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Abstract 

 

High-resolution regional ensemble climate simulations with the regional climate model 

COSMO-CLM are performed for Southwest Germany to study the sensitivity of meteoro-

logical and hydrological variables to simulation set-up, including the domain size, driving 

data, horizontal resolution and physical parameterisations and parameter settings. The 

model setup found adequate for such simulations is a domain including the Alps, ERA-40 

reanalysis data as driving data, and a horizontal resolution of 7 km. The sensitivity of 

simulation results to a changed model setup is highest for the change in driving data and is 

higher in winter than in summer.  

This adequate model setup is used to investigate the influence of the land surface scheme 

on COSMO-CLM simulations. The standard land surface scheme TERRA_LM is replaced 

by the land surface scheme VEG3D, which contains an explicit vegetation layer. Stand-

alone simulations with both land surface schemes show better agreement with observations 

for the VEG3D scheme, especially over high vegetation. Coupled online with the 

COSMO-CLM, both schemes yield similar results on the spatial patterns of the meteoro-

logical variables but the absolute values may differ considerably. No model system gives 

better results than the other for 2m-temperature and precipitation compared to observa-

tions, and the difference in TERRA_LM and VEG3D simulation is similar to the differ-

ence obtained by changing other physical parameterisations or the time-integration 

scheme. Freezing and melting processes in the soil are implemented in VEG3D to make 

the scheme applicable for climate simulations. Stand-alone simulations with the new 

scheme yield better results than those without the consideration of freezing and melting 

processes. Better results in stand-alone simulations are obtained when using different soil 

types within one soil column, instead of using one single soil type for the whole column. 

Therefore, a soil type inventory for Germany for the coupled model system COSMO-

CLM/VEG3D is provided in this thesis, which contains several soil types within one soil 

column.  

A strategy for a statistical-dynamical downscaling method is developed and evaluated to 

replace time consuming day by day simulations. The method shows the ability to yield 

results similar to those of the continuous simulation.   
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1 INTRODUCTION  

The Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC) 

pointed out that the observed warming of the climate system is unequivocal and that there 

is no chance to stop the climate change within the coming decades (ALLEY  et al., 2007). 

Even if the concentration of all greenhouse gases were frozen to the level of the year 2000, 

a further warming of about 0.1°C per decade is to be expected. Therefore, it is necessary to 

estimate the consequences climate change will have on regional climate and to develop 

strategies on how to adapt to the climate change caused by increasing global warming. As 

a basis for developing plans for adaptation and mitigation on a regional scale, it is neces-

sary to predict the changes of climate variables, like temperature and precipitation, and 

their statistics over the coming decades, and to determine the uncertainties in such predic-

tions. The demand for reliable climate simulations for specific regions is increasing.  

Global models are not able to resolve complex topographies due to their coarse resolution 

of more than 100 km. Hence, the forecasts of global models are not suitable for climate 

impact studies in regions with complex topography like Southwest Germany (KLIWA, 

2006). Regional climate models with higher resolution than global models are used to 

downscale the results of global climate models onto a finer grid to provide reliable results 

for such regions. This can be done for limited areas only, due to the excessive computing 

time, which has been a limiting factor in climate prediction up to now.  

Due to their higher resolution, regional climate models are expected to give better results 

than global models (MO et al., 2000), especially for extreme events (CHRISTENSEN et al., 

1998, WANG et al., 2003). Extreme values of troughs, intense precipitation, and strong 

winds tend to be better simulated by regional models than by global models (GIORGI and 

MEARNS, 1999). Their precipitation differences to global climate models mainly arise from 

orographic forcing and rain shadowing effects (GIORGI et al., 1994, JONES et al., 1997, 

LEUNG et al., 2004).  

Due to the high demand for reliable regional climate simulations, some new regional cli-

mate models have been developed in the recent past, mainly from existing weather predic-

tion models. For example the regional climate model COSMO-CLM (BÖHM et al., 2006), 

which is used for all the studies presented in this thesis. This model was developed from 
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the existing weather prediction model Lokal-Modell (LM) (DOMS et al., 2005) from the 

German Weather Service (DWD). This work was mainly done by researchers from the 

Potsdam Institute of Climate Impact Research (PIK), the University of Cottbus, the GKSS 

Research Centre, and DWD. Forschungszentrum Karlsruhe (Institute of Meteorology and 

Climate Research, IMK-TRO) joined the consortium in 2004 and focusses its efforts on 

model developments towards highest resolution, non-hydrostatic simulations, and land-

surface schemes. Today, the CLM community comprises researchers from about 20 differ-

ent institutes using the model for climate studies and contributing to its further develop-

ment. The model has become the community model for German climate research on the 

regional scale. In 2007, the model was combined with LM into one source code. From 

model version 4.0 onwards, the model is renamed from CLM to COSMO-CLM. The ad-

vantage over other climate models is that COSMO-CLM is a “living” climate model. This 

means that the source code is permanently improved and new parameterisations are devel-

oped, as the source code is identical to the source code of the COSMO model of DWD 

used for the operational numerical weather forecast. Therefore, experience with the 

weather forecast version can be transferred to the climate version and vice versa. One dif-

ference between weather forecast and climate prediction with the same model is the as-

similation of observed data to correct the weather forecast. Prognostic climate model runs 

needs to be performed without any correction by observations. Another difference is the 

update of vegetation parameters during the annual cycle, which is not necessary for 

weather forecast models that only run over several days. The initialisation of the model is 

more important in weather forecasting than in climate mode. Climate models are given 

some time to adapt and to weight out imbalances that occur due to the initialisations. This 

is not possible in weather forecasting and the initialisation of the model is important for the 

quality of the results. 

Over the last decade, the horizontal resolution of regional climate models was about 

50 km. However, a horizontal resolution of 50 km is still too coarse for climate change 

investigations that concern hydrology or water management in orographically structured 

regions (CHRISTENSEN et al., 1998). Effects caused by small scale orography like valley 

winds, variations in near-surface temperature, orographically induced precipitation as well 

as river discharge for small and medium sized catchments cannot be modelled accurately 

or are even missing in simulations with 50 km resolution. For such purposes, a horizontal 
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resolution below 20 km is necessary to resolve the high horizontal and time-dependent 

variability of meteorological variables. The few regional climate studies that have been 

carried out with horizontal resolutions finer than 20 km reveal that such high-resolutions 

are able to realistically capture regional climate features (CHRISTENSEN et al. 1998, LEUNG 

et al., 2004). However, the increase of resolution does not necessarily lead to a better per-

formance (NOBRE et al., 2001). The error from global models is carried over into the re-

gional models and often this error increases with increasing resolution (CHRISTENSEN et al., 

1998) and depends on the variable considered. A detailed comparison between low and 

high-resolution runs is therefore necessary for each specific region to determine the added 

value of high-resolution simulations. Up to now, there have been many open questions 

regarding parameterisations and numerical issues in high-resolution regional climate simu-

lations. Therefore, high-resolution climate simulations with horizontal resolutions finer 

than 20 km were performed and evaluated in this thesis to gain further knowledge about 

the added value of such simulations in complex topography and to study the sensitivity of 

the results with respect to parameterisations and numerical algorithms used. The investiga-

tion area for all high-resolution simulations, as presented here, is the region of Southwest 

Germany. Due to the geographical situation (vicinity of Alps) and the complex topography, 

the region is adequate to demonstrate the skill and to detect the problems of high-resolution 

climate simulations. 

In regional climate simulations, the adequate simulation of the processes at the surface 

becomes more and more important due to the fact that the model is able to resolve 

mesoscale phenomena. Mesoscale phenomena, e.g. valley winds or convection, are highly 

influenced by the temperature of the soil and the soil moisture content. To improve the 

prediction of the surface parameters, which are the lower boundary condition of the atmos-

pheric part of the regional climate model, and to study the influence of the soil-vegetation 

model, the soil-vegetation model VEG3D (SCHÄDLER, 1990) is implemented into 

COSMO-CLM in this thesis. In contrast to the operationally used soil-vegetation model 

TERRA_LM (DOMS et al., 2005), VEG3D has an explicit vegetation layer and should 

therefore yield better simulation results for high vegetation than TERRA_LM. The new 

scheme is expected to improve the modelling of soil processes and water cycle in 

COSMO-CLM. 
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An estimation of the consistency of the results obtained by regional climate simulations 

can only be obtained by performing ensemble simulations, because no estimate of the un-

certainties can be given in the results with one single climate simulation. First projects of 

assessing and evaluating climate change for present and future from ensembles of regional 

climate model simulations and for assessing the uncertainties in such predictions have been 

carried out or are ongoing in the EU-projects PRUDENCE (CHRISTENSEN and 

CHRISTENSEN, 2007) and ENSEMBLES (HEWITT, 2005). Ensembles can be created by 

using different driving data sets, different regional climate models, different model param-

eterisations, different model setups (e.g. different horizontal resolution or parameter data 

sets), and perturbing the initial and boundary conditions. In this thesis, the uncertainty in 

the high-resolution simulations is determined by ensemble simulations using different driv-

ing data sets, model parameterisations, and different model setups.  

Ensemble simulations for climate time scales are very time consuming and methods are 

therefore being developed that may replace the explicit simulation of every single day. One 

possibility is statistical-dynamical downscaling. This method was applied in this thesis and 

its potential in regional climate prediction was investigated. 

Before using a regional climate model for the prediction of future climate, evaluations of 

the model results for the past and present are performed to assure that the model is able to 

reproduce the current climate right. This is often done for the time period from 1960 to 

2000 due to the observation density that is highest during this time, and reliable driving 

data sets are available. As the climate change is most pronounced during the last two dec-

ades and simulations for a climatological 30-year period are too time consuming, the 

evaluation of the high-resolution simulations was done for the 1990s in this thesis. The 

focus of evaluation is on the 2m-temperature as an important meteorological variable to 

detect climate trends and on precipitation as one important variable of the hydrological 

cycle. The change in the water balance of the soil is investigated. Due to the lack of ade-

quate observations this can only be done qualitatively. 

The aim of this thesis is to gain deeper knowledge about the sensitivity of high-resolution 

regional climate simulation with COSMO-CLM in different model setups and also to im-

prove the simulation results. This is done by (1) the performance and evaluation of ensem-

ble simulations for the area of Southwest Germany, which are used to determine a suitable 

model setup for such simulations for that region, (2) the implementation of a new soil-
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vegetation model to determine the influence of the lower boundary on high-resolution re-

gional climate simulations and (3) the introduction of a statistical-dynamical downscaling 

method to save computing time. 

In the first part of this thesis ensemble simulations are evaluated to determine an optimal 

simulation set-up for high-resolution simulations in Southwest Germany and to determine 

the uncertainties in such simulations. The regional climate simulation results and the driv-

ing data from the global models were evaluated against observations to determine the error 

propagation from global to regional simulations. The evaluation of the high-resolution cli-

mate simulations was done using DWD observation data provided by PIK.  

In the second part of this thesis, simulations with both soil-vegetation models in stand-

alone mode and online coupled to COSMO-CLM are compared to determine the influence 

of soil-vegetation model on climate simulations. For climate simulations, freezing and 

melting processes in the soil had to be implemented into VEG3D in order to obtain realis-

tic simulations of soil temperature and energy transfer at the surface during the cold sea-

sons.  

A third topic of this thesis is the development of a strategy for an efficient statistical–

dynamical downscaling scheme to replace time consuming continuous climate simulations. 

This saving of time would enable the performance of a high amount of ensemble simula-

tions to statistically evaluate climate change predictions. 

The thesis is structured as follows. An introduction into regional climate modelling is 

given in the second chapter. In the third chapter, a description of the COSMO model is 

provided. Sensitivity studies for the determination of an adequate model setup for high-

resolution regional climate simulations for Southwest Germany are presented in chapter 

four. In chapter five, the further development of VEG3D, the introduction of freezing and 

melting processes in the soil, and the coupling with COSMO-CLM are explained. In chap-

ter six, comparisons between VEG3D and TERRA_LM in stand-alone mode and online 

coupled to COSMO-CLM are shown. The development of a statistical-dynamical down-

scaling method and comparisons with continuous simulations and observations are pre-

sented in chapter seven and conclusions and an outlook are given in chapter eight. 



 

 

2 REGIONAL CLIMATE MODELS AND SIMULATIONS  

The necessity of regional climate simulations for climate impact studies has been recog-

nized since the end of the 1980s. At that time, general circulation models (GCM) had a 

resolution of about 300 - 500 km and it was therefore not possible to use GCM results for 

regional climate impact studies (HOUGHTON et al., 1990). The first regional climate simula-

tions were carried out by DICKINSON et al. (1989) and GIORGI and BATES (1989). The term 

“regional” in this context means scales of 104 to 107 km2 (IPCC, 2001). Scales larger than 

107 km2 are called “planetary scale” and scales lower than 104 km2 are referred to as “local 

scale”. The horizontal resolution of recent regional climate simulations reaches from about 

50 km to 10 km. 

Today, GCMs are run on scales lower than 50 km in operational weather forecast mode, 

e.g. GME (MAJEWSKI et al., 2002), and variable resolution GCMs are developed that can 

be run at any horizontal resolution. In the future, these variable GCMs may replace the 

RCMs in regional climate modelling. Nevertheless, the development of variable resolution 

GCMs is just in its beginnings and it is unlikely that GCMs will run on a 10 km scale for 

climate time scales in the nearer future (LEUNG et al., 2003). Besides the adaptation of 

physical parameterisations in GCMs (e.g. convection parameterisation) that would be nec-

essary for using GCMs at different horizontal resolution, there is also the problem of limi-

tation in computer power. Until computer power reaches the required level, regional cli-

mate simulations with limited area models are a growing field with more and more applica-

tions in the climate impact research.  

