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Abstract

This study investigates drop size distributions (DSDs) and precipitation properties of rain
events in the Neckar Valley and the Swabian Jura in southwestern Germany. The gamma
distribution and the moments method are utilised to describe and deduce DSD parame-
ters from data recorded by a laser optical disdrometer network of 23 Parsivels, deployed
in the framework of the Swabian MOSES field campaign conducted in summer 2021.
A quality control is developed for this network used for the first time. To test the accuracy
of the disdrometers a comparison of data measured by collocated Parsivels is done. For
the median volume diameter D0, it is shown that variations can be attributed to the ex-
pected statistical variations of this parameter.
The mutual dependencies of the gamma distribution parameters as well as their relation
with the rain rate are examined by evaluating their two-dimensional frequency distribu-
tions. The median volume diameter is found to increase with increasing rain rate up to rain
events with R ≈ 40 mm h−1 to a maximum of D0 = 2.4 mm. Stronger rainfall events ex-
hibit median volume diameter means within a small value range between 2.2 and 2.4 mm.
Further, a nearly linear relationship is observed between the shape parameter µ and the
slope parameter λ. The normalised intercept parameter NL exhibits a slight dependence
on µ and is relatively constant for different rain rates.
An analysis of the spatial variability of the DSDs reveals the influence that the orographic
features of the region have on the parameters. DSDs of rainfall in the Swabian Jura dis-
play a distinctively smaller median volume diameter compared to the Neckar Valley while
simultaneously exhibiting higher rainfall totals. However, the rainfall total of events with
rain rates larger than 20 mm h−1 is bigger in the Neckar Valley, which implies a more fre-
quent occurrence of heavy rainfall events.
A time series of the rain intensity, recorded in-situ by the Parsivels, is compared to the
observations from an X-band radar, for the supercell that occurred on June 23, 2021. As
expected, the coincidence in time between the in-situ measurement and remote sensing
is confirmed. Further, the time series of the rain rate and the median volume diameter
during the passage of the supercell over Rottenburg display a strong intra-event temporal
variability.
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Zusammenfassung

In dieser Studie werden Tropfengrößenverteilungen (DSDs) und Niederschlagseigen-
schaften von Regenereignissen im Neckartal und auf der Schwäbischen Alb in Südwest-
deutschland untersucht. Die Gamma-Verteilung und die Momentenmethode werden zur
Beschreibung und Ableitung von DSD-Parametern aus den Daten verwendet, die von ei-
nem Disdrometer-Netzwerk bestehend aus 23 Parsivels aufgezeichnet wurden. Dieses
wurde im Rahmen der Feldkampagne Swabian MOSES im Sommer 2021 eingesetzt.
Zunächst wird eine Qualitätskontrolle für dieses Netzwerk entwickelt, das zum ersten Mal
eingesetzt wird. Um die Genauigkeit der Disdrometer zu testen, wird ein Vergleich der von
benachbarten Parsivels gemessenen Daten durchgeführt. Für den Tropfendurchmesser
mittleren Volumens D0 wird gezeigt, dass Abweichungen auf die erwarteten statistischen
Schwankungen dieses Parameters zurückgeführt werden können.
Die gegenseitigen Abhängigkeiten der Parameter der Gammaverteilung sowie ihr Zusam-
menhang mit der Regenrate werden durch Auswertung ihrer zweidimensionalen Häufig-
keitsverteilungen untersucht. Es zeigt sich, dass der typische Tropfendurchmesser mit
zunehmender Regenrate bis zu Regenereignissen mit R ≈ 40 mm h−1 auf ein Maximum
von D0 = 2, 4 mm ansteigt. Stärkere Regenereignisse weisen Mittelwerte des typischen
Tropfendurchmessers innerhalb eines kleinen Wertebereichs zwischen 2,2 und 2, 4 mm
auf. Außerdem wird ein nahezu linearer Zusammenhang zwischen dem Formparameter
µ und dem Steigungsparameter λ beobachtet. Der normierte Achsenabschnittsparame-
ter NL weist eine leichte Abhängigkeit von µ auf und ist für verschiedene Regenraten
relativ konstant.
Eine Analyse der räumlichen Variabilität der DSDs zeigt den Einfluss der Orographie des
Messgebiets auf die Parameter. DSDs von Niederschlägen auf der Schwäbischen Alb
weisen im Vergleich zum Neckartal einen deutlich kleineren typischen Tropfendurchmes-
ser bei gleichzeitig höheren Niederschlagssummen auf. Allerdings ist die Niederschlags-
summe von Ereignissen mit Regenraten größer als 20 mm h−1 im Neckartal höher, was
auf ein häufigeres Auftreten von Starkregenereignissen dort hindeutet.
Eine Zeitreihe der Regenrate, die von den Parsivels in-situ aufgezeichnet wurde, wird
mit den Beobachtungen eines X-Band-Radars für die der Superzelle vom 23. Juni 2021,
verglichen. Wie erwartet, bestätigt sich die zeitliche Übereinstimmung zwischen der in-
situ-Messung und der Beobachtung des Radars. Außerdem zeigen die Zeitreihen von
der Regenrate und dem typischen Tropfendurchmesser für den Durchgang der Superzel-
le über Rottenburg eine starke zeitliche Variabilität innerhalb des Ereignisses.
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1 Introduction and motivation

The drop size distribution (DSD) is an essential property of precipitation and among the
easily observable consequences of rain microphysics. There are multiple meteorologi-
cal applications for DSDs, e.g. in radar meteorology or in the description of microphys-
ical processes of precipitation systems such as winter storms or tropical storms (Tokay
et al., 1999; Schuur et al., 2001; Yuter et al., 2006; Tokay et al., 2008). Other applica-
tions include the evaluation of the impact of DSDs on soil erosion or even the effect the
distribution has on rainwater penetrating buildings during extreme wind events (Azevedo
Coutinho and Pereira Tomás, 1995; Lopez et al., 2011).

Dual polarization radars can provide indirect information on DSD and hydrometeor type
of precipitation. However, remote sensing measures large volumes and therefore radars
depend on integral quantities as e.g. reflectivity, frequency Doppler shift (providing infor-
mation on the speed of probed particles) and polarimetric information of the scattered
electromagnetic waves (Ryzhkov, 2019). Interpretation of active remote measurements
like radar measurements always poses an inverse problem. To infer the atmospheric state
from the measurement, one cannot avoid making simplifying assumptions that are not al-
ways well met. Furthermore, rain rate is not among the measured properties. It has to
be deduced from the radar measurements, e.g. by the non-physical Z /R-relation. All this
makes radar observations susceptible to errors. Ground truth measurements of DSDs
provide a reference to validate radar-based estimates (Goddard et al., 1982; Schuur
et al., 2001; Adirosi et al., 2020; Conrick et al., 2020). Additionally, they are a means to
improve the accuracy of radar retrievals such as the quantitative precipitation estimation
(QPE), which is a method to approximate precipitation intensity (Brandes et al., 2004).
However, ground truth measurements with rain gauges are also fraught with difficulties.
These include too much or too little rain as well as strong winds that distort the record of
precipitation totals. Further problems arise from equipment maintenance and the lack of
representativeness of the measurements.

The widely used Parsivel (Particle Size and Velocity) disdrometer (Löffler-Mang and Joss,
2000; Friedrich et al., 2013b; Thompson et al., 2015; Chen et al., 2017; Ji et al., 2019;
Chen et al., 2020; Liu et al., 2021) provides such in-situ DSDs and other precipitation
properties by determining the size and fall velocity of particles falling through its measur-
ing area.

In this Master’s thesis data collected in the framework of the Swabian MOSES (Modular
Observation Solutions for Earth Systems) (KIT, 2021) field campaign was used to mea-
sure and investigate DSDs. The Swabian Jura and the Neckar Valley in the south-west

1



1 Introduction and motivation

of Germany is an area susceptible to hydrometeorological extremes. It displays the most
frequent thunderstorms with hailfall activity in Germany (Fluck et al., 2021). Heat waves
and droughts are also common phenomena in this region. To better understand how such
phenomena arise and to improve their prediction, the field campaign Swabian MOSES
has been conducted there during summer 2021. The campaign is a combined effort by a
large number of institutions, with the Institute of Meteorology and Climate Research (IMK)
of the Karlsruhe Institute of Technology being the lead contributor. Countless measuring
systems were used to investigate the atmospheric conditions, including a network of 23
Parsivel disdrometers at 18 different sites. This network is an integral part of KITcube, a
mobile integrated atmospheric observation system operated by the Department of Tro-
posphere Research of the IMK. The instrumentation of the KITcube also incorporates
a dual-polarisation X-band radar, which enables the above mentioned comparisons be-
tween radar estimates and in-situ measurements in future studies.

Apart from Liu et al. (2021), who had 34 Parsivels, but distributed over a much larger
area compared to the Swabian MOSES campaign, no experiment is known with such a
large number of Parsivels in operation. The dense network enables an examination of the
spatial variability of DSDs with a one of a kind high resolution.

The Parsivel network was used for the first time in this experiment. Therefore, a quality
control had to be developed first (subsection 3.4.1). The interest of this thesis is in sum-
mer precipitation events with heavy impacts on common welfare. However, the measure-
ments show in the vast majority of events moderate, weak or even very weak precipitation.
The characteristics of these weak precipitation events can only be determined with large
errors because few hydrometeors are recorded here. Excluding the many weak events
from the analysis is therefore a first step to be able to focus on relevant measurements
(section 4.1).

The measurements at sufficient precipitation intensity are then evaluated to describe the
drop spectrum with a few parameters. Here the normalized gamma distribution (Testud
et al., 2001; Illingworth and Blackman, 2002) is utilised as a mathematical model. The
accuracy with which these parameters can be determined is investigated by comparing
measurements from neighbouring Parsivel instruments. The minimum requirement that
the differences of synchronous, collocated measurements must remain small compared
to the natural variability of these parameters during the whole experiment must be met
(subsection 3.4.3).

Based on these preliminary investigations, the properties of the precipitation can then be
analyzed. In particular, the mutual dependence of the determined parameters on each
other can be examined (section 4.1). First, it is a matter of investigating these depen-
dencies for the entire experiment. By defining three parameters, the description of the
gamma distribution is complete. In principle, one would like these three parameters to be
independent of each other, i.e. to represent independent properties of the drop spectrum.
For practical application, it is particularly relevant how the parameters behave relative to
the rain rate.
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The spatial distribution of the Parsivels during this experiment allows an analysis of the
spatial variability of the determined parameters (section 4.2). Is there an effect of the
orography of the measuring area on the properties of precipitation? In what properties of
precipitation can an effect of orography be found?

Finally, the data measured during the occurrence of a supercell with heavy rain and hailfall
on June 23, 2021 causing massive damage in the measuring area is analysed. Based on
this incident of unusual intensity, the temporal agreement of ground truth measurements
by the Parsivels and remote sensing by the X-band radar is tested (section 4.3).

To summarize, the specific objectives of this thesis are the following: One is the control of
the quality of the Parsivel network, which was used for the first time. Determining the DSD
from disdrometer measurement is in principle prone to statistical errors due to small sam-
ple sizes (Kann et al., 2015; Jaffrain and Berne, 2011). Additional imperfections because
of instrument limitations easily lead to unusable measurements. Based on a compari-
son of simultaneously measured DSD of collocated Parsivels, these uncertainties can be
quantified.
Another goal is the investigation of the interdependencies of the parameters of the
gamma distribution. The gamma distribution has three parameters. The intent is to find a
description where these three parameters are statistically independent in observed rain.
In that case the three parameters describe three different properties that might have a
physical meaning. The dependencies have been investigated in previous studies (e.g.
(Chen et al., 2016; Liu et al., 2021)). With this thesis the rain properties from an addi-
tional region can be added.
Orography has an impact on the development of precipitation. This leads, among others,
to known local variations in the spatial distribution of rain and thunderstorms. Investigat-
ing how these variations are represented in the DSD is yet another goal. Knowledge on
the impact of orography on DSD could help to improve radar products, such as QPE.

This thesis is divided into five sections. Following the introduction, the theoretical con-
cepts of the formation of DSDs at ground-level and the gamma distribution are explained.
Subsequently, the data acquisition, which includes the experimental setup, the introduc-
tion of the measuring device as well as the data processing, is addressed in the third
chapter. In chapter four, the results of this thesis are presented. A summary and conclu-
sions of this work are given in the final chapter.
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2 Theoretical concepts

2.1 Drop size distribution

The drop size distribution (DSD) is a fundamental property of precipitation. It states the
number of drops n(D) dD in a diameter range between D and D + dD per unit volume.
This distribution n(D) is of great interest because it is needed to determine, for example,
the rain rate R or the reflectivity factor Z of rain:

R =
π

6

∞∫
0

v (D)n(D)D3 dD , (2.1)

and

Z =

∞∫
0

n(D)D6 dD , (2.2)

with the terminal fall velocity of drops v (D) (Rogers and Yau, 1996). Radars can only mea-
sure Z , which depends on the 6th power of D. The non-physical approximation Z = aRb

is used to estimate the rain rate, with Z given in mm6 m3 and R in mm h−1. This relation-
ship is known as the Z/R-relationship. a and b are empirically determined factors and
vary with atmospheric conditions as well as type of precipitation. Due to the dependency
of Z and R on n(D), radar meteorology profits from a precise knowledge of the shape of
the DSD (spectral shape) of rain.

