incorporating the

environmental field corresponding to the active time period of the daily hailstorms into the machine

learning model, the dynamic changes in the evolution of convective storms are captured within the

the input data. This implementation can be promisingly expected to also improve the prediction

performance of the machine learning model.

Moreover, the daily-accumulated hail-affected areas do not include specific geographical infor-

mation regarding the occurrence of hail. This limitation arises due to the hourly time steps of the

reanalysis data, making it challenging to accurately quantify the location of individual hailstorms

while matching them to the corresponding reanalysis data in the early stages of machine learning

model development. However, as the model progresses, there are opportunities for optimisation.

Once a sufficiently large volume of input data is available, machine learning models can effectively

analyze and comprehend the relationship between other distinguishing characteristics of hailstorms

and the associated preconvective environmental fields.

63



5 Evaluation of ML model performance on hail-affected area prediction

Above all, while there remains scope for future optimization and improvement of machine learning

model, the current findings indicate a relatively superior model performance and favorable prediction

outcomes using the CNN.
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6 Interpretation of convolutional neural
networks for hail predictors

The selection of predictors tries to cover convective parameters included in the clusters of Figure

3.6 (Section 3.2.2) and also those with high correlations with hail-affected areas (Section 3.2.1

and 4.3). On the other hand, it is often perceived that deep learning models are "black boxes"

as learning representations are difficult to extract and present in a human-readable form (Chollet,

2021). A deep understanding on how CNNs make self-decisions to predict hail-affected areas,

based on information gathering and processing of different predictors, is still untouched and the

focus of this chapter.

The sensitivity test results in Section 6.1 reveal the predictors that are optimal for ML-based

predictions of the area affected by potential hail. Section 6.2 introduces a visualization approach

with case studies that highlights the distinctive characteristics of 2D preconvective fields that drive

machine learning models to identify hailstorms in specific environmental contexts, especially the

correct forecasts and false alarms. Section 6.3 attempts to extract potential feature patterns of

these individual hailstorms from the environmental fields. These feature patterns may possibly

be the indicative signal to amplify and capture environmental information about future hailstorm

development, further improving hail forecast accuracy in turn.

6.1 The combination of best predictors

To discern the optimal environmental parameters that yield hail prediction outcomes superior to

traditional approaches, while simultaneously maintaining relatively low computational costs, the

stepwise feature selection method (Details in the Section 3.2.6) is applied to a pre-selected set of

18 candidate convective parameters. As a result of this selection process, seven predictors that

significantly improve the machine learning performance are successfully determined. The details

of these identified predictors and their contribution towards optimizing the prediction results is

illustrated in Figure 6.1.

The machine learning model identified CAPESHEAR as the most important single predictor for hail,

outperforming other convective parameters such VT and TT, primarily due to its responsiveness to

both the instability indices VT, TT and wind shear, as depicted in Figure 6.1a. The synthesis of

humidity Q850, mid-latitude zonal wind speed U500, BULKSH, and instability indices (VT, TT)

related to convective storms, collectively contributed to the best performance of the model. This

performance was observed to increase progressively with the number of predictors, particularly
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6 Interpretation of convolutional neural networks for hail predictors

after the inclusion of the second best predictor, Q850, in which moisture is covered, but not for

CAPESHEAR. This addition yields a relative improvement of 6% in the model performance, as

illustrated in Figure 6.1b.

Note that most of the important predictors are dynamic quatities rather than thermodynamic ones,

although VV6km, U500 and BULKSH obviously only slightly improve the MAE of the model

performance. In the study of Wilhelm (2022), there is a larger correlation between BULKSH and

U500 (Figure 3.5), but BULKSH has the very low correlation with hail-affected area (Figure A.7).

Thus, less additional environmental information on development of hailstorms that can be provided

for the machine learning model. However, this still reflects the effect of wind shear and the impact

of the large-scale circulation in the middle troposphere on small to meso-scale convective systems

that generate hail (Mohr et al., 2020).

The combination of the best predictors at 18 UTC is obtained from the sensitivity test in parallel,

as it can also be used for the prediction of nighttime hailstorms. The results are accompanied by

comparable values of MAEs and a relatively stable performance that represents a model performance

essentially competitive with that for 12 UTC, except that the order, in which the predictors were

selected, was different. Also the moisture component is replaced by relative humidity RH850.