Regional climate models (RCM) are limited area models and therefore need driving data at 

their lateral boundaries. Generally, GCM results are used as driving data and this process is 

called nesting a RCM into a GCM. Normally, one-way nesting is applied. This means that 

the RCM takes the GCM results as driving data at its lateral boundaries but the results ob-

tained by the RCM are not fed back to the GCM simulation. The boundary relaxation of 

RCM results to the GCM results is often done in line with DAVIES (1976) with an exponen-

tially decreasing weight in the buffer zone. This buffer zone consists of up to 10 grid boxes 

at each lateral boundary. 
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RCMs should not merely interpolate GCM results but they should be able to simulate local 

atmospheric feedback mechanisms that cannot be resolved by the coarse grid size of 

GCMs. This added value and the downscaling ability of nested RCMs has been ascertained 

by “big brother” experiments, which can help making decisions about domain size, loca-

tion of simulation area, resolution jump from GCM to RCM and update frequency of lat-

eral boundary data (DENIS et al., 2002, DENIS et al., 2003). In such experiments, first a ref-

erence RCM simulation (called the Big Brother) is performed over a large domain and then 

this data is used to drive another RCM (the Little Brother) on a smaller domain. The effect 

of degrading the resolution of lateral boundary conditions, spatially and temporally, is 

studied by comparing the big and little brother results. 

The RCM domain size should be large enough that the model can simulate mesoscale ef-

fects without too much influence of the lateral boundaries (MCGREGOR, 1997) and it 

should be small enough that the circulation in the RCM does not differ too much from the 

circulation given by the GCM (JONES et al., 1995). Otherwise this difference in circulation 

patterns can lead to inconsistency errors at the outflow boundaries. One way to avoid such 

inconsistencies is to force the RCM to follow the GCM patterns by the spectral nudging 

technique (STORCH et al., 2000).  

Forecasts of GCMs or reanalysis data sets can be used as driving data for the RCM. Re-

analysis data sets are produced by running GCMs for past decades with assimilated obser-

vations. Therefore, they can be considered as the best method of interpolating observations 

to a regular grid. In general, reanalysis data is better suited to drive a RCM than forecast 

GCM data (ROJAS and SETH, 2003). The jump in horizontal resolution between GCM and 

RCM can be up to a ratio of 12 to yield realistic results for regional climate simulations of 

45 km horizontal resolution (DENIS et al., 2003). For RCMs with a horizontal resolution of 

about 45 km, the lateral boundaries should be updated at least every 12 hours. Between 

simulations with an update every 3 and every 6 hours only small differences can be noticed 

(DENIS et al., 2003). The update period should be smaller than one quarter of the ratio of 

the length scale to the phase speed of the meteorological phenomena that penetrate over the 

boundaries into the RCM domain. 

Most RCMs are hydrostatic (i.e. the equation for the vertical velocity is reduced to the hy-

drostatic equation) such as REMO (JACOB and PODZUN, 1997) or RegCM (GIORGI et al., 

1993), but there are also non-hydrostatic RCMs such as MM5 (GRELL et al., 1994), CRCM 
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(CAYA  and LAPRISE, 1999) and COSMO-CLM (BÖHM et al., 2006). Non-hydrostatic mod-

els represent deep convection and mountain waves with large vertical motion better, which 

is important for horizontal resolutions finer than 10 km. However, the added value by non-

hydrostatic models has yet to be proven because most intercomparison projects focus on 

horizontal resolutions of 30 km and beyond. From operational weather forecasting it is 

well known, that for explicit simulation of convection, for example, the hydrostatic ap-

proximation does not hold. 

As is the case of GCMs, a variety of parameterisations is used in regional climate models. 

The resulting spread of simulation results obtained by using different regional climate 

models has been investigated in many studies (MERCURE over Europe, PIRCS over the 

United States, RMIP over Asia, IRI/ARCs over South America (WANG et al., 2004 and 

references therein)). The large-scale patterns are well represented by nearly all RCMs but 

there are large differences between the single models, depending on the region and the 

season considered. A present-day climate model intercomparison on 50 km scale shows a 

warm bias of RCMs in winter and summer and a cold bias in transition seasons compared 

to observations (JACOB et al., 2007). In summer, a better agreement of observed and simu-

lated values of inter-annual variability is found than in winter. The third IPCC Assessment 

Report found that RCMs with a horizontal resolution of 50 km have a bias of +-2°C and a 

precipitation bias of +/- 50% (IPCC, 2001). The model error in GCMs is about +/- 5°C and 

-40 to 60% in precipitation (LEUNG et al., 2003).  

The predictive power of RCMs is mainly limited by three factors:  the uncertainties in driv-

ing data, the uncertainties in physical parameterisations, and the chaotic nature of the cli-

mate system (WANG et al., 2004). RCMs show quite realistic climate signals when com-

pared to observations, but are unable to “correct” systematic errors in large-scale circula-

tion from driving data (CHRISTENSEN et al., 1998).  

Furthermore, the results of RCMs can be influenced by vegetation parameters used for 

modelling the exchange between soil and atmosphere, which are provided as external pa-

rameters from different land use maps. The use of different parameter data sets can cause 

differences in monthly mean 2m-temperature of up to 1.5 K (BLOCK, 2007). 

An often discussed topic is the evaluation of climate simulations. In the past this was pri-

marily done by using gridded data sets (e.g. Climate Research Unit (CRU) data (NEW et 
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al., 2000), WILLMOTT and MATSUURA (2001)). One reason for this, and a serious disadvan-

tage, was the low density of the observations (IPCC, 2001). In the past decade, the density 

in observation stations has increased considerably. Hence, more recent studies also use 

station data to evaluate the results of the nearest grid box (MOHBERG and JONES, 2004). 

The grid box value of a simulation is always an area mean and a station value is a point 

observation that cannot be compared directly if the model resolution is too coarse. Even 

when high density observations are available we have to take into account the measure-

ment error in our comparisons of climate simulations with observations. Especially for 

precipitation, the correction factor given by some studies is in the range of 15% (FREI et 

al., 2003) and for winter periods, where the differences are larger, even in the range of 30% 

(HAD, 2003).   

Dynamical downscaling using RCMs is only one method for downscaling GCM results on 

regional scales. There are also statistical methods used for downscaling (WILBY et al., 

2002). In dynamical downscaling, a high-resolution RCM is nested into a coarser resolu-

tion GCM and every day of the investigated period is simulated by a continuous simulation 

with the RCM (MCGREGOR, 1997). The advantage of this method is its ability to resolve 

small-scale atmospheric features, e.g. valley winds and orographic precipitation. The dis-

advantage is the high computational demand due to the explicit simulation of every day. 

In statistical downscaling it is assumed that regional climate is mainly a function of the 

large-scale atmospheric state. Large-scale variables, known as predictors, from GCMs are 

used to determine the regional climate variables as predictands (IPCC, 2001). The assump-

tion is made that the relationships found between them are also valid in the future. Three 

main techniques can be identified in statistical downscaling: (1) weather generators that 

randomly generate realistic looking sequences of local climate variables depending on 

GCM results; (2) transfer functions that give a quantitative relationship between predictor 

and predictand; (3) weather typing schemes that relate an atmospheric large-scale state to 

local climate variables. 

A mixture of dynamical and statistical downscaling is the statistical-dynamical down-

scaling (FUENTES and HEIMANN , 2000, FREY-BUNESS et al., 1995). Typical weather pat-

terns from GCM results are classified and each weather pattern is represented by its fre-

quency. For each weather pattern, a RCM is used to simulate the according weather period 

and the resulting daily means of meteorological variables are summed up, weighted by 
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their frequency, to receive annual mean values. The advantages of this method are that it is 

valid under future conditions because GCM forecasts can be used as driving and classifica-

tion data and that it is not as time consuming as dynamical downscaling.  

The growing interest of administrations and policymakers in regional climate change and 

climate impact studies has led to many studies of trend detection and future climate change 

for individual regions. The KLIWA project has been initiated for Southwest Germany, 

which aims to detect present and future climate changes with a focus on hydrology. It was 

found that the climate conditions have changed especially during the last three decades 

(GÜNTHER, 2004, STRAUB, 2004). Comparisons of the results of different downscaling 

techniques for present and future climate have been carried out within this project with the 

aim to provide reliable results of the influence of climate change on the water cycle. The 

result was that the statistical-dynamical method gives better results for present day climate 

than the dynamical downscaling for Southwest Germany (KLIWA, 2006). However, re-

gional climate models have improved considerably and studies with the improved models 

are under way. 

Summaries on regional climate modelling, downscaling techniques and further challenges 

in regional climate simulation can be found in MCGREGOR (1997), GIORGI and MEARNS 

(1999), IPCC (2001), LEUNG et al. (2003) and WANG et al. (2004). 

The regional model COSMO-CLM that is used for the following studies is described in 

detail in Doms et al. (2005), Böhm et al. (2006) and Will et al. (2007). A summary of 

model history and a short model description is given in chapter three; in the following 

chapters only the components relevant for the related study and the parameterisations used 

are described.  

Based on the information described above, a model setup, simulation chain and evaluation 

strategy has been composed for the following studies: reanalysis data is used as driving 

data for the regional climate simulations of past decades. A downscaling chain is per-

formed to keep the jump in horizontal resolution within reasonable limits: first a coarser 

resolution COSMO-CLM simulation is nested into the reanalysis data with an update fre-

quency of boundary data of six hours and then the results of the coarse regional model are 

used to drive the high-resolution simulations with an update frequency of three hours 

(Fig. 2.1). The domain size for the regional model simulations is chosen small enough to 
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ensure there are no large inconsistencies between RCM and GCM (WILL , personal com-

munication, 2005). The horizontal resolution used for the high-resolution runs is well be-

low 20 km. The validation of the high-resolution climate simulations has been done using 

observation data obtained from the PIK (ÖSTERLE et al., 2006). In this thesis, the evalua-

tion of climate simulations is done by comparing point measurements with the weighted 

mean value of the nearest four grid boxes of the simulations.  

In the following studies mainly the results of simulations for 2m-temperature and precipita-

tion are discussed. One should keep in mind that these are only the results of a long process 

chain and that 2m-temperature is just a diagnostic variable. Therefore, it would be more 

suitable for model validation to evaluate variables like heat fluxes, integrated moisture 

content for the grid box column, or radiation balance components. However, area-wide 

observations of these parameters are not yet available. Hence, it is generally assumed that 

when the regional model is able to reproduce precipitation and 2m-temperature, all other 

processes like circulation patterns and three dimensional meteorological variables are rea-

sonably well simulated.  

 

 

 
Figure 2.1: Downscaling chain for high-resolution runs. 



 

 

3 DESCRIPTION OF THE COSMO MODEL  

The Lokal-Model (LM) has been the operational limited area forecast model of the DWD 

since December 1999. LM is designed for meso-
�
 and meso-�  scales (Fig. 3.1). Especially 

on meso-�  scales non-hydrostatic effects begin to play an essential role (DOMS et al., 

2005). Therefore, the LM equations are non-hydrostatic and fully compressible.  

More than 10 European meteorological services are participating in COSMO (Consortium 

for Small-Scale Modelling) and are running and developing the LM for operational 

weather forecast. In 2007, LM was renamed the COSMO model to reflect the joint effort. 

The model is available free of charge for research purposes and the mode in which the 

model is run is specified by the appendix to the model name. For example, COSMO-EU is 

the operational forecast mode used at DWD with a horizontal grid spacing of 7 km, a do-

main covering the whole of Europe and data assimilation. COSMO-DE is the short range 

weather prediction mode at DWD running on a 2.8 km horizontal resolution and an area 

covering the whole of Germany. COSMO-CLM is the climate mode of the model with no 

prescribed horizontal resolution or simulation area, with updated vegetation parameters 

and with no data assimilation. All descriptions of dynamics, numerics and parameterisa-

tions given in the following chapter are valid for the forecast and the climate mode of the 

COSMO model. 

 

Figure 3.1: Definition of meso- and microscale (STULL, 1988). 
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3.1 DYNAMICS  

3.1.1 MODEL EQUATIONS  

The equations in this subsection have been taken over from the model description of DOMS 

and SCHÄTTLER (2002) (page 9 and 48/49). The COSMO model uses the basic conserva-

tion laws for momentum, mass and heat: 

  tv
�

g
v ⋅∇−×−+−∇= )(2
 ρρρ p

dt

d
, (3.1) 

  v⋅∇−= ρρ
dt

d
, (3.2) 

  xx
x

I
dt

dq +⋅−∇= Jρ , (3.3) 

  ερ ++⋅∇−⋅∇−= )( RJv ep
dt

de
.  (3.4) 

Bold symbols are used to represent vectors and bold underlined symbols indicate dyadic 

tensors. Scalar and vector products are indicated by · and × respectively. 

The following symbols are used: 

t: time   p: pressure 

T: temperature xρ : partial density of mixture constituent x 

ρ : total density of air mixture xq : mass fraction (specific content) of constituent x 

e: specific internal energy   v : barycentric velocity (relative to the rotating earth) 

xI : sources/sinks of constituent x eJ : diffusion flux of internal energy  

xJ : diffusion flux of constituent x R : flux density of solar and thermal radiation 

t : stress tensor due to viscosity � : kinetic energy dissipation due to viscosity 

g : apparent acceleration of gravity  � : constant angular velocity of earth rotation 

∇ : gradient (Nabla) operator  
dt

d
: total (Lagrangian) time derivative operator 
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The index x represents a specific constituent of the mixture with 

x = d   for dry air, 

x = v  for water vapour, 

x = l  for liquid water, and 

x = f   for water in the solid state, i.e. ice. 