The following section explains the critical processes that contribute to the shape of DSDs
at ground level. Precipitation formation directly influences the spectral shape of rain, in-
cluding processes that take part in the development of clouds and the growth of ice par-
ticles and raindrops therein. However, the majority is masked by processes taking place
while the drops fall to the ground.
The change in the DSD shape below the cloud base is affected by processes that mainly
depend on meteorological variables such as temperature, relative humidity and wind. A
particularly strong contribution to changes in the DSD brings the alteration of the number
density of small drops. The number of small drops increases through larger drops break-
ing up during sedimentation. This effect gets partially compensated by the collection of
small drops through larger drops, coalescence of drops, or complete evaporation of small
drops (Pruppacher and Klett, 1997).
The area in which the DSD is influenced most notably below the cloud is referred to as the
bright band in radar meteorology. Falling ice particles start melting when the temperature
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2 Theoretical concepts

of the surrounding air is warmer than 0◦C. However, the melting takes place over several
hundred meters because of the limited rate the latent heat of the ice phase particles can
dissipate in the surrounding air. Therefore, the hydrometeors are typically melted com-
pletely at about 5◦C. In the melting process, the ice particles are covered by a thin layer
of water. This leads to a hydrometeor with the size of an ice particle and the reflectivity of
water Pruppacher and Klett (1997).
Due to its larger dielectric constant, water is a better backscatterer than ice, as can be
seen, e.g., from the scattering amplitudes in the Rayleigh approximation (Ryzhkov, 2019).
The water-covered ice particle results in an increased scattering of the electromagnetic
waves of the radar and subsequently in a jump in reflectivity (Pruppacher and Klett, 1997).
The term bright band comes from the single-color analogue displays which were used in
the early days of radar technology that represented reflectivity through brightness. Thus,
the area with increased reflectivity was seen as a bright band on the screen.
Shortly before the melting starts, snow crystals typically aggregate to big sizes of up to 5
to 10 mm. The fall speeds of these large particles are about 1 to 2 m s−1. Other ice par-
ticles such as hailstones or graupel, which also result in the bright band when they melt,
fall at higher velocities. During the passing of the bright band, ice particles can break
up under certain conditions. When melting the ice particles turn into drops, typically with
diameters between 1 and 2.5 mm. In comparison to snowflakes, the melted drops have
very different aerodynamics resulting in larger fall velocities. The drops of typical diame-
ters have fall velocities between 4 to 8 m s−1 (Pruppacher and Klett, 1997).
Assumptions about cloud physics based on DSDs measured at ground level are in gen-
eral afflicted with high uncertainty due to the multitude of the above-mentioned processes
taking place. However, it is possible to gain cloud information from ground-level DSDs.
For example, Thompson et al. (2015) as well as Ji et al. (2019) have been working on a
parameterization of DSDs in order to deduce a reliable method to differentiate between
convective and stratiform precipitation.

In general, raindrops are found in a size range of up to 5 mm in diameter. In some rare in-
stances, drops of up to 8 mm have been reported (Beard et al., 1986; Chen et al., 2020).
But even in laboratory conditions, drops never exceed about 10 mm because they be-
come hydrodynamically unstable. Generally, drop sizes of more than 2 to 3 mm are rare
if not for thunderstorms or rain events with rain rates larger than 50 mm h−1.
Raindrops smaller than 0.28 mm are almost perfect spheres because the surface tension
forces are predominant (Pruppacher and Beard, 1970). Drops with a diameter between
0.28 and 1 mm start taking the form of oblate ellipsoids due to hydrostatic pressure gra-
dient within the drop and aerodynamic forces coming into effect (Pruppacher and Klett,
1997). Yet, the effects in that size range are so small that drops can still be well approx-
imated as spheres. For drops with D > 1 mm the aerodynamic forces play larger role.
The deforming results in a shape of an oblate ellipsoid with a flat base. Figure 2.1 shows
the shape of drops with different diameters. Drop diameters are mostly given in volume-
equivalent diameters to account for this change in shape.
Drops of ellipsoidal shape oscillate between an oblate and a prolate form, but spend the
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2.2 Analytical description of the DSD

Figure 2.1: Shapes of raindrops of different volume-equivalent diameter falling at their terminal
velocity. The diameter in mm from right to left is: 1.35, 1.725, 2.65, 2.90, 3.675 and
4.00. This graphic is taken from Pruppacher and Beard (1970).

larger amount of time in the oblate form because of its higher stability (Pruppacher and
Klett, 1997).

Their different sizes and therefore different weights and shapes result in different terminal
fall velocities. The fall velocity is determined by the interplay of the gravitational force and
the upward acting frictional force. In-situ conditions make it impossible to analytically ap-
proach the relationship of terminal fall speed vt and diameter D. There are many different
attempts to determine vt (D). In this work the commonly used empirical relation found by
Atlas et al. (1973) will be used:

vt (D) = vmax − v1exp(−αD) , (2.3)

with vmax = 9.65 ms−1, v1 = 10.3 ms−1 and α = 0.6 mm−1.

A drop size and velocity distribution (DSVD) is needed to calculate DSD parameters
(section 3.3) from the data recorded by the measuring device used in this thesis because
it classifies drops on the basis of both these parameters. This distribution states the
number of drops n(D, v ) dD dv in a diameter range between D and D + dD and a velocity
range between v and v + dv per unit volume.

2.2 Analytical description of the DSD

Different approaches have been made to describe the DSDs analytically, e.g. by Marshall
and Palmer (1948); Feingold and Levin (1986); Torres et al. (1994). Historically, the most
commonly used frequency distribution was the one established by Marshall and Palmer
(1948):

n(D) = N0e−λD , (2.4)

with the intercept parameter N0 and the slope parameter λ. They believed that the in-
tercept parameter is a constant and could be determined by an extrapolation of this
exponential distribution to D = 0 mm. This resulted in the empirically found value N0 =
8×103 m−3mm−1. They also found that the slope parameter is directly related to the rain
rate in the following manner: λ = 4.1R−0.21mm−1. The constant N0 and the assumption
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2 Theoretical concepts

that λ only depends on R enabled them to deduce values for the factor a and the expo-
nent b of the above-mentioned Z/R-relationship Z = aRb.
In later works on the description of DSDs it was shown that N0 is not a constant and that λ
can take other values (e.g. Sekhon and Srivastava (1971)). DSDs of samples measured
over long intervals, say one hour, are still well described by the Marshall-Palmer distribu-
tion, if the parameters N0 and λ are adapted.
However, for samples measured over short intervals, say one minute or less, it was shown
that the maximum of DSDs was at a value D > 0 mm (e.g. Willis (1984)). To account for
this observation, the gamma distribution, a frequency distribution with three parameters,
was introduced to describe the drop spectrum:

n(D) = N0Dµe−λD . (2.5)

The additional shape parameter µ enables to describe a decrease in number concentra-
tion of small drops. Evaluating DSDs of one-minute samples is common practice nowa-
days. The gamma distribution is the most widely used analytical description of the size
spectra of raindrops in recent works on this topic (Willis, 1984; Testud et al., 2001; Illing-
worth and Blackman, 2002; Smith and Kliche, 2005; Kliche et al., 2008; Cao and Zhang,
2009; Mallet and Barthes, 2009; Liu et al., 2021).

Limiting sample intervals to one minute does not come without problems. Short intervals
lead to DSDs where the number of the rarer large drops (D > 3 mm) is so small that
statistical errors become significant (Handwerker and Straub, 2011; Jaffrain and Berne,
2011), which is especially problematic since reflectivity is a function of 6th power of the
drop diameter (Equation 2.2). Therefore, large drops contribute significantly more to the
reflectivity factor Z than small drops do. Thus, the reflectivity factor Z deduced from such
DSDs is potentially flawed. This circumstance is known as "sampling problem".

An unphyiscal property of the gamma distribution is the dimension of N0: length−4−µ. It
depends on µ and this should not be the case if the parameter carries a physical mean-
ing. The intercept parameter N0 also strongly correlates with µ, which further indicates
the suboptimal choice of the three parameters N0, µ and λ.
Instead the more intuitive parameters NL, D0 and µ can be used preferably. The normal-
ized intercept parameter NL will be introduced by the end of this section. A typical drop
diameter, such as D0, can be defined in different ways. One possibility is the median
volume diameter, that splits the liquid water content (LWC) in two. That means all drops
smaller than the median volume diameter D0 of one measured sample contain as much
water as all drops larger than D0:

π

6

D0∫
0

n(D)D3 dD =
π

6

∞∫
D0

n(D)D3 dD . (2.6)
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2.2 Analytical description of the DSD

To calculate the median volume diameter the numerically found relationship suggested
by Ulbrich (1983) is adopted:

D0 =
µ + 3.67

λ
. (2.7)

D0 is solely dependent on parameters of the gamma distribution and thus, a property
thereof.

A frequency distribution, such as n(D), can be described by its moments, which are de-
fined as:

Mi =

∞∫
0

n(D)Di dD . (2.8)

For the gamma distribution this becomes:

Mi = N0
Γ(µ + i + 1)

λµ+i+1 , (2.9)

with the Gamma function Γ (e.g. Vivekanandan et al. (2004)). Important physical prop-
erties of precipitation can be expressed as moments of this distribution. M0 is the total
amount of drops per unit volume Nt. M3 multiplied by the constant factor π

6ρw, with ρw as
the density of water, is the liquid water content (LWC). M6 is the radar reflectivity factor
Z (Equation 2.2). Although the rain rate R is not represented by one of the moments, the
fourth moment, M4 is often taken as an approximation of R.
These moments can vice versa be used to determine the parameters of a DSD. As there
are three parameters, three moments are sufficient. The equivalence of moments and
precipitation characteristics enables the determination of the moments from the mea-
sured quantities. The choice of the three moments Mk , Ml and Mm (0 ≤ k < l < m)
that are used to determine the three parameters N0, µ and λ of the gamma distribution is
arbitrary:

[(µ + m)...(µ + l + 1)]l−k

[(µ + l)...(µ + k + 1)]m−l = M l−k
m Mk−m

l Mm−l
k , (2.10)

λ =
[

Mk

Mm

Γ(µ + m + 1)
Γ(µ + k + 1)

] 1
m−k

, (2.11)

N0 = Ml
λµ+l+1

Γ(µ + l + 1)
. (2.12)

Intuitively, it seems obvious to use the moments M0, M3 and M6, representing precipitation
properties, to calculate the parameters. But moments correlate strongly and therefore
parameters vary depending on the chosen combination of moments used. The accuracy
of various different moment combinations has been examined by, for example Smith and
Kliche (2005) and Handwerker and Straub (2011). In this work the three lowest moments
i = 0, 1, 2 will be used, following the recommendation of Handwerker and Straub (2011).
The good performance of the lowest three moments is a consequence of the sampling
problem mentioned above. Higher moments are stronger biased by the sampling problem
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2 Theoretical concepts

because of the proportionality Mi ∝ Di .
Taking the first three moments with k = 0, l = 1 and m = 2, the equations 2.10, 2.11 and
2.12 represent an analytically solvable system of equations which yields the following
expressions for the parameters µ, λ and N0:

µ =
1

M0M2
M2

1
− 1

− 1 , λ =
[

M0

M2
(µ + 2)

] 1
2

, N0 = M1
λµ+2

Γ(µ + 2)
, (2.13)

for M2
1 ̸= M0M2 and M2 ̸= 0.

This approach to determine the parameters of the gamma distribution is called the "mo-
ments method" (Handwerker and Straub, 2011). There are also other methods; e.g. the
maximum likelihood method as suggested by Haddad et al. (1997). However, for the sam-
ples at hand, the moments method is best suited, even though this method is inherently
biased (Smith and Kliche, 2005).

The gamma distribution n(D) has the dimension length−4. Its parameters have the follow-
ing dimensions: λ has length−1, µ has dimension one and N0 has length−4−µ. To avoid
the above mentioned problematic dependency of N0 on µ, the gamma distribution can
be normalised. The moments mentioned above are used for this purpose. Rearranging
Equation 2.9 for N0 yields:

N0 = Mi
λµ+i+1

Γ(µ + i + 1)
. (2.14)

Inserting this expression for N0 in the gamma distribution, one obtains:

n(D) = Mi
λµ+i+1

Γ(µ + i + 1)
Dµe−λD . (2.15)

The problem with this equation is that Mi does not have the desired dimension length−4.
To establish the normalized gamma distribution as an expansion of the historically com-
mon Marshall-Palmer distribution, Equation 2.15 should yield the Marshall-Palmer dis-
tribution for µ = 0, so that Ni = N0. To achieve this the following factor is introduced,
anticipating the next step of normalization (Illingworth and Blackman, 1999):

Mi = Ni
i !