It is also found that CAPESHEAR for 18UTC alone achieves relatively similar MAEs for the

combination of seven predictors (see Figure A.13 in Appendix).

Overall, the application of a stepwise feature selection methodology has facilitated the efficient

identification of the most advantageous predictors by machine learning algorithms. These pre-

dictors improve forecast accuracy while taking into account three crucial aspects (Figure 3.6)

that govern convective storm development: dynamical parameters, thermodynamic parameters,

and thermodynamic-related instability indices which is highly associated with thermodynamics.

However, it remains an open question which spatial information contain most information for the

machine learning models. Thus, further analyses and exploration are imperative to deepen our

understanding in this direction.

6.2 Analysis of activation heatmaps

Because of the randomness in the data during the training process, the order of the released best

predictors does not necessarily represent the importance of the machine learning decisions on a

daily prediction. Heatmaps of class activation is regarded as a useful tool to identify which input

play a significant role in the decision-making process (Section 3.2.7). It is a suitable diagnostic to

specifically visualize where more favourable environmental conditions prevail for hailstorms for

the ML model to predict the daily hail-affected area. In addition, the visualization outcome is very

helpful for analyzing the causes of false alarms in machine learning prediction for further model

optimization (Chollet, 2021).

Out of a total of 72 observed hail events shown in Figure 5.4, one instance is selected from each

of the following two categories for further study: 56 events where the machine learning model
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6.2 Analysis of activation heatmaps

(a) The variation of MAEs as a function of the number of iterations during training for the sensitivity test.

(b) Boxplot of the MAEs distribution in each training period. The Grey line is the variation of averaged MAE
of each training. Percentage numbers represent the relative increased rate of MAEs compared with the last
training.

Figure 6.1: Model performance for preconditions at 12 UTC, represented as the measurement of MAEs from
standardized training data during the sensitivity test using the method of the stepwise feature
selection. Predictor sets of Y-axis in (b) correspond to the legend labels of (a).

accurately predicted hail (hit cases), and 16 events where the model’s prediction was incorrect

(miss cases) based on the categorical verification (Section 3.2.9). This selection is made with the

intention of visualizing the distinct contributions of various convective predictors to the machine

learning model and to delve into an analysis of the reasons behind the failures in machine learning

predictions.

Figure 6.2a shows the ambient conditions of the 7 convective predictors for the hail event success-

fully predicted by machine learning on 13th, May, 2018, as well as the specific location of the area

affected by hailstorms on that day (pink polygons in the lower right subplot of Fig. 6.2a). At that

time, a weak easterly flow related to a blocking anticyclone on its south-eastern flank prevailed over

Germany, causing strong wind shear in the vertical configuration of the atmosphere and resulting in

a cluster of hailstorms (Mohr et al., 2020).
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6 Interpretation of convolutional neural networks for hail predictors

It is found that the red contours of the activation heatmap, when superimposed on top of the ambient

field, mirrored and covered the spatial allocation of CAPESHEAR more directly and inclusively.

Especially the region with the highest activation matches the locations where hailstorms actually

occurred. This observation also holds true for other successfully predicted hailstorms, suggesting

a direct relationship between the spatial distribution of CAPESHEAR and the predictions of the

machine learning model. This also substantiates the identification of CAPESHEAR as the most

effective single predictor in the stepwise feature selection process.

The distribution of other convective predictors such as VT, TT, and other environmental fields

contribute differently to the activation heatmaps for each hail event, but the area with larger values

of different predictors always overlappe the distribution of the relative strong activation, depending

on the intensity of each predictor on the day and the specific environmental factors.

Note that the machine learning model receives instantaneous fields of predictors, while its targets

are daily totals of hail-affected area, which did not include any information about the exact location

of the hailstorms. However, the ability of machine learning to target the location of hailstorm

clusters based on the different importance of the environmental fields of the predictors is quite

promising, as seen in the activation heatmaps.

Under the same condition of large-scale atmospheric circulation, the machine learning model failed

to accurately predict the hail events that occurred on 15th, May, 2018 (Figure 6.2b). On that day,

the hailstorms manifested themselves mostly in the north-eastern region of Germany. Despite

the presence of high values for BULKSH and VV6km in close proximity to the hailstorms, the

environmental conditions were less than ideal. This is primarily attributable to the low values

CAPESHEAR in the vicinity of the hailstorms. As a result, the machine learning model was

misguided by the low values CAPESHEAR and unable to make an accurate prediction. The highest

activation occurs in the southwestern corner where CAPESHEAR is relative high, leading to the

occurrence of the incorrect prediction, despite the prevalence of beneficial moisture conditions

(Q850) and atmospheric instability (VT, TT), which were predominantly concentrated in central

Germany.