From this set of basic equations written in the advection form an alternative set of basic 

equations can be derived, consisting of prognostic equations for temperature, pressure, 

wind velocity, and mixing ratios and a diagnostic equation for the air density. The mete-

orological variables are averaged over the volume of the grid box and over the time step. 

Afterwards, they are split up into a mean value (the grid scale value) and a deviation from 

this mean value (the sub-grid scale value). The sub-grid scale values are then calculated by 

physical parameterisations. Some simplifications are made before these basic equations are 

transformed to a rotated spherical grid: (1) all molecular fluxes are neglected except the 

diffusion fluxes of the liquid and solid forms of water, (2) the specific heat of moist air is 

replaced by the specific heat of dry air and (3) the pressure change due to changes in the 

concentrations of the water constituents resulting from diffusion fluxes and phase transi-

tions are neglected. Afterwards, a hydrostatic balanced base state at rest is introduced and 

all model variables are described as a sum of base state and grid-scale deviation (perturba-

tion). This has the advantage of removing horizontal base-state pressure gradient terms in 

the equation of motion and this reduces the computational error in the calculation of the 

pressure gradient force in the case of sloping coordinate surfaces. The equations are then 

transformed to a time-independent terrain-following coordinate system to produce a sim-

plified formulation of the lower boundary conditions. Operationally, a pressure-based hy-

brid coordinate is used. A detailed description of the transformation steps can be found in 

DOMS and SCHÄTTLER (2002). Eventually, seven prognostic equations and one diagnostic 

equation for horizontal wind velocity, vertical wind velocity, perturbation pressure, tem-

perature, water vapour, liquid and solid forms of water, and total density of air form the 

basis of the model system: 
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• Horizontal wind velocity: 
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• Vertical wind velocity 
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• Perturbation pressure 
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• Temperature 
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• Water vapour 
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• Liquid and solid forms of water 
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• Total density of air 
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The symbols in equations 3.5 to 3.12 have the following meaning: 

000 ,, ρpT  : base state values of temperature, pressure and density 

fl S,S : cloud microphysical sources and sinks due to phase change 

xqwvu MMMM ,,,  : source terms due to small scale turbulent mixing, subgrid scale moist 

convection, lateral boundary relaxation, computational mixing, and Rayleigh damping 

scheme 

cvd: : specific heat of water vapour at constant pressure  

cpd : specific heat of dry air at constant pressure 

D: divergence of the wind field QT: diabatic heating 

Pl,f: precipitation fluxes  Rv : gas constant for water vapour 

Rd : gas constant for dry air �  : rotated latitude  � : density  � : rotated longitude  �
: terrain following vertical coordinate p’: grid scale pressure deviation  

.

ζ : contravariant vertical velocity   γ : variation of reference pressure with 
�
  

Eh : kinetic energy of horizontal motion  Va : absolute vorticity 

 

3.1.2 ROTATED COORDINATE SYSTEM  

Typical applications of the model cover areas of the size of a few million square kilometres 

(e.g. the whole of Europe), which makes it necessary to take the curvature of the Earth into 

account. Therefore, the model equations are written in spherical coordinates. However, 

when using spherical coordinates, two problems arise. One is the “pole problem”, which 

means that the geographical poles represent a singularity due to the convergence of the 

meridians, and therefore special measures have to be taken when a geographical pole lies 

within the simulation domain. More often, however, the second problem (also connected 

with the convergence of the meridians) is encountered: varying horizontal resolution with 

latitude away from the equator. A suitable way to avoid both problems is realised in 
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COSMO: the rotated grid. The computational spherical coordinate system is rotated in 

such a way that the intersection of the equator and the prime meridian of the new system 

passes through the simulation domain, thus avoiding the pole problem and providing 

minimal convergence of the meridians at the same time (Fig. 3.2). The necessary coordi-

nate transformations are performed during pre and postprocessing.  

 

Figure 3.2: Geographical longitude (blue) and latitude (red) in the unrotated grid. The 

dashed line indicates the equator in the rotated grid with pole coordinates 32.5°S and 

10.0°E in the unrotated system. The rotated 0° meridian corresponds to the 10°E geo-

graphical meridian (DOMS and SCHÄTTLER, 2002). 

 

3.1.3 TERRAIN FOLLOWING COORDINATES  

In the vertical, a time-independent terrain-following coordinate system is used with user- 

defined grid stretching. The vertical coordinate is specified by a unique transformation 

relation ( )ζϕλ ,,fz = . A twostep procedure is applied to keep the numerical formulation 

of the model equations independent of the choice of 
�
: first a terrain-following transforma-

tion is done using a user-defined coordinate ζ~ and then ζ~ is mapped to the computational 

coordinate ζ using a monotonic function m in the form ( )ζζ m=~
 (Fig. 3.3). Three options 

for the terrain-following coordinate ζ~ are available: (1) a reference pressure based coordi-

nate, (2) a Gal-Chen height-based coordinate, and (3) a height-based SLEVE (Smooth 

Level Vertical) coordinate. 
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Figure 3.3: Mapping of an irregular curvilinear grid with a terrain following coordinate ζ~  

onto a rectangular equidistant grid ζ (DOMS and SCHÄTTLER, 2002). 

 

3.2 NUMERICS  

3.2.1 GRID STRUCTURE 

The meteorological variables are staggered on an Arakawa C-grid horizontally. Vertically, 

a Lorenz grid staggering is applied: the scalars are defined at the centre of a grid box (main 

level) and the normal velocity components are defined on the corresponding box faces 

(half level in the vertical) (Fig. 3.4, Fig. 3.5). 

 

Figure 3.4: A grid box volume showing the Arakawa-C/Lorenz staggering of the prognos-

tic dependent model variables (DOMS and SCHÄTTLER, 2002). T represents all scalar vari-

ables. 
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Figure 3.5: Vertical staggering of variables and metric terms in a grid box column with N�  

layers (DOMS and SCHÄTTLER, 2002). Dashed lines are the model half levels separating the 

main levels (full lines). 

 

3.2.2 TIME INTEGRATION  

Numerically, the prognostic equations are solved by a three time-level leapfrog method 

(horizontally explicit, vertical implicit) for horizontal grid size resolutions coarser than 

3 km. A time-split integration scheme, including extensions proposed by SKAMAROCK and 

KLEMP (1992) is used in the leapfrog scheme: the prognostic equations are separated in 

terms containing fast and slow processes. This operator splitting is necessary because the 

unfiltered equations contain sound and gravity waves, which normally require a rather 

small time step. In the leapfrog scheme, terms containing slow processes (e.g. advection) 

are stepped forward from the time level tt ∆−  to time level tt ∆+  and terms containing 

fast processes are stepped forward from time level tt ∆−  to time level tt ∆+ in nsmaller 

steps St∆ . This splitting makes the code much more efficient (Fig. 3.6).  
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Figure 3.6: The KLEMP and WILHELMSON (1978) time-splitting algorithm (DOMS and 

SCHÄTTLER, 2002). 

 

3.3 INITIAL AND BOUNDARY CONDITIONS  

For COSMO-CLM, five different data sets are available as driving data (Tab. 3.1). Addi-

tionally, COSMO simulations at high resolution can be driven by COSMO simulations 

with coarser horizontal resolutions. At the lateral boundaries, a one way nesting with Da-

vies-type lateral boundary formulation is applied and at the top of the model domain a 

Rayleigh damping layer is used. The model has a sponge zone of several grid boxes where 

the simulations are adapted towards the driving data. The horizontal extent of the computa-

tional domain is chosen smaller than the total model domain to implement boundary condi-

tions and to apply the domain decomposition strategy. In general, the boundaries of the 

physical domain within which the model equations are integrated numerically, are placed 

two grid points away from the border of the total domain. In the two grid point frame out-

side the physical domain all model variables are set to specific boundary values but no 

computation is done. After the initialisation, where the meteorological variables are taken 

over from the driving data set for the whole model domain, the lateral boundary conditions 

are updated regularly. The soil moisture and soil temperature profiles are only initialised 

once at the start of the simulation for the whole domain and are only updated at the lateral 

boundaries therafter. 
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Name Approx. reso-

lution (km) 

Time covered Type Suitable for prognoses 

of future climate 

ERA-40 125 1950 - 2002 Reanalyses No 

NCEP  210 1948 - present Reanalyses No 

ECHAM5 150 1960 - 2100 Climate runs Yes 

GME 60  1999 - present Analyses No 

HadCM3 300 1960 - 2100 Climate runs Yes 

 

Table 3.1: Available large-scale driving data sets for COSMO-CLM. ECHAM5 is the 

global model operated by the Max-Planck-Institute for  Meteorology, Hamburg, GME is  

DWD’s global weather forecast model and HadCM3 is the Hadley Centre Coupled Model 

version 3.  

 

3.4 PHYSICAL PARAMETERISATIONS  

Subgrid-Scale Turbulence 

A prognostic turbulent kinetic energy closure at level 2.5 after MELLOR and YAMADA 

(1974) is applied, including effects from subgrid-scale condensation and from thermal cir-

culations. 

Surface Layer Parameterization 

Surface scheme based on turbulent kinetic energy is applied, including a laminar-turbulent 

roughness layer. 

Grid Scale Clouds and Precipitation 

Bulk microphysics parameterisation for precipitation formation including four hydrome-

teor species (cloud droplets, raindrops, cloud ice and snowflakes). Three-dimensional 

transport of precipitation and prognostic precipitation is accounted for. 
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Subgrid-Scale Clouds 

Subgrid-scale cloudiness is calculated by an empirical function, depending on relative hu-

midity and height.  

Moist convection 

Moist convection is parameterised with the TIEDTKE (1989) mass-flux convection scheme, 

with equilibrium closure based on moisture convergence. Optionally, a KAIN-FRITSCH 

(1992) mass-flux convection scheme with non-equilibrium CAPE-type closure can be 

used. The main differences between the two schemes, besides the closure, are the differ-

ences in the triggering criteria for convection and the processes influencing detrainment 

and entrainment (SMOYDZIN , 2004). 

Radiation 

Radiation is parameterized according to a �  two-stream radiation scheme after RITTER and 

GELEYN (1992) for short and longwave fluxes. The parameterisation uses eight spectral 

intervals with full cloud-radiation feedback. 

Soil model 

The soil processes are parameterised by the soil-vegetation model TERRA_LM using 

prognostic equations for soil temperature and soil water content for several soil layers. A 

detailed description can be found in subsection 6.1.1. 

Terrain and surface data 

The model has its own databases for external data, like orography, land-sea mask, soil type 

and vegetation cover. The data sets are available for different horizontal resolutions and 

pre-defined regions covering Europe. New data sets can be created by a pre-processor pro-

gram using high-resolution global data sets. 

 

 

 



  

4 SENSITIVITY STUDIES  

A prerequisite for the study of future changes is to asses how well and with what uncertain-

ties the past and present climate, and particularly components of the regional water cycle 

like precipitation and evapotranspiration, can be modelled in orographically structured 

regions like Southwest Germany and to define an adequate simulation setup. Model results 

are influenced strongly by model setup. Changing the parameter settings can affect the 

quality of the results considerably. The most important parameters depend in general on 

the meteorological variables considered, so that no single set of parameters will give opti-

mal overall results. The following parameters seem to have essential impact on the results 

and are therefore studied in this thesis: 

Domain size: Every change in the size of the simulation area causes a change of simula-

tion results and there is no recipe for an optimum domain size. Several studies have been 

carried out on this issue and they mainly draw three findings that should be considered 

when determining the domain size.  

(a) The domain size should be chosen sufficiently small so that the synoptic circulation 

does not differ significantly from that of the driving global model (JONES et al., 1995).  

(b) The domain size has to be chosen sufficiently large so that the simulation is not tied too 

strongly to the driving data if studies of internal forcing are carried out (SETH and GIORGI, 

1998). WARNER et al. (1997) suggested placing the boundaries at a distance of at least half 

the size of the investigation area.  

(c) Lateral boundaries should not be placed in regions with strong orographic forcing 

(DICKINSON et al., 1988). To save computing time, however, the domain should be as small 

as possible with still stable results. Before performing decadal simulations, it must be as-

certained that no unphysical processes are induced by the choice of the model domain and 

that small changes of the domain size and position do not induce major changes in the 

simulation results. 

Horizontal resolution: Up to now, regional climate models have been used commonly 

with resolutions of about 50 km for climate studies (JACOB et al., 2007, HAGEMANN et al., 

2004). For a reliable representation of local effects, e.g. in hydrologically relevant fields, a 

much higher resolution is needed (CHRISTENSEN et al., 1998). It is not clear, however, 
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which horizontal resolution is adequate to account for the small scale processes influenc-

ing, e.g. convective precipitation in orographically structured regions. Simulations with 

two different horizontal resolutions below 20 km will be compared to find out if a higher 

horizontal resolution (which costs an additional amount of computer resources) really 

yields better simulation results. 

Driving data: Reanalysis data has been used as driving data for the simulation of past dec-

ades. Different numerical models, methods and observations create differences in the re-

analyses (ZHAO et al., 2006, SIMMONS et al., 2004). NOUGER et al. (1998) found that in 

regional climate models, errors in summer precipitation and temperature are mainly forced 

by regional processes but that in winter the boundary forcing is responsible for about 40% 

of the total error variance for precipitation. Therefore, simulations for two different re-

analysis data sets were performed to assess the variability in the simulations induced by 

using different driving data.  

Model setup: A set of six sensitivity studies is conducted in order to quantify the uncer-

tainties in simulations due to the use of different parameters, physical parameterisations, 

dynamical methods and initialisations. Within the COSMO model system two different 

convection schemes and two time integration schemes, as well as two different formula-

tions for the CO2 content for past and present climate, are available for use in this study. 