3.67i+1 Di+1
0 . (2.16)

In order to get the desired dimension and to reduce the correlation with µ, Illingworth and
Blackman (1999) suggested a normalization with the liquid water content (M3) so that:

n(D) =
3!

3.674︸ ︷︷ ︸
=0.033

NL
λµ+4D4

0Dµ

Γ(µ + 4)
e−λD , (2.17)
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2.2 Analytical description of the DSD

with the normalization factor of the third moment NL = 3.674M3
6D4

0
obtained by transposing

Equation 2.16. NL has the desired dimension of length−4 and the interdependency of the
three parameters NL, λ and µ is now weak.
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3 Data acquisition and methods

3.1 Experimental setup

3.1.1 Swabian MOSES field campaign

The Swabian Jura and the Neckar Valley in the south-west of Germany are the areas
with the most frequent hail events in this country (Puskeiler et al., 2016; Schmidberger,
2018). The area is densely populated and the Neckar Valley is heavily industrialised,
which leads to high financial risks, but more importantly, risks of population health. In
addition to these factors, the region shows some interesting orographic features, too. It
has a large altitudinal gradient, up to 1016 m MSL on the Jura and down to about 290 m
MSL in the Neckar Valley at Nürtingen, and a versatile soil type profile, to name just two.

For the above-mentioned reasons, this area is extremely interesting for a research cam-
paign on heavy precipitation. A large body of institutions realised such a field campaign
with Swabian MOSES. The institutions invlolved are: Institute of Meteorology and Cli-
mate Research (IMK) of the Karlsruhe Institute of Technology (KIT), Helmholtz Center for
Environmental Research (UFZ), Technical University of Braunschweig, Research Center
Jülich (FZJ), Eberhard Karls University of Tübingen with the CRC 1253 CAMPOS, Uni-
versity of Hohenheim, Helmholtz Center Potsdam - German Research Center for Geo-
sciences (GFZ), German Weather Service (DWD), German Aerospace Center (DLR) and
Center of Solar Energy and Hydrogen Research Baden-Württemberg (ZSW).

The campaign aimed to observe two different hydro-meteorological extremes. First, the
occurrence of convective storms, ideally with heavy rainfall and hail, as indicated earlier.
Secondly, the appearance of large-scale heat waves and droughts. Both these events typ-
ically occur in summer, which is why the campaign was conducted from May to September
2021. The intense measuring phase, where the focus was on convection cells, thunder-
storms and related weather phenomena was from Mai to July 2021. During this period
a mobile team was on alert at all times to start an IOP (intensive operation phase). An
IOP meant regular radiosoundings every three hours (or more frequent) and an advanced
ability to deal with problems of the observation system immediately when they occurred.

The observation system MOSES is a new highly flexible observation system of the
Helmholtz Association consisting of mobile sub-systems (e.g. KITcube) (Weber et al.,
2022). The range of measuring devices used in the Swabian MOSES campaign is huge.
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X-Band radar, cloud radar, cloud camera system, microwave-radiometer, energy bal-
ance station, radiosondes, swarm sondes, Lidar-network, meteorological stations, Par-
sivel network and hail sensors are just the devices that belong to the mobile KITcube
module, which was based near Rottenburg, located southwest of Tübingen (Figure 3.1).
Additional data came from aerosol measuring systems, balloon soundings, stream sur-
veys, an infrasound sensor and the MoLEAF (Mobile Land-Ecosystem-Atmosphere Flux)
Tower. On days of interesting convection, when thunderstorm activity was not too strong,
two research aircraft did also collect full meteorological data, such as temperature and
moisture at high temporal resolution for turbulence investigations. This multitude of in-
struments allows for a very complete assessment of atmospheric parameters and helps
to analyse the whole chain of events related to a certain weather phenomenon. What
triggers the event? How does it develop? What are its effects? How does it subside? And
why sometimes nothing happens, despite the prediction of convection? These are some
of the questions this campaign aimed to answer.

3.1.2 Parsivel network

Embedded in the KITcube observation system is a disdrometer network of 23 Parsivels,
which acquired the data used in this thesis. From this measured data DSDs and other
precipitation properties are deduced. A detailed discription of the instrument and its mea-
suring method is given in the next section (section 3.2). The 23 Parsivels were setup at 18
different locations (Figure 3.1). 15 measuring sites are distributed between 8.83◦ to 9.43◦

E and 48.33◦ to 48.63◦ N, densely covering a highly populated part of the Neckar Valley
and the Swabian Jura including the transition of the two areas. The northern edge of the
measurement area is observed by the device located in Friolzheim at 48.83◦ N. Convec-
tive cells often form over the Black Forrest (Weckwerth et al., 2011) and can then move
northeast through the Neckar Valley. That’s why the measuring site at Bettenhausen,
close to the eastern slopes of the Black Forrest, but still near the Neckar, marking the
westermost measuring point at 8.55◦ E, is important. One Parsivel was set up far to the
south of the other sites near Donaueschingen at 47.95◦ N. Due to technical issues, this
Parsivel needed replacement, leading to a much smaller body of data for this site, which
is why this Parsivel is not considered in this thesis.
Three locations were equipped with two Parsivels and one with three, allowing an inter-
comparison of the devices without accounting for the varying conditions at different sites.
The large number of densely distributed modern disdrometers over large parts of the
measuring region ensures very good coverage of any precipitation-related phenomena
during this campaign. An altitude range from 286 m MSL to 780 m MSL was covered by
the Parsivel sites. All Parsivels with their exact location are listed in Table 3.1. The data
set was recorded from April 15, 2021 to October 8, 2021.
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Table 3.1: Exact locations and elevations of all Parsivels sorted by elevation. In brackets are the
short names of the devices. These make later plots clearer.

Parsivel Name
Latitude

in °

Longitude

in °

Elevation

in m MSL
Location

PARS2020L (Pl) 48.5958 9.2431 286 Neckartenzlingen

PARS2020O (Po) 48.5681 9.2272 292 Mittelstadt

PARS2020S (Ps) 48.5940 9.2974 309 Großbettlingen

PARS2017A (Pu)
 48.4892 8.9550 336 RottenburgPARS2019A (Pv)

PARS2020A (Pa)

PARS2020M (Pm) 48.5022 9.1659 337 Betzingen

PARS2020R (Pr) 48.4819 9.0650 346 Dußlingen

PARS2019B (Pw)
 48.6279 9.2993 368 Nürtingen

PARS2020B (Pb)

PARS2020N (Pn) 48.4738 9.1905 401 Ringelbach

PARS2020D (Pd) 48.5132 9.3676 419 Dettingen

PARS2020I (Pi) 48.8314 8.8291 448 Friolzheim

PARS2020C (Pc) 48.3760 8.5534 457 Bettenhausen

PARS2020H (Ph) 48.5768 9.4278 457 Owen

PARS2020G (Pg)
 48.3891 8.8351 484 Haigerloch

PARS2020T (Pt)

PARS2020Q (Pq) 48.3393 9.3215 737 Hohenstein

PARS2020K (Pk) 48.4400 9.3169 764 Ohnastetten

PARS2020E (Pe)
 48.3353 9.1061 772 Burladingen

PARS2020F (Pf)

PARS2020P (Pp) 48.3889 9.1769 780 Sonnenbühl
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Figure 3.1: The locations (dots) of the measuring sites with the respective Parsivels present.

3.2 Laser optical disdrometer

3.2.1 Measuring method

A laser optical disdrometer measures size and fall speed of hydrometeors. It creates a
light band with a well-defined area and thickness between a laser and a receiver. When
a hydrometeor passes through the light band, it blocks a fraction of it due to absorption
and scattering. The partially blocked light beam leads to a reduced voltage output of the
receiver. The reduced voltage output relates linearly to the shadowed fraction of the light
sheet (Löffler-Mang and Joss, 2000).
Due to the thickness of the light beam, the attenuation of the signal is not instantly, but
rather takes a specific shape for each individual hydrometeor depending on its size, fall
velocity and shape. Two examples can be seen in Figure 3.2. These examples highlight
the difference between small and large drops. The cross-section area of small drops, with
a diameter smaller than the light band thickness (one millimeter), is proportional to the
maximum blocked area of the drop transit. For drops with a diameter larger than one mil-
limeter, it is the horizontal expansion that is proportional to the blocked area.
As illustrated in part (b) and (c) of Figure 3.2, the amplitude of the signal deviation pro-
vides the size of the particle (Löffler-Mang and Joss, 2000).
The signal duration provides the fall speed of the hydrometeor. The particle affects the
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light beam and therefore the signal from the moment it enters the beam until the moment
it has entirely left the beam. The distance the particle covers while affecting the light beam
is the light band thickness plus the particle diameter (see Figure 3.2). The fall velocity is
determined by the quotient of this distance and the signal duration.
As described in section 2.1, liquid drops larger than one millimeter in volume-equivalent
diameter are not spherical in shape but oblate ellipsoids. If the measured horizontal di-
ameter, which in the case of an oblate ellipsoid is larger than the vertical one, was used
for the calculation, the fall velocity would be overestimated. Thus, the drop geometry is
taken into account in order to obtain the correct speed (Löffler-Mang and Blahak, 2001).
Drops smaller than one millimeter are calculated as spheres. Drops between volume-
equivalent diameters of 1 mm and 5 mm are considered to decrease linearly from 1 to
0.7 in axial ratio (height over width). The axial ratio of particles with diameters larger than
5 mm is taken as constant at 0.7 (Battaglia et al., 2010).
Information of the fall speed and size of the hydrometeors enable the Parsivel to identify
the precipitation type by comparing it with the relation of fall speed and size v(D) of liq-
uid drops. This is schematically shown in Figure 3.3 from Löffler-Mang and Joss (2000).
Hailstones, for example, can reach larger sizes and therefore higher fall velocities than
raindrops, which is why hail is found above the liquid drop curve at hydrometeor sizes
bigger than 5 mm in the schematic. Snow on the other hand, covering almost the entire
size range, sediments slowly due to its high air resistance and is therefore distinguishable
from liquid drops. For larger drops this distinction becomes especially clear because of
the large difference in fall velocity between snowflakes and raindrops.

3.2.2 Parsivel

The data used in this work is measured by the laser optical Parsivel disdrometer (Fig-
ure 3.4), originally developed by Martin Löffler-Mang and now produced by OTT Hy-
droMet. A laser diode (wavelength: 650 nm, output power (peak): 0.2 mW) creates a light
band between itself and an optical sensor, each located in a separate housing attached
to a V-shaped metal mount. On each housing there is a thin perforated metal sheet to
disperse raindrops in order to prevent secondary hydrometeors from rebounded drops to
fall through the measuring surface. The light beam is 30 mm wide and 1 mm thick. The
distance of the two sensor heads is 180 mm resulting in a measuring surface of 180 mm
× 30 mm

(
54 cm2).

Each measured particle is classified into 32 non-equidistant size classes and 32 non-
equidistant velocity classes. To make particles of varying forms comparable, the size is
specified as volume-equivalent diameter. A low signal-to-noise ratio is the reason why the
smallest two size classes are not used at all. Although always empty, they are considered
in the calculations. The smallest measurable particle diameter is 0.25 mm and 25 mm
is the maximum. The maximum measurable size of liquid drops is 8 mm, while the size
range used for solid particles includes the maximum. The size class width is ranging
from 0.125 mm to 3 mm. The velocity classes range from 0.05 (mid-value of class) to
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Figure 3.2: Measuring process taken from Löffler-Mang and Joss (2000). (a) A small and a large
hydrometeor passing through the light band. (b) Unprocessed voltage output of the
sensor. (c) Inverted, amplified and filtered signal.

Figure 3.3: Identification schema to determine the precipitation type using size and fall speed
taken from Löffler-Mang and Joss (2000). The hydrometeors get classified by com-
parison to a reference terminal fall velocity v (D).
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Figure 3.4: Technical drawing of the Parsivel (OTT-HydroMet, 2022).

20.8 m s−1, with a maximum detectable speed of 22.4 m s−1 due to a class spread ranging
from 0.1 to 3.2 m s−1 . The drops are assigned the value of the center of the class they
are in. All size and velocity classes can be found in Table A.7 and Table A.8 taken from
the manual (OTT-HydroMet, 2022).