Comparing the manifestation of hailstorms in the two German case studies discussed above, it

can be seen that the hailstorm events on 13 May occurred predominantly in relatively restricted

geographical zones, mainly between 12 and 16 UTC. In contrast, on 15 May, the day characterised

by an incorrect forecast, hailstorms, although also mainly occurring between 12 and 15 UTC, had a

comparatively wide geographical distribution and were of short duration. This anomalous pattern,

to a certain degree, elucidates the inaccuracies encountered by the machine learning model in its

predictive ability on that particular day.

Nevertheless, the aforementioned findings derived from the two case studies ascertain the proposi-

tion that machine learning possesses the potential ability to accurately anticipate the emergence

of large aggregations of SCS and may effectively contribute to daily hail prediction for short lead

times. If combined with NWP output the CNN has a high potential to be applied for short-term to

medium-range forecasts in the future.
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6.2 Analysis of activation heatmaps

(a) Case study of correct forecast on 13th, May, 2018. Convective predictor is titled in each subplot, except the lower
right subplot with pink polygons, which shows only the location of the affected areas by the corresponding hailstorms
and the shaded heatmap of class activation relavant to CNN model.

(b) Case study of False alarms on 15th, May, 2018. The detail shown in the subplots is the same as (a).

Figure 6.2: Different ambient conditions (blue shading) at 12 UTC for two case studies of (a) correct
forecast and (b) false alarms from the outcomes of ML model. For VT, TT and CAPESHEAR
only contours of the values are favorable for the active convective and the development of
thunderstorms. The activation (in %) of the CNN (red shading and solid lines contours every
15%) demarcates regions that hold significant relevance for the CNN decision-making and is
overlapped on the fields of convective predictors by red solid lines. Pink polygons in each lower
right subplot represent the hail-affected area by every single hail track on that day.
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6.3 Contribution of different predictors to heatmaps

Upon thorough comparison of cases from correct forecast and false alarms in machine learning-

based prediction, it is found that when clusters of hailstorms manifest within the environmental

domain, machine learning models tend to exhibit a higher likelihood of detection. Consequently, an

intriguing query arises concerning the feasibility of applying a statistical approach, to identify the

specific convective patterns prevalent in hailstorms (Kunz et al., 2020). This process is realized by

averaging the corresponding activation heatmaps, which denote the decision importance assigned

by the machine learning model. This exploration aims to foster a deeper comprehension of the

interrelationship between hailstorm and their corresponding environmental conditions. Additionally,

in the context of false alarm events, the utilization of the statistical analysis proves beneficial in

elucidating the underlying factors responsible for inaccuracies in machine learning predictions.

Such insights can subsequently facilitate the optimization of the model capabilities.

To achieve this goal, a total of 56 cases of accurately predicted hailstorms and 16 cases of false

alarms, along with their corresponding activation heatmaps, were statistically analysed. These

heatmaps represent regional averages over this period of time (Figure 6.3). The results indicate that

there is no significant difference in lower-middle level wind and shear (BULKSH, VV6km) and

convective indices between the two categories, as observed in the environmental fields.

However, it is noteworthy that the correct forecast cases (Figure 6.3a) exhibit a relatively high

CAPESHEAR, together with a prominent large-scale westerly zonal wind at mid-level atmosphere

over Germany (Mohr et al., 2019). Conversely, the false alarm cases (Figure 6.3b) lack these

distinct features and display lower values of Q850, associated with the less humid atmospheric

conditions.

Nevertheless, it is also found that after averaging activation heatmap still coincides to some extent

with the distribution of the large value areas of the environmental field predictors. Although the

activation heatmap of correct forecasts reveals a relative clear structure, the false alarm does not

seem to have the clear and well-defined patterns for the prevailing predictors (the maximum of

the averaged activation heatmap is only 35% for the correct forecast cases and 20% for the false

alarm cases). One possible explanation for no significant maximum activation in hit cases is that

the hail-affected areas in some false alarm cases were still moderately high but slightly below the

optimal threshold, leading to the incorrect forecasts of ML model (Section 5.3). Another interesting

point is regarding the weather situation between these two categories. For U500, which can reflect

the large-scale atmospheric waves propagating in the upper atmosphere, there is a stronger westerly

flow over Germany in the hit cases, associated with the northern flank of blocking systems or ridges.