The number of hydrologically active layers is variable in the model and its influence will 

be investigated here. Furthermore the influence of soil moisture initialisation, which has 

been shown to have considerable influence in former studies (SETH and GIORGI, 1998, 

SCHÄR et al., 1999), will be assessed. 

The simulation setup and the simulation domains are presented in the first section and in 

the second section, the impact of driving data, grid size (50 km, 14 km and 7 km), and soil 

initialisation on the simulation results is discussed for the whole simulation area. The 

evaluation of the model setup, concentrating on the area of Southwest Germany, is under-

taken in the third section. A sensitivity study for the four parameters mentioned above is 

also presented. The most suitable model setup is then used to investigate the ability of 

COSMO-CLM to reproduce observed trends of the near-surface temperature between 1991 

and 2000 for Southwest Germany. 



4.1 Simulation setup 25 

 

 

4.1 SIMULATION SETUP 

The simulations presented here were driven by reanalyses. This has the advantage that this 

data set is close to reality, making it possible to assess the capability of the regional model 

to simulate the climate correctly when driven with adequate data. As driving data for the 

simulations, ERA-40 (SIMMONS and GIBSON, 2000) and NCEP-DOE AMIP-II 

(KANAMITSU  et al., 2002) reanalysis data sets were used. The coarse grid of the driving 

data makes an intermediate nesting step necessary. Therefore, the whole European region 

was simulated with a horizontal resolution of 0.44° (60x81 grid points) (Fig. 4.1) and the 

higher resolution simulations were nested therein (180x158 resp. 90x76 grid points for the 

7 km and 14 km run). The area of the high-resolution runs will be referred to as alps do-

main. The 0.44° simulations (~ 50 km) were run from the first of June 1988 until the end of 

2001. As initialisation values for the soil model in the 50 km simulations, climatological 

values provided by the ETH Zürich were used. This climatology data was obtained by av-

eraging 30 years of COSMO-CLM simulation (Version 2.4.6) with 0.44° horizontal resolu-

tion driven by ERA-40 data. Details about the simulation can be found in JÄGER et al.  

(2007). 

Southwest Germany is an orographically structured region bordered by the Vosges Moun-

tains in the west and the Alps in the south; it includes the Black Forest, which reaches a 

maximum altitude of 1400 m, and the Swabian Jura, with a maximum altitude of 1000 m. 

The area of investigation includes the Federal State of Baden-Württemberg, the western 

part of Bavaria and the southern parts of Hesse (Fig. 4.1). For the evaluations in subsection 

4.3.1, gridded precipitation data sets obtained with the method described in FRÜH et al. 

(2007) were used. Observations from 23 climate stations operated by DWD (ÖSTERLE et 

al., 2006) (Fig. 4.1 and Tab. 4.1) were used for the comparisons presented in subsection 

4.3.2 to subsection 4.3.4. Tests have shown that the use of gridded data sets as well as the 

use of station data for comparison with the model results yields quite similar results.  

For all high-resolution simulations, the model version 4.0 of COSMO-CLM was used. 

Only the 50 km simulations were run with the older model version 3.22. The physics in 

both versions used here is the same and they differ mainly in technical details. The time 

integration is realised by a three time level leapfrog scheme. The model physics contains a 
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cloud scheme (DOMS et al., 2005), with prognostic precipitation and four hydrometeor spe-

cies (cloud droplets, raindrops, cloud ice and snowflakes), a mass flux scheme for convec-

tion (TIEDTKE, 1989) and a delta-two-stream radiation scheme after RITTER and GELEYN 

(1992) called every hour. Turbulence is modelled by a turbulence and surface layer scheme 

using a prognostic turbulent kinetic energy equation on the basis of the level 2.5 scheme by 
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Figure 4.1: Top: Simulation domain for the 50 km runs. Red dash-dotted rectangle: Alps 

domain for the 7 km run. Blue dashed rectangle: Noalps domain for the 7 km run. Green 

solid rectangle: Investigation area. Bottom: Noalps domain with measurement stations. 

Evaluations are made inside the blue rectangle.  
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MELLOR and YAMADA (1974). The model contains the multi layer soil model TERRA_LM 

with prognostic soil temperature and water content (HEISE et al., 2003). The soil model 

comprises ten soil layers with a maximum depth of 15 meters. The main levels have the 

following depths (m): 0.005, 0.025, 0.07, 0.16, 0.34, 0.7, 1.42, 2.86, 6.74, 11.5. The exter-

nal parameters, like vegetation parameters, topography and land-sea mask are taken from 

the data set provided by DWD.  

 

Longitude (°) 
(°) (°) 

Latitude (°) Altitude Abbreviation  Station name 

9.67 47.97 560 AU AULENDORF-SPIEGLER 

7.68 47.8 367 BA BADENWEILER 

8.98 49.45 178 EB EBERBACH/NECKAR 

8.92 49.13 210 EP EPPINGEN 

8.00 47.88 1486 FE FELDBERG/SCHW. 

7.85 48.00 269 FR FREIBURG I. BR. HBF 

8.42 48.45 797 FS FREUDENSTADT 

9.73 48.93 492 GS GSCHWEND KR. OSTALB 

8.98 48.38 520 HE HECHINGEN 

8.17 47.73 1008 HO HOECHENSCHWAND 

10.05 47.68 712 IS ISNY 

8.37 49.03 112 KA KARLSRUHE 

8.75 48.10 973 KL KLIPPENECK 

7.83 48.37 155 LA LAHR 

9.53 48.53 758 LE LENNINGEN-SCHOPFLOCH 

8.55 49.52 96 MA MANNHEIM  

9.77 49.48 250 ME MERGENTHEIM  

9.48 48.38 750 MU MUENSINGEN 

9.52 49.22 276 OE OEHRINGEN 

9.87 48.67 734 ST STOETTEN 

8.23 48.13 683 TR TRIBERG 

9.18 47.77 490 UE UEBERLINGEN/BODENSEE 

8.47 48.05 720 VI VILLINGEN - S. 
  

Table 4.1: Coordinates, altitude, and abbreviation for the observation sites available for 

comparison with simulations.  
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4.2 SENSITIVITY STUDIES FOR THE WHOLE SIMULATION AREA  

4.2.1 INFLUENCE OF DRIVING DATA AND HORIZONTAL RESOLUTION  

Using the double nesting technique described above, there are three possible sources of 

errors in the high-resolution simulations for the alps domain:  

 
1. The original reanalysis data sets can differ from the observational data and can 

cause spurious results of the 50 km simulations 

2. The COSMO-CLM simulation with 50 km can produce unrealistic results even if 

the driving reanalysis data is correct and therefore produces spurious driving data 

for the alps domain 

3. The 50 km simulations give realistic driving data for the alps domain, but the high-

resolution simulations give spurious results. 

 

Due to the lack of adequate observation data for an evaluation of the three dimensional 

meteorological variables only a comparison of near-surface temperature (this is defined as 

the temperature at 2 m height) and precipitation is presented here. The comparison is re-

stricted to the land areas and the reanalysis data. The 50 km simulations are compared to 

the data set from WILLMOTT  and MATSUURA version 1.02 (2001); this data set has a resolu-

tion of 0.5°. The comparison is made for the annual mean of near-surface temperature and 

the annual sum of precipitation average over the period from 1990 to 1999. 

In the alps, domain differences between the two reanalysis data sets of up to 2 K and 

300 mm occur for the annual mean near-surface temperature and the annual mean precipi-

tation amount (Fig. 4.2, Fig. 4.3). The NCEP reanalysis data is warmer in the northern and 

the western part of the alps domain than the ERA data, and colder in the southern and east-

ern part. Besides the Alpine region and Southern France, the NCEP reanalysis data shows 

higher precipitation amounts than the ERA data. A comparison with observations shows 

differences of up to 4 K and 1000 mm in the alps domain (Fig. 4.2, Fig. 4.3). The reanaly-

sis data sets are both colder and drier than the observations. One should keep in mind that 

data sets with different horizontal resolutions are compared. Therefore, some differences in 

temperature and precipitation can be explained by different terrain heights. Nevertheless, it 
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can be stated that there are systematic differences between the reanalysis data sets, which 

can lead to different simulation results in the 50 km simulations. 

As for the second source of errors mentioned above, the temperature and precipitation dif-

ferences between the simulations with 50 km resolution driven by ERA and NCEP data 

and the observations were calculated (Fig. 4.4, Fig. 4.5). Large negative temperature dif-

ferences occur over major mountain ranges like the Alps. This may be due to the differ-

ences in terrain height between the real and the model topographies. For the rest of the alps 

domain, the differences between simulation and observations is lower than 1 K. Comparing 

the 50 km simulation results driven by ERA and NCEP (Fig. 4.4), one can see that the 

temperature difference is lower than 0.5 K in the alps domain. That means that the differ-

ences between the two 50 km simulations are lower for the alps domain than the differ-

ences between their driving data sets. This can be explained by the orography, which is the 

same in the two 50 km runs but differ between the two reanalysis data sets. Precipitation is 

overestimated by both models in the north of Europe, especially over the Alps and under-

estimated in the south of Europe (Fig. 4.5). As observed in other studies precipitation is 

overestimated at the northern site of the Alps and underestimated at the southern site 

(JÄGER et al., 2007). In the NCEP simulation precipitation is higher in the north of Europe 

and lower in the south as in the ERA simulation. In the alps domain the difference in an-

nual precipitation amount between the two simulations is lower than 200 mm and therefore 

smaller than that of the reanalysis data sets. 

The ERA simulation is colder and produces less rain in the alps domain than the simulation 

with NCEP data. The differences are also observed at the lateral boundaries of the alps 

domain and are therefore expected to be reflected by the high-resolution runs with 7 and 14 

km. Over the year, westerly winds prevail. Therefore, we would expect higher tempera-

tures in the 7 km run driven by the 50 km NCEP run due to the transport of warmer air 

from the boundaries into the simulation domain.  
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Figure 4.2: Annual mean near-surface temperature difference averaged over the period 

1990 – 1999: difference between NCEP and ERA reanalysis (top), ERA and observations 

(bottom, left) and NCEP and observations (bottom, right). The red rectangle indicates the 

area of investigation and the blue rectangle the area of the alps domain.  
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Figure 4.3: Difference in annual precipitation amount averaged over the period 1990 – 

1999: difference between NCEP and ERA reanalysis (top), ERA and observations (bottom, 

left) and NCEP and observations (bottom, right). The red rectangle indicates the area of 

investigation and the blue/yellow rectangle the area of the alps domain. 
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Figure 4.4: Difference in annual mean near-surface temperature averaged over the period 

1990 - 1999: difference between 50 km simulations with NCEP and ERA (top), ERA and 

observations (bottom, left) and NCEP and observations (bottom, right). The red rectangle 

indicates the area of investigation and the blue rectangle the area of the alps domain.  
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Figure 4.5: Difference in annual precipitation amount averaged over the period 1990 - 

1999: Difference between 50 km simulations with NCEP and ERA (top), ERA and obser-

vations (bottom, left) and NCEP and observations (bottom, right). The green rectangle in-

dicates the area of investigation and the blue rectangle the area of the alps domain.  
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Figure 4.6: Difference between NCEP and ERA driven simulations of averaged annual 

mean near-surface temperatures (top) and averaged annual precipitation sum (bottom) for 

the period 1990 - 1999 for the 14 km run (left) and the 7 km run (right). 

 

The temperature differences between the NCEP and the ERA simulations with 7 and 14 

km resolution are smaller for higher resolutions (Fig. 4.6). The differences in precipitation 

amount increase with increasing resolution. As in the 50 km simulations, the NCEP simu-

lation is warmer and yields more precipitation than the ERA simulation. The temperature 

differences between the simulations are even lower than in the 50 km runs (0.3 K). With 

increasing resolution, the differences in precipitation amount compared to the 50 km runs 

and the reanalysis data increase by up to 1000 mm over the Alps. 

Differences observed between the two reanalysis data sets are passed on through the down-

scaling chain and are still visible in the high-resolution runs. The differences in tempera-

ture are smoothed out but the differences in precipitation prevail and are even strongly en-

hanced by higher resolutions.  
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4.2.2 INFLUENCE OF INITIALISATION  

A third aspect which affects the model results besides driving data and model resolution is 

the initialisation of the model. The atmospheric initialisation is not as important as the soil 

initialisation because the memory of the soil lasts much longer. The soil initialisation can 

therefore exert an influence on the simulation results over many years. YANG et al. (1995) 

found that most land surface schemes need at least two years of spin-up time depending on 

vegetation type and initial soil moisture content. The initialisation of the soil temperature 

and the soil water content that is taken over from the reanalysis data is rather inadequate. 