The classified particles are output in a 32×32 matrix, providing 1024 different categories.
Multiple quantities can be retrieved from this data by the Parsivel itself, e.g. rain rate R,
reflectivity Z and the total number of drops N. In this thesis Z and N are used for quality
control of the data (subsection 3.4.1). The rain rate is calculated with own retrievals (sec-
tion 3.3) because it has been shown that the rain rate can be calculated more accurately
if determined with quality-controlled data (Liu et al., 2021).

3.3 Data processing: calculation of moments and other
parameters

The number of particles in a size interval [Di , Di + ∆Di ] and a fall velocity interval [vj ,
vj +∆vj ] is given by n(Di , vj )∆Di∆vj , with the DSVD n(Di , vj ). Within a time interval ∆t the
sedimenting drops cover a distance of ∆t vj . The number of particles cij with the size Di

and the velocity vj falling through the measuring surface Ai during the time interval ∆t is
given by:

cij = n(Di , vj )∆Di∆vj Ai ∆t vj . (3.1)
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For the drop number density, however, the fall velocity is of no relevance, which is why
the 32 velocity classes are summed up:

n(Di ) =
32∑
j=1

n(Di , vj )∆vj =
32∑
j=1

cij

Ai∆t vj ∆Di
. (3.2)

As with most high-resolution precipitation observations, the sampling time ∆t was set to
one minute. Intervals of less than a minute are problematic because of the before men-
tioned sampling problem and DSDs with µ shifted to larger values, poorly representing
the underlying drop population. The Parsivel was set to measure with a resolution of 15
seconds. A moving integration enables the required one minute spectra.

The dependency of the measuring surface A (subsection 3.2.2) on the i th size class
arises from its susceptibility to border-effects, which are drops that fall through the light
band only partially and therefore get classified falsely. To mitigate this effect, Jaffrain
and Berne (2011) suggest the following correction, which is used in this thesis: Ai =
180 mm × (30 mm − 0.5Di ).

For further evaluation the following characteristic DSD parameters are determined: total
amount of drops Nt (= M0), rain rate R and the moments M1, M2 and M6 (reflectivity):

Nt =
1
∆t

32∑
i=1

1
Ai

32∑
j=1

cij

vj
, (3.3)

R =
π

6
1
∆t

32∑
i=1

D3
i

Ai

32∑
j=1

cij , (3.4)

M1 =
1
∆t

32∑
i=1

Di

Ai

32∑
j=1

cij

vj
, (3.5)

M2 =
1
∆t

32∑
i=1

D2
i

Ai

32∑
j=1

cij

vj
, (3.6)

M6 =
1
∆t

32∑
i=1

D6
i

Ai

32∑
j=1

cij

vj
. (3.7)

With Equations 2.7 and 2.13 the parameters of the gamma distribution N0, µ, λ as well
as D0 are calculated. As stated earlier the method of Handwerker and Straub (2011) is
applied here. In the context of this method they point out the following inconsistency:
The definition of the moments in Equation 2.8 is done for a diameter range from 0 to ∞.
But, as shown in subsection 3.2.2, the measuring range of the disdrometer is limited to
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Dmin = 0.25 mm and Dmax = 25 mm. Following the argument of Handwerker and Straub
(2011) the complete moments Mk are composed as follows:

Mk ,complete =

Dmin∫
0

n(D)Dk dD +

Dmax∫
Dmin

n(D)Dk dD +

∞∫
Dmax

n(D)Dk dD . (3.8)

The fact that small drops with D < 0.25 mm as well as large particles with D > 25 mm
are missing in the DSDs due to the limitation of the disdrometer is known as truncation
effect, which leads to truncated moments. In order to approximate the complete moments
Mi ,complete from the measured moments Mi ,meas, Handwerker and Straub (2011) introduce
the approximated moments:

Mk ,approx =
Mk ,meas

γ(λDmax,µ + k + 1) − γ(λDmin,µ + k + 1)
, (3.9)

with the incomplete gamma function γ. The definition of the approximated moments relies
on values for µ and λ. However, to calculate these two parameters one is reliant on the
moments. To deal with this reciprocal relationship, an iterative approach is utilised: the
calculated Mk ,approx becomes Mk ,meas for the next iteration. This continues until the relative
variations of µ and λ of two consecutive steps drops under a threshold of 1%.
Before this method is applied, resulting improvements of the measured moments are
assessed by looking at the denominator d in Equation 3.9. The frequency distribution
of d done for the entire data-set has a mean at d = 0.996 with a standard deviation of
std(d) = 0.016. Dividing Mi ,meas by values so close to one makes Mk ,approx almost equal to
it, immediately dropping under the threshold value for further iterations. Thus, this method
provides no significant improvements and is therefore not applied in this thesis.

3.4 Quality control

3.4.1 Data filtering methods

A one-minute DSD spectrum must meet two conditions to qualify as rain. First, the rain
rate must be larger than 0.1mm h−1 in order to reduce noise. Secondly, the total parti-
cle count of a sample needs a minimum of N = 100 hydrometeors. Smith and Kliche
(2005) as well as Handwerker and Straub (2011) show that parameters describing DSDs
deduced by the moments method have a decreasing bias with increasing sample size.
As a reasonable minimum N = 100 is presented to keep the bias at a decent low. This
suggested limit is adopted here. Samples that do not meet these two conditions are not
considered.

The data set still has many erroneous values. There are border-effects briefly mentioned
in section 3.3. Drops that fall through the margins of the light beam are only partially
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Figure 3.5: Scattergram of a DSD after filtering with the ±40% thresholds (dashed lines) in refer-
ence to the velocity-diameter relationship of Atlas et al. (1973) (solid line). Shown here
is the data of the whole experiment period for all Parsivels. The grid lines represent
the size and velocity bins in which the particles are classified.

registered by the disdrometer. This leads to a flawed size and fall velocity classifica-
tion, resulting in the presence of smaller drops with higher fall velocities in the measured
spectra than there actually are. Further possible reasons for erroneous measurements
are strong winds, especially in combination with heavy rainfall. Friedrich et al. (2013a)
who found this effect hypothesise that the reason for this are hydrometeors not moving
perpendicular through the sampling area of the Parsivel. They observed an increased
number of unrealistically large slow-falling drops in the erroneous spectra.
To address these measurement effects a filter is applied, which compares the observed
velocity of drops vobs(Di ) to the terminal velocity of the mean particle size of the i th size
bin vt (Di ), using the vt (D) relationship of Atlas et al. (1973) (Equation 2.3). This com-
parison is based on the assumption that the precipitation type measured is rain because
the vt (D) relationship of Atlas et al. (1973) was determined for raindrops. Particles with
|vobs(Di ) − vt (Di )| < 0.4vt (Di ) pass the filter, reducing hydrometeors to those that are
within a ±40% threshold of the reference fall speed relation (Figure 3.5). Since the al-
lowed absolute deviation from the reference fall speed increases with larger fall velocities,
large hydrometeors such as hailstones are not discarded by the filter.
A previously tested threshold of ±60% was not utilised because many erroneous spectra
were still present. The ±40% threshold is recommended by Kruger and Krajewski (2002)
and in comparable Parsivel measurements used, e.g., by Liu et al. (2021).

To reduce erroneous data further, another layer of quality control is applied. The 6th
moment M6 is calculated before and after the filter described above is applied to a sample,
providing M6,bf (before filter) and M6 (after filter). Multiplying the logarithm of M6 and M6,bf

by 10 yields the radar reflectivity factors Z and Zbf in the commonly used unit dBZ. If these
two reflectivity factors differ by more than 3 dB, the sample is discarded.
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After filtering, a total amount of 1 118 836 one-minute spectra is available including all
Parsivels over the whole measurement period. This corresponds to about 35.5 days of
measured rain by 22 Parsivels. Keep in mind that dry periods are not regarded in this
thesis.

3.4.2 Technical issues

Potential sources of error in the deduced quantities are not only issues with the mea-
suring process of the Parsivel but also with its system stability. The Parsivel 2020C (Pc,
Bettenhausen) did not record any data from August 20 to September 05, 2021, likely be-
cause of problems with the power supply. No event of special interest took place near
Pc during this period. However, Pc might have missed some rainfall events, potentially
affecting the total amount of rain measrued by Pc.

3.4.3 Comparison of the Parsivel disdrometers

In this section, the measured data of the different Parsivels are compared as a means
of quality control. Additionally, some methods to evaluate the acquired data are intro-
duced. Anticipating the findings of section 4.1, the data are divided into three precipitation
regimes:

1. The measure regime includes the entire data set, which are all events passing
the quality control mentioned in subsection 3.4.1.

2. The rain regime includes events with rain rates of R > 2 mm h−1, with a total of
262 512 one-minute spectra (23.5% of the measuring regime). This regime mainly
contains stratiform rain.

3. The strong rain regime includes all events with R > 20 mm h−1 with a total of
11 198 one-minute spectra (1% of the measuring regime). This regime primarily
corresponds to convective precipitation.

The following section only deals with the rain and the strong rain regimes. Events of small
rain rates are not particularly interesting and produce artifacts as is shown in the next
chapter.

As mentioned in subsection 3.1.2, there were four measuring sites with more than one
Parsivel. In Nürtingen, Burladingen and Haigerloch two Parsivels were present. Rotten-
burg was equipped with three Parsivels. These sites enable a special comparison through
equal weather conditions. When comparing the curves that display the median volume
diameter D0 over the rain rate R measured by the Parsivels neighbouring each other, the
data corresponds rather well up to values of R > 20 mm h−1 shown in Figure 3.6, where
Parsivels from the same site share the same color. However, deviations are visible even
below this value, as for example the Parsivels in Nürtingen display. Above R = 20 mm h−1
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Figure 3.6: Median volume diameter over the rain rate determined for each Parsivel (grey lines).
To avoid artifacts the values of D0 are calculated with a moving average. The average
range increases for higher rain rates, to compensate for the increased variability due
to a decreasing number of events. In color are the lines at locations with more than
one disdrometer. The black line shows the average over all devices with its standard
deviation presented by the grey shaded area.

the data of collocated devices do not correspond well. Curves of equal color deviate
heavily. This is especially true for very large rain rates. Events of large rain rates are
rare, which is why individual events can influence the values associated with large rain
rates strongly. An example for this is the only outlier that exceeds the standard deviation
roughly between R = 70 and R = 80 mm h−1 of the average of all devices (Figure 3.6). It
is caused by a single hail fall event recorded by Ps in Großbettlingen on June 4, 2021.

To evaluate how well the data measured by two collocated disdrometers agree, a linear fit
of the two-dimensional frequency distribution of the respective rain rates and median vol-
ume diameters is calculated. Additionally, the correlation coefficient ρ for these frequency
distributions is determined (Table 3.2). According to Myers and Well (2003), the Pearson
correlation coefficient is a measure of the extent to which two variables are linearly related
and is defined as:

ρ(x , y ) =
1

n − 1

n∑
i=1

(
xi − x

Sx

)(
yi − y

Sy

)
, (3.10)

with the standard deviation Sx =

√
1

n−1

n∑
i=1

(xi − x)2 and Sy likewise.

The Pearson correlation coefficient is prone to outliers in the data (Myers and Well, 2003).
This issue is met by the filter methods (subsection 3.4.1) developed to reduce such out-
liers to a minimum. The interpretation of the correlation coefficient involves many difficul-
ties (Myers and Well, 2003), but in this work it is used only to compare similar distributions
and is therefore suited.
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Curve fitting methods often use a least-squares approach, which determines the param-
eters of the fit function in such a way that the deviance of the data points to the function in
y is minimized. Choosing to minimize the distance in y is problematic because it sets the
parameter on the x-axis as an independent reference. However, none of the parameters
compared in this work are known to be independent, which is why an orthogonal linear
regression is used for all linear fits in this thesis (Adcock, 1878).

In general the data of two devices next to each other agrees well for measured rain rates
as well as median volume diameters (exemplary locations in Figure 3.7). For larger rain
rates and the corresponding median volume diameters the data corresponds less well
(Figure 3.8). The question arises whether the spread comes from natural variations or
from the measurement uncertainty of the device?