In the false alarm cases, the easterly flow prevail over Germany, associated with the northern flank

of a low pressure systems.

This also mainly indicates a considerable degree of randomness in the geographical distribution of

hailstorm occurrences, which leads to a significant regional weakening and dilution of the potential

patterns from the averaged activation heatmap towards the conditions of hailstorms.
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(a) Mean conditions of convective predictors for 56 correct forecast events.

(b) Mean conditions of convective predictors for 16 false alarm events.

Figure 6.3: Mean fields of ambient conditions (blue shading) overlapped with the averaged activation heatmap
(red solid line contours in every 5%) of (a) a total of 56 correct forecast events and (b) a total of
16 false alarm events in Figure 5.4. Details is the same as Figure 6.2.
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The environmental mean field of hailstorms does not directly represent the connection between

the activation heatmaps and the individual predictors. In order to further quantify and evaluate the

importance of the daily predictors for machine learning predictions, the spatial correlations were

calculated between the activation heatmaps and the environment fields of the predictors. The aim

of this process is to quantitatively compare the contribution of the individual predictors of correct

forecasts and false alarms for the machine learning decision-making (see Figure A.14 in Appendix

for the specific correlation coefficients for every individual hail events).

For the two cases studied in Section 6.2, the correlation matrix shows that the activation heatmap of

13th, May, 2018 has relatively high correlation coefficients of 0.33, 0.57, 0.43, 0.61, and 0.46 with

U500, Q850, VT, TT, and CAPESHEAR, respectively. The corresponding correlation coefficients

for 15th, May, 2018 are relatively weak, with only 0.3, 0.39, -0.11, 0.12, and 0.14. This also

reflects to some extent statistically how machine learning autonomously relies on environmental

information to predict hail events.

Upon examination of the hail events categorized into correct and incorrect cases, it becomes evident

that there exists considerable variability in the correlation coefficients between the different predictor

fields and the heat maps (Figure A.14). Consequently, the outcomes are shown in a statistical

boxplot (Figure 6.4]. The degree of aggregation of the correlation coefficients ranges in the figure

also reflects to some extent the reliability and stability of machine learning for the individual

predictors for hail prediction. For instance, CAPESHEAR, which exhibits a high correlation with

activation heatmaps and a narrower distribution, reconfirms its potential as a reliable predictor for

machine learning applications within the environmental conditions. In contrast, the correlation

coefficient of U500, representing the importance of zonal winds for the machine learning prediction,

showcases a broader distribution and thus increased variability. This is primarily because upper-level

atmospheric circulation such as blocking can indirectly affect the formation of convective storms

by influencing the atmospheric vertical configuration (Mohr et al., 2019, 2020). The complexity of

these intermediate physical processes, which cannot be directly apprehended by machine learning,

also contributes to the corresponding observed variability.

In addition, the generally higher heatmap correlation coefficients of VT, TT, and CAPESHEAR for

the correct forecast events compared to the false alarm events are also a more intuitive reflection

of the potential role and importance of the three parameters in the successful integration for the

ML model predictive decisions. This further suggests that one direction in improving the accuracy

of machine learning predictions may lie in how to amplify or increase the signal or importance of

relatively important predictors when pre-processing the input data for ML model.

Nevertheless, the entire sample of 72 hail events in the test data is still insufficient, and the results

obtained lack some degree of representativeness of the hailstorm environment due to the retention

of some uncertainty, so more hail data and other methods are needed to confirm the conclusions.