The reanalysis data often contains less soil layers than the COSMO-CLM model and also 

the soil types that influence water and heat conductivity can differ between the driving 

model and regional model. Furthermore, a different soil model is used in COSMO-CLM 

and the models used to produce the reanalysis data. This implies that the profile of soil 

water content and soil temperature taken from the driving data can differ considerably 

from the profile which would be produced by COSMO-CLM itself for that grid point. In 

the literature several initialisation methods are recommended for soil temperature and soil 

water initialisation. One method is to use climatological values (RODELL et al., 2005). Such 

climatology for each day of the year was provided by the ETH Zürich for the 50 km grid 

(see section 4.1). To initialize the simulation, the climatological values for soil temperature 

and soil water content were extracted from the data set for the day of the year, which is 

equal to the initialisation day, and the ERA values were replaced by these climatological 

values. To determine the differences between the two initialisation methods, two simula-

tions from 1988 to 2001 were performed: one with the original ERA initialisation and one 

with the climatological initialisation, each with a horizontal resolution of 50 km. The soil 

has nearly reached a steady state in both simulations after two years. At that point the root 

mean square deviation between the two simulations shows only small differences in soil 

moisture and soil temperature in the upper soil levels for all land points (<3 vol.-% and  

<0.6 K) (Fig. 4.7). An annual cycle with a higher root mean square deviation in summer 

than in winter can be observed. This is due to convection during the summer months. The 

small differences in soil temperature and soil moisture lead do a non-linear feedback with 

the development of convection and rainfall, which then leads to an enhancement of differ-

ences in soil moisture and soil temperature between the two simulations. This annual cycle 

persists over the whole simulation period and leads to random differences in the annual 
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precipitation sum and in the annual mean near-surface temperature in the whole simulation 

area (Fig. 4.8). The root mean square deviation in annual mean near-surface temperature 

and evaporation between the two simulations diminishes during the first three years and 

stays constant afterwards. The root mean square deviation in precipitation stays constant 

over the complete period and shows no decrease during the first years (Fig. 4.9). It is not 

possible to determine, which of the initialisations gives better results because the differ-

ences in annual mean near-surface temperature are smaller than measurement accuracy 

after several years. Nevertheless, the use of the climatological values for initialisation is 

recommended for consistency reasons and is used for the simulations presented in the fol-

lowing sections. 

 

Figure 4.7: Root mean square deviation for all land points of soil temperature (top) and 

soil moisture (bottom) between simulation with original initialisation and climatological 

initialisation for different soil depth (blue: 0.005 m, red: 0.16 m, green: 1,42 m).  



4.2 Sensitivity studies for the whole simulation area 35 

 

 

-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
ti

tu
d

e 
(°

N
)

-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140

mm

-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
ti

tu
d

e 
(°

N
)

-0.3

-0.2

-0.1

-0.01

0.01

0.1

0.2

0.3

K

 

-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
tit

ud
e 

(°N
)

-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140

mm

-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
ti

tu
d

e 
(°

N
)

-0.3

-0.2

-0.1

-0.01

0.01

0.1

0.2

0.3

K

 

-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
ti

tu
d

e 
(°

N
)

-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140

mm

  
-10 -5 0 5 10 15 20 25

longitude (°E)

36

40

44

48

52

56

la
ti

tu
d

e 
(°

N
)

-0.3

-0.2

-0.1

-0.01

0.01

0.1

0.2

0.3

K

 

Figure 4.8: Differences between the simulation with ERA and climatological soil initiali-

sation of annual precipitation amount (left) and annual mean surface temperature (right) for 

the year 1989 (top), 1995 (middle) and 2001 (bottom). 
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Figure 4.9: Root mean square deviation for all land points of total annual precipitation, 

annual evapotranspiration and annual mean near-surface temperature between simulation 

with ERA and climatological soil initialisation. 
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4.3 SENSITIVITY STUDIES FOR SOUTHWEST GERMANY  

4.3.1 INFLUENCE OF SIMULATION AREA  

In the southern part, the area of investigation ends at the alpine foothills and it would be 

convenient to have the boundary of the simulation area in this region. It is well known that 

placing the model boundary in mountainous regions can be inconsistent with the boundary 

condition formulations and causes difficulties in the simulation of the vertical wind field 

because of the non-hydrostatic formulation of the model. Alternatively, the whole alpine 

region has to be simulated with corresponding CPU costs. To investigate the behaviour of 

the vertical wind field in the area of interest, two simulations were performed: one for an 

area without the Alps, referred to as no-alps-simulation, and one for a larger simulation 

area containing the Alps already referred to as alps-simulation (Fig. 4.1). Both simulations 

were driven by the 50 km simulations obtained with ERA-40 reanalysis as driving data and 

were run from June 1988 to December 2001. In comparing the two simulations cases with 

high precipitation amounts and either southerly or northerly winds are of interest. There-

fore, March 1991 was chosen for a comparison of the two simulations. During this period 

very humid air is transported from the south over the Alps into the investigation area. The 

results for the 22nd of March 1991 are presented here as a case study. The findings are 

valid also for all other days during this period. On this day the vertical wind velocity in the 

alpine foothills is much higher in the no-alps-simulation than in the alps-simulation 

(Fig. 4.10). This vertical wind leads to condensation of humidity and increasing cloudiness. 

The condensed water is transported into the investigation area by the southerly winds, 

where it leads to an enhancement of precipitation compared to the alps-simulation. A com-

parison with gridded observations shows that this enhancement is unrealistic (Fig. 4.10).  

In view of these unrealistic wind fields and precipitation patterns, the complete alpine re-

gion should be included in the simulation area. To determine how large the domain should 

be, Panitz (personal communication, 2007) performed a set of simulations with varying 

size of the simulation area for March 1991 to study the sensitivity of modelled total pre-

cipitation. The size of the model domain was the only model parameter being varied.   
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Figure 4.10: Wind field and vertical velocity in 700 hPa at 12 UTC on 22nd of March 

1991 (top) and daily precipitation sum on that day (bottom) for the alps (left) and the no-

alps simulation (middle) and for observation (right). Areas of strong precipitation reduction 

due to area enlargement are indicated in red.  

 

Five of the different areas are shown in Fig. 4.11 and the results of the sensitivity studies 

for these areas are depicted in Fig. 4.12. The smallest region is the no-alps area. It inter-

sects the most northern parts of the Alps to the south. Most striking is the unreasonable 

result of 1032 mm for the maximum value of monthly precipitation sum in the no-alps 

area, whereas the maximum gridded observation value is about 130 mm for March 1991. 

The observed area average is about 49 mm compared to 85 mm in the model. The size of 

model domain 4 exceeds that of the no-alps area by about 100 km in each direction. The 

area now includes the northern parts of the Alps. In comparison to the results for the no-

alps area, the maximum monthly sum of total precipitation decreases considerably, but the 

value of 324 mm is still too high. The area average decreases slightly to 82 mm. The size 

of model domain 3 has been increased once more by 100 km in each direction and it en-

closes most parts of the Alps. Area 2 has essentially been elongated to the south to encom-

pass the whole Alps, except the most eastern parts and Tuscany in Italy. The size of the 

largest area 1 exceeds that of the no-alps area by a factor of about eight and it now includes 
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the whole Alps and also the Massif Central in France. The results for the total precipitation 

within the no-alps area derived from the simulations for domains 1 to 3 now seem to stabi-

lize. The area averages are nearly identical, the maximum values vary within ± 7%, and the 

minimum values vary within ±16 %. However, COSMO-LM overestimates the observed 

monthly precipitation values for March 1991 - a tendency that is found especially for the 

months in winter and early spring (FELDMANN  et al., 2007).  
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Figure 4.11: Model domains for sensitivity analyses of total precipitation (Panitz, 2007). 

 

 

Figure 4.12: Area average, maximum and minimum sum of total precipitation in the no-

alps area based on COSMO-CLM simulations with different sizes of model area for March 

1991 (Panitz, 2007). 
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This sensitivity study makes it clear that the size of the model domain has to be considera-

bly larger than the size of the actual investigation area - at least 200 km in each direction. 

Furthermore, it is necessary to include mountain ranges like the Alps if they are located 

rather close to the investigation area. For all simulations in the following chapters therefore 

area 1 was used, although area 2 or 3 would probably also have been suitable. 

 

4.3.2 INFLUENCE OF HORIZONTAL RESOLUTION AND DRIVING DATA  

Up to now, CPU time has been the limiting factor in high-resolution climate modelling. 

Therefore, it is worth studying whether higher horizontal resolution really results in better 

climate scenarios. In the standard COSMO model, four horizontal resolutions below 

20 kilometres are available (km): 14, 7, 2.8, and 1. For 2.8 km and 1 km, the physics and 

dynamics change considerably compared to the 7 km and 14 km resolution (e.g. convec-

tion scheme and time integration scheme) and the CPU time needed is too high for stan-

dard use in high-resolution climate modelling. Therefore, this study focused on the com-

parison of simulations with 7 km and 14 km horizontal resolution.   

Four simulations with 7/14 km resolution driven by the results of the 50 km runs with 

ERA-40 and NCEP data (already described in section 4.2) were used. This small ensemble 

of four simulations was compared to the observations described in section 4.1. Because the 

focus lies on precipitation, water cycle, and temperature, the grid scale, convective, and 

total precipitation was compared as well as the 2m-temperature, the water storage in the 

soil, the evaporation, the runoff, and the snow store to find the simulations with the most 

realistic results. The 2m-temperature and the total precipitation are the only variables, 

which can be evaluated qualitatively by observations. For all other variables only a quanti-

tative comparison is possible due to the lack of adequate observations. For total precipita-

tion and 2m-temperatures, the root mean square error (rmse) and the bias between the 

simulations and the station measurements were calculated for the annual precipitation sum 

and for the annual mean temperature. For precipitation, the rmse is lowest in the simulation 

with ERA driving data and 7 km resolution and highest in the simulation with NCEP driv-

ing data and 14 km resolution (Fig. 4.13). The rmse increases from higher resolution to 

lower resolution and from ERA to NCEP simulation. For temperature, an increase in rmse 
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from NCEP to ERA driving data and an increase from 7 km to 14 km resolution (Fig. 4.13) 

can be observed. The smallest error for temperature is obtained with the NCEP/7 km simu-

lation.  The same behaviour can be found for the monthly values of precipitation and tem-

perature (Fig. 4.14). The rmse is lowest for precipitation during the summer months and it 

can be observed that all four ensemble members are quite close to each other during this 

time. In winter, the spread of rmse between the simulations is larger and the absolute val-

ues of rmse are much higher. In winter, the precipitation seems to be influenced mainly by 

the driving data (with the differences already described) while in summer the model seems 

to produce its proper climate, where all four simulations give similar results. A similar be-

haviour was observed by FELDMANN  et al. (2007). The rmse of temperature is highest in 

January for all simulations and decreases over the year until October, where the lowest 

spread between the four simulations is also found. A possible reason for this could be the 

proper climate produced by the model, above mentioned, which also influences the soil 

temperature. Because soil temperature is a slowly changing variable the agreement of the 

four simulations takes two months longer than for precipitation.  
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Figure 4.13: Root mean square error for precipitation (left) and 2m-temperatures (right) 

for the annual sum/mean (top) and for the monthly sum/mean (bottom) for the period 

1991-2000. 
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To quantify whether the simulations over or underestimate the observations, also the bias 

for the annual and monthly values is presented (Fig. 4.14). All four simulations overesti-

mate the yearly precipitation amount. Comparing the annual bias, the 14 km runs overes-

timate precipitation more than the 7 km runs and NCEP driving data more than ERA. The 

bias in annual mean temperature is lowest for the 7 km NCEP simulation. There is a nega-

tive bias over the whole decade and therefore an underestimation of temperature in all 

simulations. The bias of the monthly precipitation sums also shows an overestimation of 

precipitation by the simulations, which are strongest in winter and nearly zero in summer. 

As for the rmse, the spread of the precipitation bias is lowest in summer and highest in 

winter. The monthly temperature bias is highest in spring and decreases over the rest of the 

year. Over the whole year, there is a negative temperature bias in the monthly means of all 

four simulations.  
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Figure 4.14: Bias between the simulations and the measurements for precipitation (left) 

and 2m-temperatures (right) for the annual sum/mean (top) and for the monthly sum/mean 

(bottom) for the period 1991-2000. 

 



4 Sensitivity studies 

 

 

42 

 

The simulations with the ERA driving data cause drier and colder conditions than those 

driven by NCEP data. As shown in section 4.2, this behaviour is already evident for the ten 

year mean in the 50 km runs that are used as driving data here and in the original reanalysis 

data. The best result for precipitation simulation compared to the measurements is obtained 

with the ERA/7km simulation. The results are not as clear for temperature as for precipita-

tion. With respect to the annual means, best results are obtained for the NCEP simulation 

for both resolutions; for the monthly means, the best results are obtained for the ERA/7km 

simulation during the summer months. During the winter months, the NCEP simulations 

give best results. From this analysis it can be concluded that a resolution of 7 km should be 

used for simulations of this area and that ERA data is more suitable as driving data if the 

focus is on precipitation evaluation. For temperature, there is no large difference between 

ERA and NCEP data. The 7 km simulation with ERA driving data shows the smallest rela-

tive error. 

The larger positive bias of precipitation in the 14 km simulation can be explained by a shift 

of the precipitation maximum from the ridge of the mountains towards the windward side. 

With regard to the area average of total precipitation one would have expected a lower bias 

in the 14 km runs because the area average is about 6-65 mm lower than the average for 

the 7 km runs which is closer to observations (Tab. 4.2). But some of the stations are situ-

ated to the west of the Black Forest, which is mostly of the time the windward side and this 

shift of maximum precipitation leads to an overestimation of annual precipitation sum at 

these stations (e.g. FRHBF, LAHR and BADENW) for the 14 km runs (Fig. 4.15) and in 

total to a much higher rmse than in the 7 km runs. For most of the stations to the east of the 

Black Forest (lee) or at its ridge, lower precipitation amounts are observed in the 14 km 

simulations than in the 7 km simulations, which underestimate the measurements (e.g. 

FELDBE, FST and TRBG).   

 

 ERA/7km NCEP/7km ERA/14km NCEP/14km 

Total precipitation 1166 1260 1160 1224 

Convective precipitation 351 358 313 332 

Grid scale precipitation 815 902 847 892 
 

Table 4.2: Area average of annual total, convective and grid scale precipitation sum for the 

investigation area averaged over the period 1991 – 2000. 
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The correlation coefficient of the linear fit between measurements and precipitation simu-

lation shows much higher values for the 7 km runs (~0.5) than for the 14 km runs (~0.18) 

(Tab. 4.3). The intercept also shows lower values for the 7 km runs and the slope is closest 

to one for the 7 km simulations. 
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Figure 4.15: Annual precipitation amount averaged over the period 1991-2000 for the 

23  observation sites (prec_obs) and the four COSMO-CLM simulations with different 

horizontal resolution (7 and 14 km) and different driving data (ERA, NCEP). 

