

PT1: Climate and hydrological cycle

Convection Studies with the Doppler-Lidar "WindTracer" Dr. A. Wieser, Dipl. Met. R. Huckle, Dr. U. Corsmeier, Dr. N. Kalthoff, Prof. Dr. Ch. Kottmeier

CLR Photonics WindTracer 2 µm Doppler-Lidar specifications Light scattered Laser: off of naturally-occurring Wavelength 2 0225 µm (eve save) Return Light is Doppler Shifted by Moving Aerosols Pulse energy 2 mJ dust particles ned to Pulse width 425 ns de 2-3D Sc Pulse repetition frequency 500 Hz Receiver: Bandwidth
Sampling frequency 50 / 100 MHz 100 MHz 50-100 m pulse ansmitted 100-50 Pulse Envelope (50-100 m) Scanner: Beam diameter 8 cm es a second Azimuth (range, step, speed) 360°, 0.01°, 25° s-1 Elevation (range, step, speed) 190° 0.01° 25° s⁻¹ Output: P.o tive wind induces a Doppler frequency shift in the backscattered light; this frequency shift is detected by the sensor 120 / 60 Range gates Range (min, max) 372 m, 10 km 72 – 96 / 192 m Portion of Scat red Light Col Width 10 20 or Range resolution Velocity range: Velocity resolution +20 / +40 m s-1 0.6 m s⁻¹ Update frequency (LOS) 10 Hz nside the Lidar shelter: electronics rack Doppler-Lidar functional principle with operator GUI (left) and laser unit (right) vertical velocity in m/ **Blue Convection**

Vertical wind velocity (upper left) and aerosol backscatter signal (lower left) from measurements with vertically pointing beam and photos from cloud camera during a nearly cloud free period. The aerosol backscatter signal shows the growing of the mixing layer. CSIP measurement campaign, Chilbolton, UK, June 10, 2005

Profiles of vertical wind velocity and σ_w in a in a growing mixing layer under cloud free conditions at Forschungszentrum Karlsruhe, August 2, 2004.

Cumulus Convection

Vertical wind velocity (upper left) and aerosol backscatter signal (lower left) from measurements with vertically pointing beam and photos from cloud camera during a period with active and passive cumulus clouds. CSIP measurement campaign, Chilbolton, UK, June 11, 2005

Profiles of vertical wind velocity and σ_w in a fully developed mixing layer with cloudy periods at Forschungszentrum Karlsruhe, August 2, 2004. The cloud base is indicated as red solid line.

Thunderstorm Event

Vertical wind velocity (upper left) and aerosol backscatter signal (lower left) from measurements with vertically pointing beam and photos from cloud camera during a thunderstorm event with heavy rain and hail (13:45 UTC). CSIP measurement campaign, Chilbolton, UK, June 4, 2005

Normalized profiles of α_s^{2+} w² in fully developed mixing layer under cloud free (left) and cloudy (right) conditions from Lidar (o) and Tower data (+) at Forschungszentrum Karlsruhe, August 2, 2004. Solid line is free convection prediction, dashed is according to Willis & Deardorff (1974).