Moreover, activation heatmaps are useful to help diagnose model prediction errors. A more fine-

grained and targeted analysis of heatmaps to identify problems requires a more appropriate approach

for in-depth research. For example, heatmaps centered on individual hailstorms rather than the

72



6.3 Contribution of different predictors to heatmaps

(a) 56 of Correct forecast events

(b) 16 of False alarm events

Figure 6.4: Statistical distributions of the correlation coefficients between heatmaps and predictors in the
boxplot, to reflect the importance of each predictor for the ML model identification process.
The median is the orange line, and mean is the pink shaded triangle for each predictor to
comprehensively characterize the corresponding feature distribution.

whole of Germany could be one approach (Kunz et al., 2020). These may become the next direction

of future work.
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7 Conclusion and discussion

Predicting severe hail is a complex task for numerical weather prediction (NWP) systems. For

the effective hail prediction, these systems can not accurately predict the occurrence, path, and

severity of hailstorms. In addition, the representation of hail in these models is closely linked

to the microphysical parameterisation, a critical source of uncertainty and potential inaccuracy

at the storm level. The rapid progression and changing nature of these storms further limits the

predictability of hail, as forecast errors can escalate rapidly at this scale. It’s therefore vital to

have an accurate understanding of the atmospheric conditions and the inherent uncertainty in these

estimates (Snook et al., 2016).

The objective of this study is to investigate the relationship between the preconvective hailstorm

environments taken from ERA5 reanalysis data and hailstorm occurrence, represented by radar-

derived hailstorm data from 2005 to 2019 during the hail season (April to September) only. More

importantly, the overarching goal is to select the most appropriate predictors in order to develop

a machine learning model that can accurately predict the hail-affected area by collecting and

combining information on convective environmental conditions. In the following, we provide

answers to the research questions raised in Chapter 1:

1. Is there a characteristic geographic distribution of the prevailing convective environ-
ment for hailstorms in Germany?

Yes, in southern Germany the environment is more conductive to hailstorms than in central

and northern Germany, which is reflected in the increasing CAPE, CPARESHEAR and

SHIP from north to south. This trend aligns with the fact that the frequency of hailstorms

in Germany increases progressively from north to south, an observation which logically

corresponds with the gradient in convective conditions, especially the large CAPESHEAR

areas overlapping mountainous or sloping terrain in Baden-Württemberg, Bavaria, and also

northern Hesse (Punge and Kunz, 2016).

2. Is machine learning useful for hail prediction and for better understanding relation-
ships between ambient conditions and hailstorms? What is the predictive skill of the
machine learning models?

Concerning the first question, the findings presented in Chapter 5 confirm that machine

learning holds a significant potential to improve hail forecasting. In comparison to traditional,

non-machine learning forecasting methods, machine learning exhibits a markedly superior

performance, demonstrating the lowest Mean Absolute Errors (MAEs) in terms of model
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bias, thus outperforming climatology and persistence forecasts. The machine learning model

excels in model evaluation, demonstrating an impressive Heidke skill score (HSS) of 0.66 at

a spatial scale of 1740 km2 for daily affected area by hail, alongside a commendable accuracy

rate of 88% when compared to climatology forecast (0.51 HSS) and persistence forecast

(0.36 HSS). The model also has a Probability of Detection (POD) of 0.78, a Critical Success

Index (CSI) of 0.58, and a False Alarm Ratio (FAR) of 0.3, thus positioning it as a highly

competent tool for hail prediction.

3. Which predictors yield the best model performance, and how do they modify the
accuracy of the model prediction?

From the 18 pre-selected convective parameter candidates, U500, BULKSH, VV6km, Q850,

VT, TT, and CAPESHEAR are selected as the seven best predictive indicators that corre-

sponded to the optimal model results. Notably, CAPESHEAR not only demonstrated the

highest correlation with hail occurrence, but also emerged as the best single predictive indi-

cator in the machine learning model. For the parameters representing atmospheric dynamics,

wind shear plays an important role for the accuracy of the model prediction. Higher values

of VT and TT also enhance the machine learning model’s ability to successfully predict hail

events, mainly due to the way these parameters accentuated atmospheric vertical instability.

The inclusion of humidity parameters improved the ML performance further as they may

provide energy from phase change of water vapour for the formation of convective storms.

On the other hand, dynamical parameters such as BULKSH and VV6km, primarily influ-

enced on the mid to low-level vertical wind shear, are highly correlated between each other,

thereby improving slightly the model performance. While U500, as a representation of the

large-scale atmospheric circulation in the middle-upper levels, despite their indirect impact

on convective storm formation, might be not as the most effective in providing valuable

predictive information for the machine learning model.