For two collocated disdrometers one would expect a correlation coefficient around one.
There are three potential issues that could influence this result. One is the measurement
error of the Parsivel. Another reason could be precipitation, that is not exactly identical
for the two disdrometers. The third possible issue is of statistical nature, e.g., when many
spectra with a small amount of particles occur. Quality control aims to eliminate such
spectra to minimize this possible source of error.
To determine what natural variability can be expected, the investigation of Handwerker
and Straub (2011) is consulted. They conducted a numerical experiment, where a ran-
dom population of raindrops was constructed, obeying a predefined gamma-shaped DSD.
This population was then sampled by an emulated disdrometer resulting in an idealised
measurement. From this measurement they deduced an ideal standard deviation of D0

depending on D0, the shape parameter µ and the total number of drops given by the dis-
drometer N. This ideal standard deviation is now used to get an estimate for the natural
variability of D0 as it is measured by the Parsivels.
The data from the work of Handwerker and Straub (2011) mentioned above is still avail-
able. To transfer their findings for a predefined gamma-shaped DSD to actually measured
DSDs of the data at hand, an interpolation is done. This interpolation is three-dimensional
due to the dependency of deviation of D0 on the above mentioned three parameters D0,
µ and N. Using a set of actually measured values of the three parameters as sampling
points for the interpolation yields the standard deviation of D0 as a function of the three
parameters adjusted to the measured DSDs. Now a time series is constructed so that the
parameters produce a spectrum of D0 values that follows the just determined standard
deviation. The last step is the multiplication of this spectrum, which emulates the mea-
surement, by Gaussian noise creating natural variability. This is done twice to receive two
independent spectra. Calculating the correlation coefficient of these two spectra gives an
estimate of ρes = 0.98 for the correlation coefficient, that results from the natural variability
of the two spectra.

The correlation coefficients of the median volume diameter determined for collocated
Parsivels range between ρD0 = 0.96 and 0.98 (Figure 3.7). The average correlation coef-
ficient of the collocated disdrometers for the rain regime is ρD0 = 0.97 and the average
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Figure 3.7: Comparison of measurements of collocated instruments in Nürtingen ((a),(b)) and
Rottenburg ((c)-(f)) of the rain rate (left column) and median volume diameter (right
column). The red line displays an orthogonal linear fit with y = ax + b. The respec-
tive values of the fit parameters a and b are stated in Table 3.2. The black line indi-
cates a correlation coefficient of one for reference. The data used are of spectra with
R > 2 mm h−1.
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Table 3.2: Correlation coefficients of measured R and D0 of collocated Parsivels. Additionally,
the fit parameters a and b of the respective orthogonal linear fits are stated (Fig-
ure 3.7,Figure 3.8). The first six lines present the rain regime and the bottom six the
strong rain regime.

Collocated

Parsivels
Location ρR aR bR ρD0 aD0 bD0

Pw Pb Nürtingen 0.97 1.0 -0.1 0.97 1.0 0.0

Pf Pe Burladingen 0.98 0.9 0.4 0.97 0.9 0.1

Pt Pg Haigerloch 0.96 0.9 0.0 0.96 1.0 0.0

Pa Pu Rottenburg 0.99 1.3 -0.5 0.98 1.1 -0.1

Pv Pu Rottenburg 0.98 1.1 0.2 0.97 1.1 0.0

Pa Pv Rottenburg 0.98 1.1 -0.6 0.98 1.1 -0.1

Pw Pb Nürtingen 0.92 0.9 0.8 0.95 1.1 -0.1

Pf Pe Burladingen 0.92 0.8 3.8 0.94 1.0 -0.1

Pt Pg Haigerloch 0.90 0.8 7.0 0.93 1.0 -0.1

Pa Pu Rottenburg 0.96 1.3 -2.5 0.97 1.1 0.1

Pv Pu Rottenburg 0.95 1.1 3.6 0.96 1.0 0.3

Pa Pv Rottenburg 0.96 1.2 -4.9 0.96 1.1 -0.1

slope parameter of the orthogonal linear fits (Table 3.2) is aD0 = 1.0 with an average y-
intercept of bD0 = 0.0. With the presented fit parameters in combination with an average
correlation coefficient close to the estimate ρes = 0.98 determined above, it seems rea-
sonable to assume that the observed variability of two collocated Parsivels is mainly due
to the expected natural variability. The cause why the correlation coefficients deviate from
one is likely a combination of all three issues stated in the passage above. All correla-
tion coefficients for rain rate and median volume diameter for the rain and the strong rain
regime of sites with multiple disdrometers are listed in Table 3.2.

Comparing the correlation coefficients and the fit parameters of the rain rate with those of
the median volume diameter of the respective locations, small differences are observable
(Table 3.2). One possible reason therefore might be small uncertainties that arise in the
calculation of the parameters from the raw data (section 3.3). Another reason for the
better agreement in the data of the median volume diameter compared to the rain rate
might be the much larger value range of R compared to D0.

Both rain rate and median volume diameter agree less well for events with higher rain
rates presented by the strong rain regime (Figure 3.8), as indicated earlier at the discus-
sion of Figure 3.6. The averaged correlation coefficients in this regime are ρR = 0.94 and
ρD0 = 0.95, respectively. Here, the difference of the correlation coefficients of rain rate
and median volume diameter at one location is larger than in the rain regime. This seems
obvious considering the much reduced statistics of the rain regime. The coefficients of the
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Figure 3.8: As in Figure 3.7 but for the strong rain regime. Due to the significantly smaller number
of events in this regime, the color code is not logarithmic here.

median volume diameter are always higher or equal to those of the rain rate. This might
be due to the reduced value range of the median volume diameter of events with high
rain rates. However, the median volume diameter for this regime usually varies between
about 2 and 2.4 mm, representing a much smaller value range.

The lowest correlation coefficients in both regimes are of the disdrometer pair Pt and
Pg in Haigerloch. Also, the fit parameters of the rain rate in the strong rain regime of
these Parsivels are striking due to the large offset of bR = 7. Evaluating the data closer,
it became clear that Pt measured some events of very high rain rates (R > 100 mm h−1),
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which Pg did not. This suggests that a strong rain occurrence has barely touched the
location primarily hitting one of the devices, leading to this large offset. These individual
strong rain events not causing entirely identical precipitation over two Parsivels at the
same site might be the reason why the linear fits of the rain rates of the strong rain
regime perform much worse than those of the rain regime.

An exception to the in general good agreements of collocated devices is Rottenburg,
which becomes clear when looking at the linear fits of the Parsivels at that measring
site (Figure 3.7). Parsivels of different age and device generation were set up here. As
the name in Table 3.1 indicates, one of them was purchased in 2017, one in 2019 and
one, as most other Parsivels, in 2020. The Parsivel Pu (2017) displays an anomalous
measurement of rain rates. A systematic shift to higher rain rates in comparison to Pv
(2019) is displayed in Figure 3.7e, also indicated by the y-intercept of the linear fit with
b = 0.2. Comparing Pu with Pa exhibits the same behavior. That the fault lies with Pu
is also emphasized by the well-agreeing data of Pv and Pa (Figure 3.7c,Figure 3.7d).
The increased rain rates that Pu measures compared to the other two Parsivels at this
location come from an increased drop count in the larger size classes of this Parsivel
due to misclassification of drop sizes. Of course, this also affects the retrievals of the
median volume diameter resulting in the shift toward Pu (Figure 3.7f). The shift of Pu in
Rottenburg due to higher counts of big drops gets displayed even clearer in the strong
rain regime (Figure 3.8e, Figure 3.8f). Connecting the misclassification of drop sizes of
Pu to the age of this device, the aging laser diode seems one possible reason. However,
the manufacturer OTT-HydroMet claims to consider the aging process of the laser diode
in their retrieval algorithms. Results produced by Pu are not considered or, if they are,
specifically mentioned in this thesis.

Although not systematically biased, the spread for rain events with R > 20 mm h−1 is
large for all locations; even more so for R > 60 mm h−1. Regarding the small number of
events with such large rain rates, it is difficult to draw conclusions about the measurement
accuracy of the Parsivel.

The correlation coefficients of all Parsivels were calculated for the rain regime. As a plau-
sibility check, the resulting 231 coefficients are plotted over the distance of the respective
pair of Parsivels. In the case of stratiform rain a decreasing correlation coefficient with
increasing distance between devices is to be expected. But despite the frequent convec-
tive precipitation, one expects a decreasing correlation coefficient for longer distances
between devices, since even rain events with large temporal and spatial variability are
more likely to affect nearby Parsivels than distant ones. This expectation holds true, as
shown in Figure 3.9 for the rain rate and in Figure 3.10 for the median volume diameter,
further supporting the good functioning of the Parsivel measuring network. The Parsivels
located next to each other display the highest correlation coefficients as expected. To de-
termine the relationship of the correlation with distance, an exponential fit is performed for
the rain rate and the median volume diameter, respectively. This fit must include the point
(0,1), since measurements at the exact same spot must theoretically agree. Choosing the
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function exp(−d/c) with one fit parameter c to fit the data ensures this. The parameter
d is the distance of the respective compared Parsivels. Minimizing the distance squares
of data points to the fit function yields a fit parameter of c = 11.6 km for the rain rate
(Figure 3.9), and c = 26.8 km for the median volume diameter (Figure 3.10). The typical
correlation length c of the rain rate is roughly half of that of the median volume diameter,
which might be due to the larger value range of the rain rate compared to the median
volume diameter.

A measure of the quality of these fits is given by the goodness of fit R-squared. It de-
scribes how well the fit corresponds to the variation of the data. It takes values between 0
and 1 and is defined by the ratio of the residual sum of squares (SSE), and the total sum
of squares (SST) Fahrmeir et al. (2022):

R-squared = 1 − SSE
SST

, (3.11)

with the numerator SSE and denominator SST defined as:

SSE =
n∑

i=1

(yi − ŷi )2 and SST =
n∑

i=1

(yi − y )2 . (3.12)

The variable yi denotes the i th value of the data set of size n, while ŷi denotes the corre-
sponding fitted value. The mean of the data set is presented by y .

Applying this on the fit of the correlation coefficients of the rain rates one obtains a good-
ness of fit R-squared = 0.43. For the fit regarding the correlation coefficients of the median
volume diameter one obtains R-squared = 0.78, showing a better quality of fit. Hypothe-
sising, the reason for this might again be the smaller available value range of the median
volume diameter compared to the rain rate, allowing less variation in the data.
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Figure 3.9: Correlation coefficients of all Parsivels with each other for R with a total of 231 data
points plotted over the respective distance d of the pair. The correlation coefficients are
calculated for the rain regime. The red line presents the exponential fit ρR = exp(−d/c)
with c ≈ 12 km.

Figure 3.10: As in Figure 3.9 but for correltation coefficients of D0. The exponential fit (red curve)
ρD0 = exp(−d/c) has a fit parameter of c ≈ 27 km.
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4 Results

4.1 Relations of gamma distribution parameters and the
rain rate

Experience shows that the gamma distribution is a good, at least frequently used, approx-
imation for measured DSD, especially for those measured with high temporal resolution.
Mathematically, the gamma distribution has three parameters. However, previous work
has shown that the gamma parameters are not independent (e.g. Testud et al. (2001);
Liu et al. (2021)). By reformulating the analytical description, e.g., by normalizing with
moments of the DSD, one searches for a description with independent parameters which
then might describe independent physical properties of rain. These properties vary with
the geographic and climatic regions, so it is useful to investigate our measurements in
this regard.

To investigate the interdependency of the parameters of the gamma distribution for the
data at hand as well as their relationship to the rain rate a set of two-dimensional fre-
quency distributions is analysed (Figure 4.1). These distributions include the entire data-
set, which means all Parsivels over the whole measuring time, above defined as mea-
surement regime.
As commonly found (e.g. Handwerker and Straub (2011); Liu et al. (2021)), the frequency
distribution of the shape parameter µ and the slope parameter λ displayed in Figure 4.1a
exhibits a nearly linear dependency of the two parameters. Considering the relationship
of µ and λ with D0 (Equation 2.7), the linearity points to a rather constant median volume
diameter. Lines of constant D0 with the relationship µ = λD0 −3.67 from Equation 2.7 are
drawn for comparison. Values of D0 double with each isoline, with the smallest one pre-
senting 0.1 mm and the largest presenting 6.4 mm. Evidently, a big amount of unexpected
large values for both µ and λ are present in the distribution, creating a "tail" with a large
spread. 95% of the respective µ and λ values are visible in the plot range. Also affected
by these large values are the correlations between λ and D0 and µ and D0 depicted in
Figure 4.1 (b), (c). Both of these plots also contain isolines of the respective parameter of
Equation 2.7 not present in the frequency distribution. The µ isolines, which also double
the value of µ with each step, present values of 1 up to 64. In Figure 4.1c, values for
constant λ of 2 up to 64 mm−1 are plotted. The median volume diameter in relation to the
rain rate shows a maximum ranging from 0.5 mm to 1.5 mm for rain rates mainly between
0.1 and 3 mm h−1 (Figure 4.1d).
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Most samples refer to weak precipitation (Figure 4.1 (d), (e), (f)). These weak events
produce artifacts in the form of the large values of µ and λ. If the rain rate is small, the
probability for drops to be mainly in one size bin increases, which results in moments
with M2

1 ≈ M0M2. Calling back the premise of Equation 2.13, it becomes clear that this
leads to unreliable values. In fact, 76.5% of all rain events of the data set have rain rates
less than 2 mm h−1 raising the following question. Are the bright areas of Figure 4.1 that
exhibit expected values for (a), (b) and (c) mere byproducts of the huge number of events
with small rain rates, or do these bright maxima actually show a majority of the expected
values across DSDs of all rain rates?