 

 a b r 

ERA/7km 0.70 607 0.52 

NCEP/7km 0.89 555 0.50 

ERA/14km 0.46 889 0.19 

NCEP/14km 0.51 926 0.17 

 

Table 4.3: Linear correlation coefficient (r), slope (a) and intercept (b) of the least squares 

fit between observed and simulated annual precipitation amount averaged over the period 

1991-2000 for the 23 observation sites and the four COSMO-CLM simulations with differ-

ent horizontal resolution (7 and 14 km) and different driving data (era, ncep). 
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For orographically structured regions, it seems to be of advantage to use 7 km resolution in 

order to get the position of precipitation maxima correct. The amount of convective pre-

cipitation increases with increasing horizontal resolution by about 25-40 mm. The grid 

scale precipitation shows a decrease from 14 km to 7 km in the ERA runs of about 30 mm 

and an increase from 14 km to 7 km for the NCEP runs of about 10 mm (Tab. 4.2). 

The influence of driving data and horizontal resolution on the water balance at the surface 

is shown in Tab. 4.4. The water balance is calculated as summed evaporation, runoff, and 

precipitation from January 1991 to January 2001 and averaged the balance over the whole 

investigation area. Evaporation shows quite similar results for all simulations and the 

evaporation sum decreases from the 7 km to the 14 km simulations. The surface runoff in 

the 7 km runs is higher than in the 14 km runs. This is possibly due to the higher precipita-

tion maxima in the 7 km runs, which cannot be taken up by the soil and were added to sur-

face runoff. Due to the higher precipitation amount in the NCEP runs, the runoff is higher 

in these simulations as well. Runoff from the soil increases from the 7 km to the 14 km 

resolution and from ERA to NCEP. The precipitation is not as intense in the 14 km runs as 

in the 7 km runs and can therefore infiltrate into the ground and lead to additional soil run-

off compared to the 7 km runs. The total sum of precipitation increases with increasing 

resolution and increases from ERA to NCEP. For snow content and soil water content, the 

difference between the values at the first of January 1991 and at the first of January 2001 

was calculated. The snow store and the soil water content increase during the simulations, 

the latter by 30 kg m-2 in the hydrologically active layers. An evaluation of the water bal-

ance is not possible due to the lack of observations for comparison. The additional precipi-

tation amount observed in the NCEP simulations does not remain in the system. There is 

no markedly increased evaporation or rising soil water content in the NCEP simulations. 

The difference in the runoff between ERA and NCEP simulation is in the same range as 

the surplus of precipitation amount and has the same sign. This means that all additional 

precipitation in the NCEP simulations goes into runoff and is no longer available in the 

system. Some components of the water cycle like precipitation and runoff are strongly re-

lated to driving data and horizontal resolution and others, like soil water content and 

evaporation are less sensitive to changes in the horizontal resolution and the driving data.  
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Model run 
Evapo- 
ration 
(sum) 

Surface 
Runoff 
(sum) 

Ground 
runoff 
(sum) 

Total 
runoff  
(sum) 

Precipi- 
tation 
(sum) 

Difference 
of  

snow store 

Difference 
of water 
content 

ERA/7km 5675 1948 4126 6074 11665 4 29 

NCEP/7km 5677 1988 5085 7072 12601 8 31 

ERA/14km 5483 1720 4523 6244 11602 4 32 

NCEP/14km 5588 1683 5165 6849 12240 9 27 

 

Table 4.4: Water balance components at the surface in kg m-2 averaged over the investiga-

tion area summed up from January 1991 to January 2001.  

 

4.3.3 SENSITIVITY WITH RESPECT TO VARYING PARAMETERISATION S, 

ADJUSTABLE PARAMETERS , AND INITIALISATION  

Six 7 km simulations with varying parameterisations or adjustable parameters were per-

formed with ERA-40 driving data in order to investigate the sensitivity of the model to 

those changes (Tab. 4.5):  

1) Number of hydrologically active layers 

In the standard COSMO model, the depth of hydrological active soil layers is restricted to 

2.50 m (~ 7 layers). This means that below this depth no water can be transported upwards 

towards the soil layers near the surface and only gravitational transport downward is possi-

ble at the lower boundary. When the soil runs dry, there is no possibility to get water from 

deeper layers. Allowing water to rise from deeper soil layers could prevent this drying out. 

In nature, ground water rises and can be transported upwards to soil levels near the surface, 

which is not possible in the COSMO-CLM. Therefore, in one of the simulations all soil 

layers were considered as active soil layers, with only the behaviour of the lowest soil layer 

remaining unchanged. 

2) + 3) Initial soil water content 

It is generally assumed that the soil water content “forgets” its initialisation after some 

years. However, it is conceivable that the soil moisture content can run into different end 

states (RODRIGUEZ-ITURBE et al., 1991), depending on the initial state. To see if this could 
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also happen in these simulations and to investigate how long it takes the model to reach a 

steady state, two simulations were run: in one simulation 50% was added to the initial soil 

water content and in the other simulation 50% was subtracted from the initial water con-

tent. 

4) Amount of greenhouse gases  

In the COSMO-CLM, the CO2 concentration is described by an increase following the 

A1B scenario between 1950 and 2100. For the past and present climate, this scenario de-

scribes the observed increase in CO2 content. In the standard version of the COSMO model 

a constant CO2 concentration of 330 ppm is used. To assess the difference over the decade, 

one simulation with this constant gas concentration was performed.  

5) Convection scheme 

The convection scheme was changed from the standard Tiedtke mass flux scheme to the 

Kain-Fritsch convection scheme (KAIN  and FRITSCH, 1990) to determine the influence on 

precipitation and temperature. 

6) Time integration scheme 

The dynamics was changed by using the Runge-Kutta scheme instead of the Leapfrog 

scheme. The Runge-Kutta scheme is operationally used in the COSMO-DE, which runs on 

the 2.8 km scale (FÖRSTNER and DOMS, 2004). This scheme allows the use of more accu-

rate advection schemes (fifth order horizontally). 

The simulations where the time integration scheme or the convection scheme was changed 

show the largest differences compared to the reference run for annual mean temperature 

and annual precipitation amount (Fig. 4.16). The spread between the ensemble members is 

less than 0.3 degrees in annual mean temperature and less than 200 mm in annual precipi-

tation sum. The observations do not lie within the ensemble spread for either temperature 

or precipitation. For all years, the ensemble overestimates the amount of precipitation by a 

minimum of 200 mm. For temperature, an underestimation by all ensemble members of 

minimum 0.6 degrees is found. This underestimation of temperature and overestimation of 

precipitation has also been observed in a study by BÖHM et al. (2006) for this region. The 

results for the change of water content and the change of active soil layers show only small 

variations compared to the reference run but they persist over the whole simulation period. 
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The variation in annual mean temperature is less than 0.01 degrees and the variation in 

annual precipitation sum is lower than 10 mm. 

The simulation with constant CO2 content shows slightly lower annual mean temperatures 

(up to 0.04 degrees without detectable trend over the simulation period) than the reference 

run and the change in annual precipitation sum is lower than 10 mm.  

The simulation with the Kain-Fritsch convection scheme shows higher amounts for annual 

precipitation sums than the reference run (100 - 150 mm). The higher precipitation causes 

a decrease in temperature and therefore the annual mean temperature is up to 0.3 degrees 

lower than in the reference run.  

 

Parameter COSMO-CLM (ref) Ensemble (abbr.) 

Water content  + 50% in all layers (min) 

Water content  

Water content from driv-
ing model 

- 50% in all layers (max) 

Active soil layers Down to 2.50 m All levels except the lowest (soil) 

Greenhouse gas con-
centration 

A1B scenario Constant 330 PPM (co) 

Convection scheme Tiedtke scheme Kain-Fritsch scheme (kf) 

Dynamics Leapfrog scheme Runge-Kutta scheme (rk) 

 

Table 4.5: Parameter setting for reference COSMO-CLM simulation and for ensemble 

simulations. The abbreviation for the ensemble members are given in the last column. 
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Figure 4.16: Annual mean of near-surface temperature (left) and annual sum of precipita-

tion (right) for all ensemble members and observations averaged over the 23 stations. 
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In the simulation with the Runge-Kutta scheme, the precipitation amount decreases in the 

last two simulation years up to 100 mm compared to the reference run and the temperature 

variation is lower than 0.1 degrees. 

To determine the spread between the monthly values they were averaged from 1991 to 

1995 (Tab. 4.6). The monthly averages show that the ensemble spread is largest in June 

and July for 2m-temperature and from November to April for precipitation. 

The change in soil moisture content has no marked influence on the annual course of tem-

perature. Maximum differences are about 0.01 K. Differences of up to 4 mm in the 

monthly precipitation sum compared to the reference run occur during the vegetation pe-

riod. This could be explained by the influence of soil moisture on the convective precipita-

tion which also influences the temperatures. 

The influence of the number of active soil levels on precipitation is observable during the 

whole vegetation period and reaches up to 5 mm per month compared to the reference run. 

Due to the water transport towards the root zone, slightly higher transpiration occurs and 

affects evapotranspiration and precipitation. The influence increases during springtime and 

is strongest in June and July. Afterwards, it decreases during autumn. The monthly varia-

tion of temperature is lower than 0.01 K. The influence on simulations due to soil moisture 

variation and soil level variation is therefore in the same range. 

The simulation with the Runge-Kutta scheme influences temperature strongest in the time 

from October to March. In this period, the influence on precipitation compared to the ref-

erence run is strongest. This could be explained by the influence of the changed advection 

scheme, which has its strongest impact during the winter time. The differences between 

observations and simulation decrease compared to the reference run. 

The underestimation of temperature by the simulation with constant greenhouse gas con-

centration is most significant during the time from October to March and is in the range of 

0.03 degrees. The variation of precipitation in this simulation compared to the reference 

run is largest in summer and reaches up to 2.5 mm.  

The differences in temperature between the simulation with the Kain-Fritsch convection 

scheme and the reference run are largest from May to August (up to 0.3 K). The simulation 

underestimates the temperature compared to the measurements to a higher extent than the 

reference run does. 
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Month jan feb mar apr may jun jul aug sep oct nov dec year 

 Temperature 

ref -1.18 -0.84 -1.02 -1.13 -0.84 -1.14 -0.63 -0.48 -0.45 -0.35 -0.38 -0.72 -0.76 

max -1.18 -0.84 -1.02 -1.13 -0.84 -1.13 -0.63 -0.49 -0.45 -0.35 -0.38 -0.72 -0.76 

min  -1.18 -0.84 -1.02 -1.13 -0.84 -1.13 -0.62 -0.48 -0.44 -0.36 -0.38 -0.72 -0.76 

soil -1.18 -0.85 -1.02 -1.13 -0.85 -1.13 -0.64 -0.49 -0.46 -0.36 -0.38 -0.72 -0.77 

rk -1.10 -0.75 -0.95 -1.14 -0.89 -1.20 -0.61 -0.49 -0.42 -0.26 -0.27 -0.61 -0.72 

kf -1.27 -0.96 -1.11 -1.24 -1.04 -1.41 -0.94 -0.65 -0.57 -0.35 -0.39 -0.77 -0.89 

co -1.21 -0.88 -1.04 -1.14 -0.85 -1.13 -0.65 -0.48 -0.46 -0.38 -0.41 -0.76 -0.78 

Spread  0.17  0.21  0.17  0.11  0.19  0.28  0.33  0.17 0.15  0.12  0.16  0.16  0.13 

 Precipitation 

ref 55.9 36.3 37.9 44.9 25.7 15.5 8.7 -0.3 17.3 13.7 28.1 40.7 324.3 

max 55.8 36.4 37.6 43.7 25.3 12.9 15.4 0.9 16.1 13.8 28.0 40.7 326.6 

min  56.0 36.2 37.5 44.5 25.4 12.9 11.1 1.7 16.7 13.4 27.7 40.6 323.6 

soil 55.9 36.3 37.5 44.3 26.5 10.3 11.2 -1.2 16.5 13.9 27.7 40.7 319.5 

rk 40.0 28.1 28.4 42.4 26.4 23.6 12.0 10.4 27.2 16.9 15.8 22.2 293.4 

kf 65.2 46.1 58.2 61.8 39.8 25.3 0.1 1.5 32.7 26.7 38.8 50.0 446.1 

co 55.9 36.3 37.1 45.2 24.8 14.2 11.3 1.9 17.0 13.4 27.6 40.5 325.0 

Spread 15.2 18.0 29.8 19.4 15.0 15.0 15.3 11.6 15.8 12.8 23.0 27.8 152.7 

Mean 54.9 36.5 39.2 46.7 27.7 16.4 10.0 2.1 20.5 16.0 27.7 39.3 336.9 

              

 

Table 4.6: Difference of the monthly means and sums of 2m-temperature and precipitation 

between simulations and observations averaged over the years 1991 – 1995 for all ensem-

ble members. Maximum values are in bold letters. 

 

In contrast, the largest overestimation of precipitation is found in spring and autumn, 

where there is also a greater overestimation than in the reference run. 

The ensemble member where the active soil layers were changed has the lowest impact 

(Fig. 4.17). There is only a bias of about 0.003 m3 m-3 occuring in the originally active lay-

ers in the first winter period. In the seventh soil layer, formerly the lowermost active layer, 

a small annual variation of the bias of about 0.001 m3 m-3 can be observed, with a maxi-

mum in the late autumn. This corresponds to the findings above: the change of active soil 
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layers has an influence over the vegetation period, but the differences in soil moisture are 

negligible. 