4. When and why are machine learning models unable to predict hail occurrence?

When isolated thunderstorms or only a small number of storms occurring on a particular

day, from the relative weaker convective environment, specifically extensive regions with

high CAPESHEAR values far away to corresponding storm trajectories, may yield erroneous

predictions of ML model. Similarly, any occurrence of hailstorms after 12 UTC, derived

from radar data with significant time lags, can contribute to incorrect predictions from the

machine learning model. This is largely due to the model’s inability to access sufficient

information about related environmental predictors, consequently inhibiting its predictive

accuracy to hail-affected area. When looking at the weather conditions for the hit cases and

false alarm cases, U500, which indicates large-scale upper atmospheric dynamics, shows

noticeable differences. In hit cases, Germany seemingly experiences stronger westerly winds

associated with the northern side of blocking systems or ridges. In contrast, false alarm cases

are often associated with weak easterly winds, which may be related to the northern edge of

low-pressure systems.
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In summary, statistical methods were firstly applied to investigate the distribution of hailstorm-

favorable environmental conditions across Germany. The relationship between convective variables

and hail-affected area was analyzed to identify potential convective parameters for machine learning,

which are for Germany CAPESHEAR, CAPE, VT, TT, SHIP.

Throughout the machine learning training phase, 15 years of ERA5 reanalysis data and radar-

identified potential hailstorms were divided into 13 years of training data (2005–2017) and 2

years of test data (2018–2019). The predictive performance of the machine learning model was

comprehensively evaluated by comparing its performance separately with that of non-machine

learning models and by assessing various skill scores for verification. Machine learning sensitivity

experiments were conducted for different times of day, different convective parameters and linear

correlation between input data, resulting in the best seven predictors at 12 UTC, which are CAPES-

HEAR, q850, VV6km, U500, BULKSH, TT, VT, with the non-linear activation among the input

parameters and between different layers of the CNN to keep independence during the training.

Ultimately, the activation heatmap serves as a tool to "open up" the "black box" of machine

learning, allowing us to visualize how ML predictions are made. It sheds light on how these seven

predictors differently affect and contribute to machine learning’s decision-making process. The

results indicate that the success of the predictions for the machine learning model is related to the

clusters of hailstorms and the stronger convective environmental field signals that occurred on the

day. Machine learning still cannot accurately predict and localize the occurrence of individual

storms or more dispersed storms with relative weak prevailing convective conditions around.

The performance of machine learning models in predicting the hail-affected area on a daily basis

demonstrated in this study is promising. However, the existing uncertainty of the input data in

combination with the sole use of machine learning predictions to forecast severe convective storms

remains a puzzle. Therefore, the accuracy of the prediction necessitates reinforcement from other

data sources through other predictive model formats, such as ensemble forecasting. On another

front, the key to optimising machine learning models is to obtain as much information as possible

about the variables associated with hailstorm environments, and in addition to the idea of collecting

convective conditions of the center of hail tracks mentioned in Chapter 6, the temporal evolution

of the predictors may also provide opportunities for machine learning optimisation. Furthermore,

machine learning models could potentially provide additional information on prevailing convective

condition otherwise unattainable through numerical forecasts, for example,it may play an important

role in the physical parameterization for model simulation, thereby fine-tuning the accuracy of

numerical model predictions. This unique attribute can potentially underscores the critical role of

machine learning in improving the accuracy of weather forecast.
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Appendix

Figure A.1: Histogram of hailstorms in daily time (UTC).
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Figure A.2: Mean fields of CAPE during the hail season from 2005-2019. Same as Figure 4.4.
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Figure A.3: Mean fields of TT during the hail season from 2005-2019. Same as Figure 4.4.
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Figure A.4: Mean fields of SHIP during the hail season from 2005-2019. Same as Figure 4.4.
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Figure A.5: Mean fields of BULKSH during the hail season from 2005-2019. Same as Figure 4.4.
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(a) Northern Germany (b) Central Germany

(c) Southern Germany

Figure A.6: Correlation maps between CAPE and the daily affected area, same as Figure 4.5.

(a) Northern Germany (b) Central Germany

(c) Southern Germany

Figure A.7: Correlation maps between BULKSH and the daily affected area, same as Figure 4.5.
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(a) Northern Germany (b) Central Germany

(c) Southern Germany

Figure A.8: Correlation maps between SHIP and the daily affected area, same as Figure 4.5.