To prevent the bias of the large number of events with small rain rates, the frequency
distributions are normalized (Figure 4.2). To do so, the sum over all events in one bin of a
selected distribution is calculated. Here, the rain rate is chosen as normalizing distribution
so that each bin is divided by the number of events of consant R. The two-dimensional
frequency distribution of µ and λ shows a maximum at small expected values of both
parameters after normalization, even though less clearly than before normalization (Fig-
ure 4.2a). A large spread of λ for small rain rates is particularly clearly displayed in Fig-
ure 4.2b. It also shows that events with larger rain rates produce rather constant values
for λ, which is the expectation. Apart from the large spread present in the distribution
of D0 over R, a maximum that indicates an increasing median volume diameter with in-
creasing rain rate can be seen (Figure 4.2c). This relation is further investigated later in
this chapter.

The decrease of unexpected values of the gamma parameters for DSDs of increasing
rain rates is exemplified in the µ − λ relation for different regimes of R (Figure 4.3). Not
only do the large values decrease for increasing rain rates but the spread is also reduced.
The axes range of Figure 4.3 (a) and (b) is different to (c) and (d), to make the smaller
values of (c) and (d) well visible. However, the ratio of the axes stays constant making the
slopes well comparable.

The large number of values with a big spread based on data of rain events with small
rain rates and the decrease of unexpected values of events with higher rain rates led to
the establishment of the three precipitation regimes "measurement", "rain", "strong rain",
which were introduced in subsection 3.4.3.

A reduction of large values in all distributions concerning the gamma parameters is evi-
dent in the two-dimensional frequency distributions for the rain regime (Figure 4.4) com-
pared to the measuring regime (Figure 4.1). All subfigures include 99% of the respective
value range, which affirms the reduction of large values considering that Figure 4.1 and
Figure 4.4 display the same value range. As already shown in Figure 4.3, the values in
Figure 4.4a lost much of their "tail", while also narrowing the spread in the whole range.
The maximum is now limited to values between approximately 4 and 5.5 for µ and 2.8
and 7.2 mm−1 for λ.

The maximum of the frequency distribution of λ over D0 in the rain regime indicates an
accumulation of events with median volume diameter values between 1.3 and 1.7 mm
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Two-dimensional frequency distributions on the base of the entire data-set for different
parameters. In (a) µ and λ are displayed with the plot including 95% of their value
range, respectively. (b) and (c) show these two parameters in their relation to D0, again
including 95% of value range of µ and λ but more than 99% of the range of values of
D0. µ, λ and D0 are each individually plotted over R in (d), (e) and (f), including more
than 99% of the value range of the rain rate.
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(a) (b)

(c)

Figure 4.2: As Figure 4.1 (a), (d) and (f), but all bins of one distribution are normalized to the
number of events of the respective other distribution in the very bin. Negative values
on the colorbar are the consequence of normalization.

(Figure 4.4b). However, looking at the entire range the rain regime exhibits a relation of
λ ∝ 1/D0 between the two parameters. In the two-dimensional frequency distribution of
µ over D0, the maximum covers a rather small range of µ values from about 4.2 to 5.2
(Figure 4.4c).

Though drastically reduced, nonphysical large values of λ for small rain rates are still
not entirely extinguished as Figure 4.4d shows. Small rain rates tend to produce spectra
with small median volume diameters (as was shown in Figure 4.2c). Therefore the large
spread in µ and λ for small values of D0 as discussed above, is likely also due to spectra
of small rain rates.

As the parameters discussed before, the normalized intercept parameter NL exhibits a
large spread at small rain rates. It takes values, rather independent of the rain rate, rang-
ing over about two and a half orders of magnitude with roughly 103 < NL < 105.5, indicat-
ing the necessity for a logarithmic scale (Figure 4.4e).
In chapter 2, the normalized intercept parameter was introduced to be only weakly de-
pendent of µ. Figure 4.4f confirms this weak dependence.

The above anticipated relationship between median volume diameter and rain rate ex-
hibits an increase of D0 for increasing rain rates up to about R = 40, mm h−1 when a
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(a) (b)

(c) (d)

Figure 4.3: As in Figure 4.1a, but each Figure displays values deduced from a different set of rain
events. The rain rates (in mm h−1) displayed in each figure increase from (a) to (d) as
follows: (a) 0.1 < R ≤ 3 , (b) 3 < R ≤ 10 , (c) 10 < R ≤ 20 , (d) R > 20. In Figure 4.3c
and Figure 4.3d a different axes range is chosen, but the ratio stayed the same.

maximum of D0 = 2.4 mm is reached (Figure 3.6). This reflects what was previously in-
dicated in Figure 4.2c. For increasing rain rates larger than R = 40, mm h−1, the median
volume diameter slightly decreases to about D0 = 2.2 mm at R = 90, mm h−1.

In the strong rain regime, the linear relation between µ and λ is displayed most clearly
(Figure 4.5a). Values of λ range mainly between 2 and 5 mm−1 here. Values of µ primarily
range between 1.5 and 4, providing no unexpected large values. Due to the strong range
reduction compared to the other regimes, the axes range is adapted in all plots of Fig-
ure 4.5. An orthogonal linear regression of the two-dimensional frequency distribution of
µ and λ yields a slope parameter of 0.9 mm−1 and an axis intercept of -0.7, with a good-
ness of fit R-squared = 93% (Figure 4.5a). This further confirms the linear relationship
between the two parameters.

The values for λ over D0 (Figure 4.5b) match well with the reference isoline of µ = 4.
While the frequency distribution of µ and D0 of the strong rain regime (Figure 4.5c) dis-
plays less interdependency of the two parameters than in the rain regime, it is still clearly
noticeable. The good match of data and isoline in Figure 4.5b is therefore by chance.
Values of µ range from about 1 to 5 in the strong rain regime while D0 mainly ranges
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The subplots (a), (b) and (c) are as in Figure 4.1 but for the rain regime. (d) displays λ
over R as in Figure 4.1f. (e) and (f) display the frequency distribution of the normalized
intercept parameter NL, which is presented in logarithmic scale. In all distributions 99%
of the data is within the figures axes range.
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(a) (b)

(c) (d)

Figure 4.5: Two-dimensional frequency distributions for the strong rain regime. (a) displays the
parameters µ and λ with the red line presenting a linear orthogonal fit. In (b) and (d) λ
and µ over D0 are shown, respectively. (c) displays lg(NL) over µ.

between 1.6 and 3.5 mm.
Using data of the strong rain regime, the normalized intercept parameter NL still ranges
over more than two orders of magnitude (Figure 4.5d), similar to Figure 4.4f. The reduc-
tion of the value range of µ obviously affects the frequency distribution of NL and µ, too.
For the strong rain regime NL still shows a slight dependence on µ. The maximum can be
found at a rather constant value with NL ≈ 5 × 104 m−3 mm−1.

4.2 Spatial variability of DSD parameters

In order to get a characteristic DSD value for each measuring site, the median of the me-
dian volume diameter is calculated for each Parsivel with the data of the entire measuring
period. This is done for the rain and the strong rain regime. Although rain rates smaller
than 2 mm h−1 are excluded, the rain regime still exhibits some artifacts in the data set.
These artifacts can have a strong influence on the mean value of the data, which is why
the median is utilised here. In addition to the median volume diameter, the total amount
of rain which each Parsivel respectively measured is calculated for both data regimes.
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A difference between Parsivel measurements in the two different geographic areas Neckar
Valley and Swabian Jura can be found for the median volume diameter as well as the total
amount of rain. In the south-east of the measuring area the Swabian Jura is visible, with
its ridge leading from south-west to north-east (Figure 4.6). The Parsivels therein, namely
Pk, Pp, Pe, Pf, Pq, Pd and Ph (see Figure 3.1 for the locations) exhibit a slightly higher
total rain amount than the ones in the Neckar Valley. Disdrometers Pk, Pp, Pe, Pf and
Pq share an elevation of over 700 m MSL, while Pd and Ph are at 419 and 457 m MSL,
respectively. This possibly indicates that the rain amount is influenced by the orographic
features of this area rather than the altitude alone. However, much of the precipitation
during the measurement campaign was convective and thus chance plays a large role.
More data would be needed to confirm this observation. The size of the dots in Figure 4.6
displays the number of evaluated spectra, which is in general slightly larger for the sites in
the Jura, implying more rain events there. The disdrometers in the Swabian Jura exhibit
a distinctively smaller median of the median volume diameter compared to the devices in
the Neckar Valley (Figure 4.7). The larger median volume diameters in the Neckar Valley
might be due to the increased number of convective heavy rain events during the mea-
surement period compared to the Swabian Jura. Hypothesising, orographically-induced
precipitation in the hilly terrain of the Swabian Jura could be the reason for the additional
rain events with rather small rain rates, resulting in the larger number of measured spectra
in this area.

For the strong rain regime the differentiation between Neckar Valley and Swabian Jura
becomes less clear. This is likely due to the more stochastic nature of convective events
in this regime. An increased variability for this regime compared to the rain regime might
also come from the strongly reduced number of measured spectra, providing a smaller
statistic.
While Pk, Pd, Pp and Ph in the Swabian Jura (presented by the light blue dots) share a
similar small total rain amount, Pq (presented by the orange dot) deviates heavily from
them (Figure 4.8). The two collocated Parsivels furthest south, displayed by the green dot
(Pe, Pf), also deviate from these three. The two Parsivels presented by the bright yellow
dots (Po, Pl) exhibit the largest amount of rainfall in the strong rain regime. Located south
of Tübingen, the disdrometer in Dußlingen (Pr) exhibits a significantly smaller number of
measured spectra than all other sites. For the data of the rain regime (Figure 4.6) the
same observation holds, implying a location with fewer rain events in comparison.
In the strong rain regime, the measured total amount of rain does not correlate with the
median volume diameter. Two examples that show opposite behaviors are presented.
First example are the disdrometers in Burladingen (Pe and Pf, green dot in Figure 4.8,
furthest south) and the one in Hohenstein (Pq, orange dot, south-east). The two disdrom-
eters in Burladingen measured less rain than the one in Hohenstein but their median of
D0 is larger. The second example are the disdrometers in the vicinity of Reutlingen (Pw,
Pb, Po, Ps, Pl) and those in the Swabian Jura (Pp, Pk, Pd). Here, the Parsivels near Reut-
lingen measure a larger total amount of rain than those in the Jura, while simultaneously
exhibiting a larger median drop diameter.
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Overall, the stochastic nature of convective rain in the strong rain regime, causes large
variations and makes it difficult to deduce general trends.

As mentioned above, the measurements of the Parsivel Pu deviates from the other dis-
drometers at the same site in Rottenburg. It generally classifies drops as too big, which is
illustrated by the yellow rim of the dot west of Tübingen. In all four map plots (Figure 4.6
and following), Pu shows maximum values for both the total amount of rain and median
volume diameter, further emphasizing its deviating measurements.

A detailed list of all gamma distribution parameters and the rain rate averaged over the
whole measuring period for each Parsivel is provided in Table A.1 and following for the
rain and the strong rain regime.

Assumptions about the general dependence of the median parameters on the elevation
of its respective measuring site could not be validated, neither for the rain regime nor for
the strong rain regime.

Figure 4.6: All measuring sites of the disdrometer network are shown here. The size of the dots
present the number of measured spectra. The total amount of rain is indicated by
the color code using the data of the rain regime. A topographic base map shows the
orographic features of the area as well as its infrastructure.
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4 Results

Figure 4.7: As in Figure 4.6 but here the color code displays the median of the median volume
diameter.

Figure 4.8: As in Figure 4.6 but for the strong rain regime. The dot size again exhibits the number
of measured spectra. However, a different scale is used than in Figure 4.6 so that dot
sizes are not comparable with those of the rain regime.
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4.3 Case study of the supercell on June 23, 2021

Figure 4.9: As in Figure 4.8 but the color code presents the median of the median volume diame-
ter.

4.3 Case study of the supercell on June 23, 2021

On June 23, 2021 a supercell passed over the measuring area. Strong rain of up to
100 mm in less than an hour, heavy lightning activity and massive hailfall, leading to a
layer of hail of up to 20 cm height in some areas, were some of its consequences. Mas-
sive damage to infrastructure and property was caused by flash floods and hail. The cell
formed over Southern Black Forest around 13:30 UTC. It is the southernmost cell in Fig-
ure 4.10a. Figure 4.10 shows Max-CAPPI (Constant Altitude Plan Position Indicator) pic-
tures, presenting the horizontal and vertical projection of maximum reflectivity recorded
by the X-band radar of the KITcube, located in Nürtingen. The cell then moved along the
Neckar Valley and the slopes of the Swabian Jura to the north-east (Figure 4.10) until it
subsided near Schwäbisch Gmünd around 20:30 UTC.