During the first six months of the simulations, the bias decreases for the two simulations 

with changed initial soil water content. After that time, the bias compared to the reference 

run is lower than 0.01 m3 m-3. The simulation with decreased soil water content shows a 

slow recovery over the first six months while the adaptation of water content in the simula-

tion with increased soil water content happens essentially during the first month of the 

simulation and is mainly done by the production of runoff (Fig. 4.17). In the simulation 

with decreased soil water content, the lower layers fill up within one month after the upper 

layers were filled and the gravitational pressure becomes large enough. The evolution of 

soil water content is similar to the behaviour of the reference simulation for both ensemble 

members. There is no splitting up in different final states. When the soil water content has 

reached an equilibrium state after the first year of simulation, its influence on precipitation 

and temperature is rather small. Therefore, the choice of initial soil water content and 

number of active soil layers is not crucial for this investigation area and this initialisation 

date.   
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Figure 4.17: Bias of soil moisture content of simulations with changed soil moisture con-

tent (min, max) and different hydrological active layers (soil) compared to the reference 
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run averaged over the whole reference area for different soil layers for the first day of 

every month at 0 UTC.  Labels indicate the depth of the main level of the layer. 

To get an overview of the differences between the reference run and the simulations with 

the Kain-Fritsch and the Runge-Kutta schemes, the average of the annual means or sums of 

temperature and precipitation for the whole reference area over the period 1991 – 1995 was 

calculated and the results of the reference run were subtracted (Fig. 4.18). The results for 

the simulation with the Kain-Fritsch scheme show an increase in precipitation amount in 

all areas except on the western slopes of the mountains (which is the windward side most 

of the time) where a decrease is found (Fig. 4.18). This can also be seen in the temperature 

which decreases least to the west of the mountains. As discussed in subsection 4.3.2, pre-

cipitation is underestimated on the eastern slopes of the mountains and overestimated on 

the western slopes, which is slightly corrected by the use of the Kain-Fritsch convection 

scheme. However, the overestimation of precipitation with this scheme is higher than in 

the reference run. 

For the Runge-Kutta scheme the largest differences from the reference run occur in moun-

tainous regions (Fig. 4.18). The precipitation in the windward side of the mountains con-

siderably decreases in this simulation and increases in the lee. In the alpine foothills annual 

precipitation sum is strongly reduced in this simulation. This behaviour agrees better with 

the gridded precipitation data than the reference run does. A warming of up to 0.3 K occurs 

in the south of the investigation area and a cooling of up to 0.15 K in the north. Since the 

computational costs do not increase, the Runge-Kutta scheme could be a possible alterna-

tive to the Leapfrog scheme for climate simulations. 

In the simulation with constant greenhouse gas, the temperature decreases in most of the 

area compared to the reference run. The change in precipitation shows no evident struc-

tures and its sign changes more or less randomly throughout the area (Fig. 4.18). 

In summary, changing the convection scheme and the time integration scheme has consid-

erable impacts on the simulation of precipitation and temperature. The change in the 

greenhouse gas concentration shows the expected decrease in temperature and use of the 

increasing green house gas concentration given by the A1B scenario is recommended for 

the simulation of past decades.  
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Figure 4.18: Difference between simulations with the Kain-Fritsch scheme (top), the 

Runge-Kutta scheme (middle) and constant greenhouse gas concentration (bottom) and the 

reference run for annual mean near-surface temperature (left) and annual precipitation sum 

(right) averaged over the period 1990 – 1995.  
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4.3.4 COMPARISON OF OBSERVED AND MODELLED TRENDS OF NEAR -

SURFACE TEMPERATURE BETWEEN 1991 AND 2000 

The observed and modelled trends of the near-surface temperature for the decade 1991 to 

2000 show a marked increase of the surface temperature at many sites in Southwest Ger-

many (Fig. 4.19). Due to the shortness of this time interval, however, the significance of 

these trends is lower than for the trends between 1931 and 2000 (KLIWA, 2005). The 

modelled trends presented here were computed using the 7 km domain with ERA-40 driv-

ing data. The trends were calculated from annual average temperatures using the least 

squares method: their significance was calculated with the Mann-Kendall test (RAPP and 

SCHÖNWIESE, 1996). The orders of magnitude of the observed and the modelled trends 

agree reasonably well, both of them being mainly in the range between 0.1 and 

0.9 K/decade. This is the same magnitude as those in the time span between 1931 and 2000 

and shows that a considerable part of the warming took place during the last decade of the 

20th century. Observations and model agree also with respect to the relatively strong 

warming that occurred in the Rhine valley (KLIWA, 2005), the western slopes of the Black 

Forest (Fig. 4.19), and in the Kraichgau region (Fig. 4.19), whereas modelled trends and/or 

significances are smaller than observed in the eastern parts (Fig. 4.19) of the Black Forest 

and extended portions of the Swabian Jura. 

 

Figure 4.19: Modelled (left) and observed (right) trends of near-surface temperature be-

tween 1991 and 2000.  
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On the other hand, there are also some differences: some of the observed warming trends 

in the east of the state of Baden-Wuerttemberg are not reproduced by the model and mod-

elled trends are - to a varying degree - smaller than the observed ones. Since smaller trends 

result in smaller significance, the significance of the modelled trend is smaller than the 

significance of the observations in this region. 

 

4.4 SUMMARY  

For high-resolution climate simulations for Southwest Germany the simulation area should 

include the entire alpine region and the results for precipitation improve when using 7 km 

horizontal resolution instead of 14 km. The smallest bias to observed temperature and pre-

cipitation is found using ERA-40 data as driving data. In the time scales considered, 

changes in initial soil water content or in the number of active soil layers affect the simula-

tion results only during the first year of simulation and can be neglected afterwards for the 

high-resolution simulations. For the 50 km simulations, initialisation from climatological 

soil moisture and soil temperature data is recommended. The model is quite sensitive to the 

change of the Tiedtke convection scheme to the Kain-Fritsch scheme, which leads to an 

overestimation of precipitation in comparison to observations. Model results are also quite 

sensitive to changing the time-integration scheme. The Runge-Kutta scheme seems to be 

an alternative to the Leapfrog scheme that has been standard in the COSMO-CLM up to 

now. It considerably reduces the precipitation amounts in the windward side of the moun-

tains, which are generally overestimated by COSMO-CLM. 

The water balance of the soil shows components, which are quite sensitive to the change of 

driving data and horizontal resolution (precipitation, runoff) and components, which are 

not sensitive to these changes (soil water content, evaporation). 

For high-resolution simulations, the influence of varying lateral boundary conditions on 

simulation results is much larger than the change of horizontal resolution, initial condi-

tions, physical parameterisations and time integration schemes. This is in accordance to 

other studies focusing on different horizontal resolutions and time scales (ANTHES et al., 

1989). The differences in temperature and precipitation already contained in the reanalysis 
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data are passed on through the downscaling chain to the high-resolution simulations and 

are amplified for precipitation and weakened for temperature. The model is able to repro-

duce temperature trends with the suitable model setup determined in the section before by 

ensemble simulations. 

 

 

 



  

5 APPLICATION AND IMPROVEMENT OF THE LAND -

SURFACE SCHEME VEG3D  

The soil-vegetation model VEG3D was initially developed by SCHÄDLER (1990). Later, a 

snow module (GRABE, 2002) and a root distribution function were included (LENZ, 1996). 

It is a multi-layer soil model with an explicit vegetation layer and it is extensively de-

scribed in SCHÄDLER et al. (1990), BRAUN (2002) and GRABE (2002). A summary of the 

most important features is given in subsection 6.1.2. 

Two major modifications of the model have been implemented and evaluated in this thesis. 

The first one is the implementation of a parameterisation of freezing and melting processes 

in the soil, which is indispensable for climate simulations and was missing in VEG3D up 

to now. The second modification is the consideration of different soil types within one soil 

column; up to now, only one soil type per soil column was allowed. The implementation 

and the results of stand-alone simulations with the new soil freezing parameterisation 

driven by observed data are described in section 5.1, and in section 5.2, stand-alone simu-

lations with vertically varying soil types are presented. 

5.1 PARAMETERISATION OF FREEZING AND MELTING 

PROCESSES IN THE SOIL 

For climate simulations, the lack of freezing and melting processes in the soil can lead to 

strong biases in soil temperature and soil water content. Furthermore, the simulated near- 

surface temperature can be too low compared to observations in winter (Viterbo, 1999) and 

more water penetrates into the soil if soil freezing is not taken into account (YU and 

SHIHUA , 2002). In addition, a strong influence on the development of the boundary layer 

by soil freezing processes can be observed (VITERBO, 1999). Therefore, in many of the 

land surface schemes, soil freezing processes were implemented over the past ten years 

(e.g. ISBA (BOONE et al., 2000), Sib2 (LI and KOIKE, 2001), BASE (SLATER et al., 1998)). 

Parameterisations of freezing and melting processes with different complexity have been 

developed; the Project for Intercomparison of Land-surface Parameterisation Schemes 
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(PILPS) has compared the ability of 21 land surface schemes to simulate soil freezing and 

snow coverage (LUO et al., 2002). It was found that the consideration of freezing and melt-

ing processes improves the simulation of soil temperature and its variability at seasonal 

and interannual scales. Due to the variety of freezing parameterisations already available, 

no new soil freezing scheme for VEG3D has been developed. Instead, different approaches 

from other land surface schemes have been combined into a suitable parameterisation. 

Soil ice has influence on those parts of VEG3D where the soil temperature and the soil 

water content are calculated. The influence of soil ice on heat capacity and thermal con-

ductivity for soil temperature calculation was adopted from the work of JOHANSEN (1975). 

The change in soil water transport was taken from the Common Land Model (DAI  et al., 

2001) and the change of soil temperature and soil water content due to energy release and 

absorption by freezing and melting was taken from the COSMO model (DOMS et al., 

2005).  

5.1.1 CALCULATION OF SOIL TEMPERATURE IN FROZEN SOIL  

Soil ice is accounted for in the thermal part of VEG3D through its influence on the heat 

capacity and thermal conductivity in the heat conduction equation for the soil tempera-

ture BT : 
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The heat capacity of the soil Bc  is the sum of the heat capacities of dry soil tBc , , water wc  

and ice ec , each weighted by its fractional amount of soil volume:  

  ( ) ( ) eewwtBssewB cccc θθθθθθ ++−= ,1,, . (5.2) 

The heat capacity of air is neglected here because its value is much smaller than those of 

the three other heat capacities and it is assumed that the whole pore volume can be filled 

up by water. This means that, for the determination of Bc , only the volumetric soil water 

content wθ , the volumetric ice content eθ , and the volumetric saturation water content sθ  
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need to be known. The thermal conductivity of the soil Bλ  is described by the approach 

from Johansen (1975): 

  ( ) ( ) tBtBsBsewesewB K ,,, )(,,,, λλλθθθθθθλ +−= . (5.3) 

tB,λ  is the thermal conductivity of dry soil and eK is the Kersten number. The soil conduc-

tivity of saturated soil sB,λ  is described for unfrozen soil as 

  ( ) ss

wssB kk θθλ ⋅= −1
, , (5.4) 

and for frozen soil as 

  ( ) wwss

wessB kkk θθθθλ ⋅⋅= −− )(1
, . (5.5) 

The thermal conductivity of saturated soil depends on the effective solids thermal conduc-

tivity sk , the thermal conductivity of ice ek  (2.2 W m-1 K) and the thermal conductivity of 

water wk  (0.5 W m-1 K). The thermal conductivity Sk  depends on the quartz content q , 

the thermal conductivity of quartz qk  (7.7 W m-1 K) and the thermal conductivity of min-

erals in the soil 0k (2.0 W m-1 K): 

  qq
qS kkk −= 1

0 . (5.6) 

The Kersten number is determined as 
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For unfrozen soil, it distinguishes between fine and coarse soil, depending on particle 

sizep . 
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5.1.2 PARAMETERISATION OF SOIL WATER TRANSPORT IN FROZEN SOIL  

The soil water transport is described by the Richards equation 
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wr  describes the water up-take by the roots. K  is the hydraulic conductivity, Ψ is the ma-

tric potential and θ  is the volumetric soil water content. For the description of hydraulic 

conductivity and matric potential, three parameterisations are available in VEG3D. Only 

the later used Van Genuchten parameterisation (1980) is discussed here: 
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Depending on the soil type, the saturation matric potential SΨ , the hydraulic conductivity 

at saturation SK , the residual water contentrθ , the saturation water content Sθ , and the 

dimensionless pore size distribution index λ  are described by parameter data sets from 

RAWLS and BRAKENSIEK (1982). In the presence of soil ice, the volume for soil water 

transport is considerably reduced and the fractional parameter S  is replaced by 

  
e

r
e P

S
θθ −

= ,       (5.12) 

  erseP θθθ −−= . (5.13) 

The reduced volume available for soil water transport in the presence of soil ice is consid-

ered by the introduction of an effective porosity eP , which is lowered by the volumetric ice 

content compared to the porosity without soil ice. The fractional parameter eS  then refers 

to the ice free soil volume. 
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For the three parameterisations BROOKS &  COREY (1964), CAMPBELL (1974) and VAN 

GENUCHTEN (1980), the hydraulic conductivity and the matric potential remain unchanged. 

Only the new effective porosity is considered.  

When the difference between the saturation water content and the soil ice content in a soil 

layer and the adjacent layer is lower than 0.13, the hydraulic conductivity is set to zero in 

this soil layer in accordance with BLOOMSBURG and WANG (1969): there is no water trans-

port from or to the adjacent soil layers.  

For the calculation of the infiltration rate, the sum of soil water and soil ice content is con-

sidered and the transpiration by the roots is restricted to the liquid water content. 