(a) Northern Germany (b) Central Germany

(c) Southern Germany

Figure A.9: Correlation maps between SLI and the daily affected area, same as Figure 4.5.
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(a)

(b)

(c)

Figure A.10: The outputs of the convolutional neural network at 12 UTC. (a) are the affected area predicted
for non-linear activation function in CNNs, (b) is for linear activation, both with 0.5 of α . The
blue solid line is the ML prediction and the black dashed line is the observation for comparison.
(c) is the validation MAEs of CNN output at 12UTC, as a function of training epochsof model.
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Figure A.11: Same as Figure 5.3, but at 18 UTC.

Figure A.12: Contingency table at the optimal threshold of 1000 km2 for the daily affected area at 18 UTC.
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(a) The variation of MAEs as a function of the number of iterations during training for the sensitivity test.

(b) Boxplot of the MAEs distribution in each training period. The Grey line is the variation of averaged MAE
of each training. Percentage numbers represent the relative increased rate of MAEs compared with the last
training.

Figure A.13: Model performance when preconditions at 18 UTC, same as the Figure 6.1
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(a) For 56 correct forecast events in Figure 5.4. (b) For 16 false alarm events in Figure 5.4.

Figure A.14: Correlation matrix between ambient predictors and the activation heatmaps of 72 observed hail
events at 12 UTC for the preconditions.

89





Bibliography

Ali, P. J. M., R. H. Faraj, E. Koya, P. J. M. Ali, and R. H. Faraj, 2014: Data normalization and

standardization: a technical report. Mach Learn Tech Rep, 1 (1), 1–6.

Aran, M., J. Pena, and M. Torà, 2011: Atmospheric circulation patterns associated with hail events

in lleida (catalonia). Atmospheric research, 100 (4), 428–438.

Atlas, D., 2015: Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology

Conference. Springer.

Auer, A. H., 1972: Distribution of graupel and hail with size. Monthly Weather Review, 100 (5),
325–328.

Bartels, H., and Coauthors, 2005: Projekt radvor-op: Radargestützte, zeitnahe niederschlagsvorher-

sage für den operationellen einsatz (niederschlag-nowcasting-system), final report, deutscher

wetterdienst. Final Report, Deutscher Wetterdienst available via: http://www. dwd. de/radvor-op.

Bean, B. R., and E. Dutton, 1966: Radio meteorology, Vol. 92. Superintendentof Documents, US

GovernmentPrint. Office.

Bedka, K. M., 2011: Overshooting cloud top detections using msg seviri infrared brightness

temperatures and their relationship to severe weather over europe. Atmospheric Research, 99 (2),
175–189.

Billingsley, J. B., 1993: Ground clutter measurements for surface-sited radar. Tech. rep., MAS-

SACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB.

Boddy, R., and G. Smith, 2009: Statistical methods in practice: for scientists and technologists.

John Wiley & Sons.

Bolton, D., 1980: The computation of equivalent potential temperature. Monthly weather review,

108 (7), 1046–1053.

Brooks, H. E., 2009: Proximity soundings for severe convection for europe and the united states

from reanalysis data. Atmospheric Research, 93 (1-3), 546–553.

Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmospheric research, 123, 129–

138.

Brown, L., 1999: A radar history of world war ii. J. Am. Hist. Res.

91



Bibliography

Byers, H. R., and R. R. Braham, 1949: The thunderstorm: report of the Thunderstorm Project. US

Government Printing Office.

Cao, Z., 2008: Severe hail frequency over ontario, canada: Recent trend and variability. Geophysical

Research Letters, 35 (14).

Chai, T., and R. R. Draxler, 2014a: Root mean square error (rmse) or mean absolute error (mae).

Geoscientific model development discussions, 7 (1), 1525–1534.

Chai, T., and R. R. Draxler, 2014b: Root mean square error (rmse) or mean absolute error (mae)?–

arguments against avoiding rmse in the literature. Geoscientific model development, 7 (3),
1247–1250.

Changnon, S. A., 1977: The scales of hail. Journal of Applied Meteorology and Climatology, 16 (6),
626–648.

Changnon Jr, S. A., 1970: Hailstreaks. Journal of Atmospheric Sciences, 27 (1), 109–125.

Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective

mesovortices. part i: Evolution and dynamics. Journal of the atmospheric sciences, 50 (15),
2401–2426.

Chollet, F., 2021: Deep learning with Python. Simon and Schuster.
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