By plotting a time series of the rain rate and the median volume diameter of the Parsivels
affected by this event, the temporal and spatial variability of these two parameters can be
assessed (Figure 4.11, Figure 4.12). As expected, the trajectory of the cell as recorded
by the radar (Figure 4.10) perfectly matches the time and order in which the Parsivels
recorded the first rain. Light rain from this cell was first recorded by the westernmost dis-
drometer Pc at 14:45 UTC, agreeing with Figure 4.10b. Next in line were Pt and Pg at
Haigerloch already reaching rain rates of approximately 180 mm h−1. At 15:40 UTC the
thunderstorm hit the main measuring site in Rottenburg (Pv, Pa) with a maximum rain
rate of 190 mm h−1. Over Rottenburg the rain rate increased and decreased three times
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within a short period with the third peak describing the maximum (Figure 4.13a). East of
Rottenburg, the disdrometer Pr measured rain activity next. In comparison, it recorded
only small rain rates. Since the cell center moved north-east, Pr only recorded the edges
of the system. This is emphasised by the small median volume diameters measured at
this site (Figure 4.12). Parsivel Pn, which was located east of Pr, barely showed any rain
activity because it was even further away of the storm track. Continuing in north-easterly
direction, all Parsivels in the densly equipped area between Reutlingen and Nürtingen
displayed rain activity in succession as one would expect from the radar data. Pw and Pb
in Nürtingen displayed the latest measured activity agreeing with their position furthest
north-east in the Neckar Valley. By far the highest rain rate was measured by Ps in Groß-
bettlingen peaking at a value as high as 377 mm h−1.
No such distinct peak is observable for the time series of the median volume diameter
(Figure 4.12). Peaking rain rates only rarely correspond to peaking median volume diam-
eters, which is addressed in detail below for the Rottenburg site.
The time series of the rain rate as well as the median volume diameter display a strong
intra-event temporal variability. Most peaks in the two time series are rather narrow, re-
flecting the rapid rates of change of the two rain properties R and D0 in this thunderstorm.

As mentioned above, the temporal variability of R and D0 do not peak or dip at the same
time, as can be clearly seen when the cell was over Rottenburg (Figure 4.13). On the
contrary, D0 shows maxima around 15:43 and 16:10 UTC with values of approximately
3.7 mm, while the rain rate displays its highest peak at over 150 mm h−1 around 15:57
UTC. This agrees well with Schuur et al. (2001), who found that the median volume
diameter takes on the largest values before and after the heaviest rainfall, associated
with the passing of the convective core of a cell.
For the mostly stratiform rain of the rain regime, the median volume diameter was shown
to increase for larger rain rates (Figure 3.6). This behavior, however, is totally different
from the heavy convective rain shown here.
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4.3 Case study of the supercell on June 23, 2021

(a) 13:30 UTC (b) 14:45 UTC

(c) 15:40 UTC (d) 16:15 UTC

Figure 4.10: Max-CAPPI of the X-band radar located in Nürtingen, displaying the supercell mov-
ing along the Neckar Valley from south-west to north-east. If there is precipitation
over the radar, then the radar signal is attenuated mainly by drops adhering on the
radome. This results in a less reliable Max-CAPPI , when the cell reaches the radar.
Additionally, the radar can only scan up to a certain azimuthal angle, which prevents
it from seeing what is directly above. It seems as if the system shrinks in (c) and (d),
which is an effect of these limitations. However, the center of the cell in green is well
visible in all subfigures. The points in time were chosen in accordance to the events
of interest in Figure 4.11.
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Figure 4.11: Time series of the rain rate for the Parsivels along the track of the supercell on June
23, 2021. The one minute measuring interval is converted to a 5 minute interval to
smooth the curves. Parsivel Pu is not included here due to its erroneous measure-
ments.

Figure 4.12: Same as Figure 4.11, but for the median volume diameter D0.
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4.3 Case study of the supercell on June 23, 2021

(a)

(b)

Figure 4.13: Same as Figure 4.11 and Figure 4.12, but for the main measuring site in Rottenburg
(Pv, Pa).
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5 Summary and conclusion

In this thesis we investigated DSDs and other precipitation properties of rain events from
mid-April to October 8, 2021 in the Neckar Valley and the Swabian Jura. To describe
the DSDs the gamma distribution was utilised. Its parameters were determined using the
moments method. In the framework of the Swabian MOSES field campaign, the data
was recorded by a network of 23 Parsivel disdrometers, which is part of the KITcube
observation system. The analysis of the data also allowed an evaluation of the measuring
network, which was fully deployed for the first time.

Four measuring sites with collocated disdrometers enabled to examine the measuring
accuracy of the Parsivels. The measured rain rates and median volume diameters of
close-by Parsivels were found to agree well. This was tested by linear regressions of the
respective parameter, showing slopes around one and approximately no offset. In addi-
tion, the correlation coefficients of the median volume diameter of collocated disdrome-
ters were compared with an estimated correlation coefficient resulting from the natural
variability of this parameter (Handwerker and Straub (2011)), and they were found to be
only slightly smaller. Thus, the deviation of the correlation coefficients from one is mainly
due to natural variability. This is further confirmation of the consistent measurements of
the Parsivels. However, for large rain rates the agreement of collocated Parsivels is signif-
icantly smaller. This is likely due to the more stochastic nature of convective precipitation,
causing such large rain rates. High temporal and spatial variability leads to deviating con-
ditions even for close-by devices. Yet another contributor to the decreased agreement of
measurements of heavy rain might be the strongly reduced statistic of strong rain events
due to their rare occurrence.
The correlation coefficients of all Parsivel pairs were determined. Investigating the be-
haviour of these coefficients with increasing distance of the respective disdrometer pair
served as a plausibility check of the disdrometer network.
Concluding, the Parsivel network performs well. However, its performance in heavy rain
conditions could profit from further assessment with more data available.
Through the direct comparison erroneous measurements of Parsivel PARS2017A were
identified. It should be excluded in further studies.

A reduction in large artifacts of the determined gamma distribution parameters for spec-
tra with larger rain rates was found by examining the frequency distributions thereof. This
led to the definition of a rain regime with R > 2 mm h−1 and a strong rain regime with
R > 20 mm h−1, which are further studied individually. These two data regimes also sep-
arate predominantly stratiform (rain regime) from convective (strong rain regime) rain.
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5 Summary and conclusion

Events with rain rates less than 2 mm h−1 were excluded in most examinations because
gamma parameters reached nonphysical high values for these. Evaluation of the char-
acteristics of gamma distribution parameters exhibited a nearly linear relationship of the
shape parameter µ and the slope parameter λ, reproducing the findings of other studies
(e.g. Chen et al. (2016); Liu et al. (2021)). This was supported by a median volume di-
ameter D0, whose means for events of large rain rates only vary over a small range of
values. A median volume diameter increasing by about one millimeter with increasing rain
rate was observed for R < 40 mm h−1. Furthermore, the normalized intercept parameter
NL was found to be relatively constant for different rain rates. Knowledge on DSD param-
eters specific for the Swabian Jura and the Neckar Valley are essential for possible future
advances in polarimetric radar products adapted for this region.
A limitation of the validity of the determined gamma distribution parameters comes from
the influence the sampling time has on them. For example, spectra from long measuring
intervals are well described by small values of µ. Therefore, it should be evaluated for fu-
ture studies whether intervals other than one minute are more suitable for the deduction
of DSD parameters. In this thesis one-minute spectra were used because they are most
common in comparable research.

The measuring area can be divided into the regions Neckar Valley and Swabian Jura.
The subdivision of these two regions is reflected by the distinguishable values of the total
rain amount and the median volume diameter averages obtained for the rain regime for
all Parsivels. In the Swabian Jura, one observes a tendency to higher rainfall totals and,
surprisingly, smaller raindrop sizes, described by the median volume diameter D0. At the
same time, however, heavy precipitation events occur less frequently in the Jura. In the
strong rain regime, the rainfall totals measured in the Swabian Jura are smaller than those
measured in the Neckar Valley.

On June 23, 2021, a supercell moved through the measuring area causing massive dam-
age to property and infrastructure in this region. By looking at the time series of the rain
rate and the median volume diameter of the Parsivels that were in the vicinity of this cell,
the temporal variability of these two parameters could be assessed. The trajectory of
the cell as recorded by the X-band radar in Nürtingen perfectly matches the time when
the Parsivels record rain. Focusing on the rainfall of this thunderstorm in Rottenburg, a
strong temporal variability of DSD parameters in the strong rain regime becomes evident,
even when examining 5-minute means. The largest values of median volume diameters
are recorded before and after the heaviest rainfall associated with the convective core of
this cell over Rottenburg, agreeing with observations of Schuur et al. (2001). This strong
intra-event variability within very short time intervals presents a difficulty for comparisons
between radar and in-situ DSD measurements in further studies.

The acquired assessment of the disdrometer network and the analysis of the data it col-
lected is essential for further investigations concerning precipitation-related subjects. This
includes quality control and improvements of radar observations and products, such as
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the quantitative precipitation estimation (QPE), and research on microphysical processes
of precipitation systems.

51





A Appendix

A.1

All gamma distribution parameters and the rain rate, averaged over the whole measuring
period for each Parsivel, are listed here (Table A.1 and following). This is done for the
data of the rain and strong rain domain. The averages stated are the mean and median,
respectively. The median is the preferred average here because the mean is more sus-
ceptible to artifacts. Furthermore, the root-mean-square deviation σ of the median P̃, with
P being any parameter, is calculated as follows:

σ(P) =

√√√√ 1
Ntot

Ntot∑
m=1

[
Pm − P̃

]2
. (A.1)

For the intercept parameter N0 the artifacts for some of the DSDs deviate over multiple
orders of magnitude from the median, making a reasonable comparison impossible. For
this reason, the parameter is not listed.

For the sake of completeness Parsivel Pu is also listed, despite its deviating measur-
ments.

A.2

The Parsivel disdrometer classifies each measured drop in one of 32 size and 32 velocity
classes. All drops within the interval of a certain class are assigned its mid-value. The
precise class specifications are listed in Table A.7 and Table A.8 below.
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Table A.1: DSD parameters (R, Nt , M1) averaged over the measurement period for each Parsivel.
The data used are the one-minute spectra of the rain domain (R > 2mm h−1). Of every
parameter P, the mean P̄, the median P̃ and the root-mean-square deviation of the
median σ(P) is given. The minimum and maximum value of each column is marked in
bold numbers.

Parsivel R in mm h−1 Nt in m−3 M1 in mm m−3

R̄ R̃ σ(R) N̄t Ñt σ(Nt ) M̄1 M̃1 σ(M1)

Pu 7.2 3.5 15.6 465 318 460 407 285 384

Pv 6.8 3.4 14.6 565 380 561 475 332 444

Pw 6.7 3.3 14.8 619 365 733 497 317 513

Pa 6.5 3.4 12.7 603 403 614 493 341 469

Pb 6.2 3.2 12.5 647 384 773 508 328 529

Pc 5.4 3.2 11.5 641 464 665 507 384 480

Pd 5.3 3.3 8.1 776 537 754 580 422 506

Pe 5.7 3.2 9.6 650 480 589 520 410 390

Pf 5.6 3.2 9.7 736 511 738 571 428 480

Pg 6.2 3.5 10.8 671 486 613 538 410 424

Ph 5.3 3.3 10.8 814 511 878 602 425 547

Pi 7.2 3.9 11.4 714 536 670 571 458 433

Pk 5.2 3.1 7.3 931 588 1003 670 468 601

Pl 7.1 3.3 15.9 652 409 722 527 354 525

Pm 6.5 3.3 16.4 645 412 744 528 356 627

Pn 6.0 3.2 11.8 719 453 772 557 381 547

Po 7.5 3.3 17.8 673 409 741 546 357 570

Pp 5.3 3.0 8.5 902 606 934 657 479 593

Pq 6.4 3.5 11.2 715 513 673 570 428 475

Pr 4.1 2.9 4.7 597 378 587 458 317 378

Ps 6.8 3.2 18.6 650 390 781 526 336 614

Pt 6.1 3.6 10.4 637 456 599 520 394 414
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A.2

Table A.2: As in Table A.1 but for the parameters M2, Z and µ.

