deutsch  | Home | Sitemap | KIT
picture: Bernhard Mühr,

Statement regarding Nature Geoscience manuscript “Southward shift of the global wind energy resource under high carbon dioxide emissions” (


Based on an ensemble of 10 global climate model simulations following the RCP4.5 and RCP8.5 scenarios, this study reports a strong decrease of potential wind electricity generation in the mid-latitudes during the XXI Century. The authors use a simple methodology and data with low spatio-temporal resolution, and consider an exemplary wind energy turbine for the computations. Compared to other regions of the world (notably North America), the changes for Europe are comparatively small. These projections for Europe are partially in agreement with studies based on datasets with much higher spatial and temporal resolution (e.g., Tobin et al., 2015, Reyers et al., 2016, Moemken et al., 2018). These studies reveal rather small changes of wind energy potentials for Europe on the continental scale (+/- 5%). On the other hand, they point to increased variability of wind electricity generation in multiple time scales. The differences to the Nature Geoscience study are related with the different data resolution and methodology.

In particular, an increased occurrence of low wind speed (< 3m/s) events reported in Moemken et al. (2018) may cause challenges for the energy supply across Europe. However, this challenge can be overcome with suitable mitigation strategies and updated planning. For example, Grams et al. (2017) provide evidence that the concentration of wind parks in some areas (e.g. North Sea) is problematic to warrant a reliable wind electricity generation. A pan-European management strategy and a more de-central distribution of wind parks would permit to balance the weather and climate variability and thus contribute to a more reliable energy supply. Moreover, the joint management of different renewable sources (notably solar) would further contribute to mitigate the possible changes in wind energy production in future decades.



Grams, C. M., R. Beerli, S. Pfenninger, I. Staffell, and H. Wernli, 2017: Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nature Climate Change, 7, 557–562, doi:10.1038/nclimate3338.

Moemken, J., M. Reyers, H. Feldmann, and J. G. Pinto, 2018: Wind speed and wind energy potentials in EURO-CORDEX ensemble simulations: evaluation and future changes, Journal of Geophysical Research: Atmospheres, in revision.

Reyers, M., J. Moemken, and J. G. Pinto, 2016: Future changes of wind energy potentials over Europe in a large CMIP5 multi-model ensemble. Int. J. Climatol., 36, 783–796, doi:10.1002/joc.4382.

Tobin, I., and Coauthors, 2015: Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change, 128, 99–112, doi:10.1007/s10584-014-1291-0.


Contact: Joaquim G. Pinto

Contact: Christian M. Grams