Parsivel M2 in mm2 m−3 Z in dBZ µ

M̄2 M̃2 σ(M2) Z̄ Z̃ σ(Z ) µ̄ µ̃ σ(µ)

Pu 451 308 500 34.9 33.8 6.1 4.8 4.0 3.3

Pv 499 344 537 33.8 32.7 6.0 5.5 4.4 4.1

Pw 499 339 536 33.7 32.7 6.0 6.1 4.3 6.0

Pa 504 346 539 33.7 32.6 6.0 5.1 4.2 3.8

Pb 496 341 525 33.4 32.5 6.1 5.9 4.3 5.5

Pc 483 366 477 32.4 31.6 6.2 6.8 4.9 6.3

Pd 529 398 462 32.4 31.6 6.2 5.9 4.4 5.0

Pe 504 402 385 32.5 31.6 6.2 7.3 5.4 6.1

Pf 532 410 437 32.2 31.3 6.2 7.8 5.7 6.7

Pg 529 407 425 33.2 32.1 6.1 5.9 4.6 4.7

Ph 539 405 478 32.1 31.5 6.2 6.8 4.9 6.1

Pi 568 449 419 34.0 32.9 6.0 6.1 4.6 5.2

Pk 579 429 462 31.7 31.1 6.3 7.3 5.1 6.3

Pl 531 364 603 33.5 32.5 6.1 6.1 4.4 5.4

Pm 531 353 768 33.2 32.3 6.1 5.9 4.5 4.8

Pn 531 372 574 32.7 31.9 6.1 6.1 4.6 5.0

Po 554 368 685 33.6 32.6 6.0 5.9 4.3 5.0

Pp 571 434 504 31.1 30.3 6.6 7.6 5.6 6.2

Pq 554 415 480 33.1 32.0 6.1 6.5 5.0 5.4

Pr 421 316 302 32.1 31.7 6.2 5.8 4.5 4.2

Ps 525 342 687 33.4 32.5 6.1 5.8 4.3 5.0

Pt 518 399 404 33.5 32.8 6.0 6.1 4.7 4.8
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Table A.3: As in Table A.1 but for the parameters λ, D0 and NL.

Parsivel λ in mm−1 D0 in mm NL in 104 m−3 mm−1

λ̄ λ̃ σ(λ) D̄0 D̃0 σ(D0) N̄L ÑL σ(NL)

Pu 6.8 5.5 5.0 1.5 1.4 0.5 0.7 0.3 1.2

Pv 7.8 6.2 6.3 1.4 1.3 0.5 0.9 0.4 1.5

Pw 8.9 6.0 9.9 1.4 1.3 0.5 1.2 0.4 2.6

Pa 7.6 6.0 6.0 1.4 1.3 0.4 1.0 0.5 1.7

Pb 8.8 6.1 9.2 1.4 1.3 0.4 1.3 0.4 2.7

Pc 9.8 7.0 9.2 1.3 1.2 0.4 1.2 0.6 2.0

Pd 9.2 6.7 8.1 1.2 1.2 0.3 1.4 0.7 2.4

Pe 10.5 7.4 9.5 1.3 1.2 0.4 1.3 0.6 2.2

Pf 11.3 7.8 10.9 1.3 1.2 0.4 1.6 0.7 2.7

Pg 8.7 6.6 7.4 1.3 1.3 0.4 1.2 0.6 2.0

Ph 10.5 7.2 10.3 1.3 1.2 0.4 1.8 0.6 3.2

Pi 9.0 6.5 8.4 1.4 1.3 0.5 1.3 0.6 2.4

Pk 11.4 7.7 10.8 1.2 1.2 0.4 2.1 0.8 3.8

Pl 8.9 6.2 8.7 1.4 1.3 0.4 1.2 0.5 2.4

Pm 8.6 6.5 7.6 1.3 1.3 0.4 1.1 0.5 1.9

Pn 9.2 6.7 8.3 1.3 1.2 0.4 1.4 0.5 2.4

Po 8.7 6.2 8.2 1.4 1.3 0.4 1.2 0.5 2.3

Pp 11.8 8.5 10.6 1.2 1.1 0.4 2.0 0.9 3.3

Pq 9.6 7.2 8.5 1.3 1.2 0.4 1.3 0.7 2.2

Pr 8.7 6.6 6.9 1.3 1.2 0.4 1.1 0.5 1.9

Ps 8.5 6.1 8.1 1.4 1.3 0.4 1.2 0.4 2.2

Pt 8.7 6.4 7.5 1.4 1.3 0.4 1.2 0.5 1.9
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Table A.4: DSD parameters (R, Nt , M1) averaged over the measurement period for each Parsivel.
The data used are the one-minute spectra of the strong rain domain (R > 20mm h−1).
Of every parameter P, the mean P̄, the median P̃ and the root-mean-square deviation
of the median σ(P) is given. The bold numbers mark the minimum and maximum value
of each column.

Parsivel R in mm h−1 Nt in m−3 M1 in mm m−3

R̄ R̃ σ(R) N̄t Ñt σ(Nt ) M̄1 M̃1 σ(M1)

Pu 54.5 36.8 43.9 1049 813 810 1154 903 843

Pv 52.9 37.9 40.8 1286 928 1061 1347 1045 1014

Pw 53.3 39.4 40.6 1235 1072 837 1294 1072 875

Pa 48.1 35.4 33.8 1470 1114 1157 1459 1139 1065

Pb 48.1 37.4 32.9 1342 1054 1033 1338 1059 1000

Pc 46.9 32.9 44.4 1589 1060 1832 1451 1044 1514

Pd 38.4 29.3 24.9 1940 1640 1266 1656 1418 1058

Pe 42.7 33.2 25.6 1008 991 530 1095 1028 577

Pf 45.2 35.2 28.0 1056 890 905 1149 1021 895

Pg 43.5 32.2 29.8 1079 987 602 1119 1003 606

Ph 51.6 33.4 46.6 1348 1188 839 1400 1152 964

Pi 41.3 35.0 23.1 971 889 499 1005 937 455

Pk 35.5 29.4 17.2 1487 1258 952 1360 1199 774

Pl 56.0 37.6 45.0 1462 1267 878 1501 1250 943

Pm 63.3 43.4 58.0 2156 1582 1796 2179 1481 1932

Pn 47.1 36.0 32.5 1566 1226 1247 1550 1204 1224

Po 62.8 44.0 49.6 1548 1242 1170 1626 1227 1273

Pp 40.7 34.0 21.5 2008 1275 1803 1725 1169 1389

Pq 41.8 32.2 29.2 1275 1063 1064 1251 1049 924

Pr 33.2 28.5 12.7 944 1065 429 997 1097 422

Ps 61.0 36.9 68.1 1800 1242 1653 1806 1186 1671

Pt 44.4 33.2 32.8 981 936 561 1055 982 554
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Table A.5: As in Table A.4 but for the parameters M2, Z and µ.

Parsivel M2 in mm2 m−3 Z in dBZ µ

M̄2 M̃2 σ(M2) Z̄ Z̃ σ(Z ) µ̄ µ̃ σ(µ)

Pu 1798 1325 1284 51.9 51.6 5.8 1.6 1.5 0.9

Pv 1981 1485 1384 51.3 51.2 5.7 1.6 1.6 0.9

Pw 1911 1569 1236 52.4 52.5 6.0 1.5 1.3 1.0

Pa 2027 1509 1390 50.5 50.1 5.8 1.6 1.7 0.8

Pb 1876 1580 1245 51.8 51.6 5.8 1.4 1.3 0.9

Pc 1870 1412 1661 51.1 50.2 5.7 1.6 1.4 1.3

Pd 1991 1713 1214 48.0 47.6 6.5 1.7 1.5 1.1

Pe 1644 1444 857 50.3 49.8 5.8 1.7 1.7 0.9

Pf 1724 1466 1168 50.4 50.2 5.7 1.8 1.6 1.0

Pg 1639 1449 842 50.9 49.8 5.8 1.6 1.5 0.8

Ph 2029 1580 1502 50.4 49.3 5.9 1.7 1.5 1.2

Pi 1495 1403 598 50.0 49.8 5.8 1.6 1.4 1.0

Pk 1737 1557 849 48.0 47.5 6.5 1.8 1.5 1.1

Pl 2162 1680 1485 51.9 51.5 5.8 1.7 1.6 0.9

Pm 2947 1982 2681 50.9 50.5 5.7 2.0 2.0 0.8

Pn 2119 1641 1596 49.3 49.4 5.8 1.7 1.6 0.9

Po 2375 1745 1855 52.5 52.6 6.0 1.7 1.7 0.9

Pp 2075 1548 1383 48.7 48.2 6.2 1.6 1.5 0.7

Pq 1731 1471 1106 49.7 49.3 5.9 1.7 1.5 1.0

Pr 1433 1445 522 49.0 48.6 6.1 1.8 1.8 0.8

Ps 2436 1624 2147 52.3 50.9 5.7 1.9 1.8 1.1

Pt 1602 1432 805 50.6 49.3 5.9 1.6 1.6 0.8
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Table A.6: As in Table A.4 but for the parameters λ, D0 and NL.

Parsivel λ in mm−1 D0 in mm NL in 104 m−3 mm−1

λ̄ λ̃ σ(λ) D̄0 D̃0 σ(D0) N̄L ÑL σ(NL)

Pu 2.3 2.3 0.9 2.5 2.3 0.8 0.5 0.3 0.5

Pv 2.5 2.4 1.0 2.4 2.2 0.8 0.7 0.4 0.8

Pw 2.4 2.1 1.1 2.4 2.3 0.6 0.7 0.4 0.7

Pa 2.6 2.5 0.9 2.3 2.1 0.8 0.8 0.5 0.8

Pb 2.4 2.3 1.0 2.3 2.2 0.7 0.7 0.4 0.9

Pc 2.7 2.6 1.3 2.2 2.0 0.8 1.1 0.5 1.8

Pd 3.1 2.9 1.2 1.8 1.8 0.3 1.2 0.8 1.1

Pe 2.5 2.5 0.9 2.3 2.2 0.6 0.5 0.4 0.4

Pf 2.5 2.4 0.9 2.4 2.3 0.6 0.6 0.4 0.7

Pg 2.5 2.4 0.8 2.3 2.2 0.6 0.5 0.5 0.4

Ph 2.6 2.4 1.2 2.2 2.2 0.6 0.7 0.6 0.7

Pi 2.4 2.2 1.0 2.4 2.3 0.6 0.5 0.4 0.4

Pk 2.9 2.7 1.1 2.0 1.9 0.5 0.9 0.6 0.9

Pl 2.6 2.6 0.8 2.2 2.1 0.6 0.8 0.7 0.6

Pm 3.0 3.0 0.8 2.0 1.9 0.4 1.3 0.9 1.2

Pn 2.7 2.6 1.0 2.2 2.0 0.6 0.9 0.6 0.9

Po 2.5 2.5 0.9 2.3 2.1 0.7 0.8 0.6 0.8

Pp 2.8 2.7 1.0 2.0 1.9 0.5 1.3 0.6 1.6

Pq 2.6 2.4 1.0 2.2 2.1 0.6 0.7 0.5 0.8

Pr 2.7 2.7 0.8 2.2 2.1 0.5 0.5 0.6 0.3

Ps 2.9 2.8 1.1 2.2 2.0 0.9 1.3 0.7 1.6

Pt 2.4 2.3 0.9 2.4 2.3 0.7 0.5 0.4 0.4
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Table A.7: Drop size classes of the Parsivel taken from the manual of the Parsivel (OTT-HydroMet,
2022)

Class number Mid-value of class in mm Class spread in mm

1 0.062 0.125

2 0.187 0.125

3 0.312 0.125

4 0.437 0.125

5 0.562 0.125

6 0.687 0.125

7 0.812 0.125

8 0.937 0.125

9 1.062 0.125

10 1.187 0.125

11 1.375 0.250

12 1.625 0.250

13 1.875 0.250

14 2.125 0.250

15 2.375 0.250

16 2.750 0.500

17 3.250 0.500

18 3.750 0.500

19 4.250 0.500

20 4.750 0.500

21 5.500 1.000

22 6.500 1.000

23 7.500 1.000

24 8.500 1.000

25 9.500 1.000

26 11.000 2.000

27 13.000 2.000

28 15.000 2.000

29 17.000 2.000

30 19.000 2.000

31 21.500 3.000

32 24.500 3.000
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Table A.8: Fall velocity classes of the Parsivel taken from the manual of the Parsivel (OTT-
HydroMet, 2022)

Class number Mid-value of class in m s−1 Class spread in m s−1

1 0.050 0.100

2 0.150 0.100

3 0.250 0.100

4 0.350 0.100

5 0.450 0.100

6 0.550 0.100

7 0.650 0.100

8 0.750 0.100

9 0.850 0.100

10 0.950 0.100

11 1.100 0.200

12 1.300 0.200

13 1.500 0.200

14 1.700 0.200

15 1.900 0.200

16 2.200 0.400

17 2.600 0.400

18 3.000 0.400

19 3.400 0.400

20 3.800 0.400

21 4.400 0.800

22 5.200 0.800

23 6.000 0.800

24 6.800 0.800

25 7.600 0.800

26 8.800 1.600

27 10.400 1.600

28 12.000 1.600

29 13.600 1.600

30 15.200 1.600

31 17.600 3.200

32 20.800 3.200
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