 

5.1.3 ENERGY EXCHANGE DURING FREEZING AND MELTING PROCESSE S IN 

THE SOIL  

Before soil temperature can decrease under the freezing point 0T  (273.15 K), all water ex-

cept the residual water content has to be frozen. In case of melting, the soil temperature can 

only rise above the freezing point after all soil ice within the soil layers is melted. The 

change of soil temperature and soil water content is calculated without explicit considera-

tion of freezing and melting processes. A correction is done afterwards by diagnostically 

determining the energy available for freezing and melting processes using 

 ( )0TTcE BB −=∆ . (5.14) 

When 0TTB < , the soil water is frozen; when 0TTB > , available ice is melted. The maxi-

mum possible change in soil water content is therefore described by 

  
wf

ew L

E

ρ
θθ ∆=∆−=∆ max,max, , (5.15) 

where fL  is the heat of fusion and wρ  is the density of water. The observed change in 

water content depends on the available soil water content: 
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  ( ) 0, max,max, <∆∆=∆ eeew ifMin θθθθ ,  (5.16) 

 

 ( ) 0, max,max, >∆−∆−=∆ ereswww ifMin θθθθθ . (5.17) 

The final soil temperature is calculated as 
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When all water except the residual water content has been frozen, the soil temperature can 

decrease under the freezing point.   

5.1.4 EVALUATION OF FREEZING AND MELTING PARAMETERISATION IN THE 

SOIL  

The parameterisation of freezing and melting processes in the soil has been evaluated with 

data from the boundary layer field site at Falkenberg (NEISSER et al., 2002), which belongs 

to the Observatorium Lindenberg and is operated by the DWD. A detailed description of 

the measurement site can be found in section 6.2. 

The water content is observed in six depths (in m): 0.08, 0.15, 0.3, 0.45, 0.6, 0.9. The soil 

temperature is measured in the following 12 depths (in m): 0.05, 0.1, 0.15, 0.2, 0.3, 0.45, 

0.5, 0.6, 0.9, 1.0, 1.2, 1.5. There are only a few other observation sites that have such high-

resolution vertical profiles of soil moisture and soil temperature available over several 

years.  As atmospheric driving parameters, 2m-temperature and specific humidity, as well 

as downward long- and shortwave radiation, pressure and wind speed are available every 

ten minutes. 

For the evaluation, the stand-alone version of VEG3D has been used with eight soil layers 

with the following depth of main levels (m): 0.01, 0.03, 0.07, 0.15, 0.31, 0.63, 1.42, 2.55. It 

is run as a single column model with land use type grassland and soil type loamy sand in 

the upper five soil layers and loam in the lowermost three soil layers. Soil temperature, soil 

water content and heat fluxes at the surface are simulated by the model and can be com-

pared to observations. The observed soil water content and soil temperature was interpo-
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lated onto the depth of the main levels of the model. Therefore the soil water content can 

be evaluated for the levels from 0.07 to 0.63 m and the soil temperature for the levels from 

0.07 to 1.42 m. A comparison with observations has been done for the winter season 

2002/2003, with initialisation at the first of October, 2002, and for one year starting from 

first of June 2003. 

For non-frozen periods, VEG3D simulates soil water content and soil temperature well and 

we observe correlation coefficients of 0.98 for temperature and 0.84 to 0.9 for soil water 

content. The largest differences between observed and modelled soil temperature and soil 

water content are in the range of 1.3 K and 5 volume percent and are found in deeper soil 

layers.  

For the winter period 2002/2003, the episodes of soil freezing are displayed correctly by 

the model with the new parameterisation and soil temperatures accord more accurately 

with the observed ones than those without consideration of soil freezing (Fig. 5.1). Strong 

unrealistic oscillations, which are observed without soil freezing during periods with tem-

peratures around freezing point, are eliminated with the new parameterisation; too strong 

cooling of the soil during some episodes is also prevented. The improvement in soil tem-

perature simulation with the new scheme is also evident in deeper soil layers where no 

freezing occurs. The influence of soil freezing on temperature vanishes some days after the 

last freezing period and soil temperatures at the end of the simulation period for the simu-

lation with and without soil freezing are quite similar.  

The absolute values of soil water content can only be compared during the non frozen epi-

sodes due to the observation method with Time Domain Reflectometry (DALTON and VAN 

GENUCHTEN, 1984), which is not able to determine the soil water content of frozen soil 

correctly. But the freezing period can be determined by the decrease in observed soil water 

content. The periods of freezing are well represented by a decrease of soil water content in 

the layers, with main levels in 7 and 31 cm (Fig. 5.2). At the depth of 15 cm, one period of 

melting with increasing soil water content is missing. This is due to a too strong cooling of 

the upper soil layers in the simulation, which inhibits melting in this layer. An episode with 

too early melting in all soil layers is observed at the end of the simulation period. As a con-

sequence, the soil water content in all layers is too low after the melting compared to the 

observations. 
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Figure 5.1: Observation (mes) and simulation of soil temperature for different soil depths 

with (me) and without (oe) soil freezing for the period from 1.10.2002 to 1.4.2003 at the 

Falkenberg measurement site. 
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Figure 5.2: Observation (mes) and simulation of soil water content for different soil depths 

with (me) and without (oe) soil freezing for the period from 1.10.2002 to 1.4.2003 at the 

Falkenberg measurement site. 

 

The soil water content of the simulation with and without soil freezing is similar at the end 

of the simulation period in all soil layers. This is in accordance to findings from 

CHERKAUER and LETTENMAIER (1999), who also found only a relatively small effect of 

frozen soil on soil moisture and runoff simulations. Larger differences in soil temperature 

profiles after melting between simulations with and without soil freezing can be observed, 

when the period of freezing reaches several days or weeks or when the depth of freezing 

reaches much deeper into the soil (LUO et al., 2002).  
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For the correct simulation of soil freezing, the thickness of soil layers is of minor impor-

tance. Using multiple layers, each with a thickness of 2 cm, yields similar results to the soil 

layer thickness given above. 

The sensible heat flux is overestimated and the latent heat flux is underestimated in both 

simulations (Fig. 5.3). The difference in heat fluxes between the simulation with and with-

out soil freezing is visible only for single days and does not exceed 40 W m-2. On some 

days with soil freezing, the new parameterisation leads to an enhancement in simulation 

results and in some days it does not. This strongly depends on the snow cover on the soil. 

Longer periods of freezing should be considered for an evaluation of heat fluxes for frozen 

soil. The correlation coefficient is 0.58/0.57 for latent heat flux and 0.75/0.74 for sensible 

heat flux for the simulation with/without soil freezing. A strong underestimation of latent 

heat flux is mainly observed for melting periods where the observed soil water content is 

about 10 volume percent higher than the simulated soil water content. 

For the simulation period from 1.6.2003 to 31.5.2004 we find episodes where soil freezing 

is simulated well with the new parameterisation. These are periods without snow cover on 

the soil or periods where the modelled snow height is in accordance to the observed one 

(Fig. 5.4). For those periods, the times of freezing and melting of soil water are simulated 

correctly and the soil temperature is simulated much better with the new parameterisation 

than without consideration of soil freezing. For episodes with snowfall, the performance of 

the model strongly depends on the modelled amount of snow.  
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Figure 5.3: Scatter plot of sensible (left) and latent (right) heat fluxes for observation and 

simulation with (me) and without (oe) soil freezing for the period 1.12.2002 to 1.4.2003.  
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Since no snowfall observations are available, the model produces snowfall when the air 

temperature drops below the freezing point, which might produce too low snow amounts. 

The only observed value for a comparison is the measured snow height, which is measured 

once a day. When the model is not able to simulate a snow deck comparable to the ob-

served one, the soil temperatures are simulated much too low and freezing of soil water 

starts too early (Fig. 5.5). Where no snow deck is observed and the model spuriously pro-

duces a snow deck, the melting of soil ice is delayed in the simulation (Fig. 5.5). From this 

simulation it becomes clear that the snow cover of the soil is a rather critical parameter for 

the correct simulation of soil temperature and soil moisture. This is in accordance to the 

findings of the PILPS 2(d) Experiment (LUO et al., 2002). VEG3D could only simulate 

correct snow coverage – allowing to conduct a reliable comparison of the new parameteri-

sation for times with snow coverage – with hourly observed snowfall data and without any 

gaps in the observations. 

For the periods of the ongoing SnowMIP2 experiment, such data is available and the mod-

el shows quite good results compared to other models and observations (SCHÄDLER (IMK), 

personal communication). 
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Figure 5.4: Winter period of the simulation for the Falkenberg measurement site from 

1.6.2003 to 31.5.2004. Displayed is the water content of the simulations with (me) and 

without (oe) soil freezing and of the observations (mes) (top) and the soil temperature and 

the snow height (bottom). 
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Figure 5.5: Winter period of the simulation for the Falkenberg measurement site from 

1.6.2003 to 31.5.2004. Displayed is the water content of the simulations with (me) and 

without (oe) soil freezing and of the observations (top) and the soil temperature and the 

snow height (bottom). 

 

5.2 VARIABLE SOIL TYPES W ITHIN ONE SOIL COLUMN  

Up to now, only one soil type within a single soil column has been considered in VEG3D. 

It is well known that the soil is stratified vertically in layers (horizons) of different soil 

types in nature and that the single layers may have significantly different soil characteris-

tics that affect the soil water and soil heat transport markedly. Whether the introduction of 

soil horizons within one soil column would lead to a better prediction of soil water content 

and soil temperature was therefore tested in stand-alone simulations with VEG3D. These 

simulations show an improvement of the simulation results compared to measurements. 

Therefore, a digital soil map with vertically varying soil profiles for the area of Southwest 

Germany has been created based on the “Hydrologischer Atlas Deutschland” (HAD, 

2003). This map can be used to prescribe the soil type in VEG3D simulations when the 

model is coupled online to the atmospheric part of COSMO-CLM.  
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5.2.1 SIMULATIONS WITH THE VEG3D STAND-ALONE MODEL FOR 

VERTICALLY CHANGING SOIL TYPE  

Soil analysis at the Falkenberg measurement site has shown that the topmost horizon down 

to a depth of 60 cm consists of sandy soil and a second horizon beneath it consists of 

loamy soil. Both soil types differ strongly in their soil hydraulic conductivity, which is 

high for sandy soils and low for loamy soils. Therefore, soil water content in the upper 

horizon is simulated too high if loamy soil is assumed for the whole soil column and it is 

simulated too low in the lower horizon if loamy sand is assumed for the whole soil column 

(Fig. 5.6). Assuming loamy sand in the uppermost five soil layers down to a depth of ap-

proximately 60 cm and loam in the lowermost three soil layers results in an improved 

simulation of soil water content for the period  from 1.10.2002 to 1.4.2003 (Fig. 5.6). With 

this configuration we get realistic results in both horizons: the water content is kept at a 

lower level in the upper horizon and on a higher level in the lower horizon, agreeing more 

closely with observations. The advantage of the introduction of different soil horizons is 

only visible if the comparison is made for the whole soil column.  

The simulation for the period from first of June 2003 to end of May 2004 gives similar 

results for vertical varying soil types (Fig. 5.7): a remarkable enhancement when using two 

soil horizons instead of loamy soil type can be noticed, and a clear enhancement for the 

lower soil layers when using vertical varying soil horizons instead of loamy sand in the 

whole column. Independent of soil type, frozen periods are well simulated. The increase in 

water content of the layer 60 cm deep in the late autumn is also visible for the period of 

1.10.2002 to 1.4.2003 and is probably due to rising ground water. This increase is only 

simulated by the loamy sand soil type but the absolute soil water content is much lower 

than in the other two simulations and the observations.  
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Figure 5.6: Observation (mes) and simulation of soil water content for different soil depths 

with (mb) and without (ob) varying soil type within the soil column for the period from 

1.10.2002 to 1.4.2003 at Falkenberg measurement site. The simulations without varying 

soil type are depicted for loam (ob_4) and loamy sand (ob_1). 
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Figure 5.7: Observation (mes) and simulation of soil water content for different soil depths 

with (mb) and without (ob) varying soil type within the soil column for the period from 

1.6.2003 to 31.5.2004 at Falkenberg measurement site. The simulations without varying 

soil type are depicted for loam (ob_4) and loamy sand (ob_1). 
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5.2.2 SOIL TYPE MAP FOR COSMO-CLM  SIMULATIONS WITH DIFFERENT 

SOIL TYPES WITHIN ONE SOIL COLUMN  

From the studies presented in the previous subsection it becomes obvious that vertical 

varying soil types lead to a better performance of the model. Therefore, VEG3D has been 

extended so that all soil characteristics are now available as three dimensional fields; they 

can also be initialised in this way. Information about the different soil horizons and their 

soil types in online coupled simulations with COSMO-CLM for the area of Southwest 

Germany is based on HAD. From a digital map of HAD the soil types are transferred in 

two steps (Fig. 5.8). Because not all soil types in HAD are available in VEG3D, we first 

appoint each of the 34 soil types in the HAD to one of the 16 soil types in VEG3D (this is 

detailed in Appendix 9.1). Secondly, the vertical partitioning of soil types is interpolated 

onto the VEG3D vertical grid. In this way, VEG3D can consider different soil horizons 

online coupled with COSMO-CLM. The difference in soil structure in the different soil 

layers is illustrated in Fig. 5.8. The parts outside Germany have been filled up by using a 

European soil type map with a resolution of 0.0625° and 15 different soil types. It would 

also be possible to choose the thickness of the soil layers of each individual grid box de-

pendend on the information obtained from the HAD, but this feature has not yet been im-

plemented and the depths of soil layers are the same for all grid boxes. To reveal the dif-

ferences in soil type structure used in a COSMO-CLM simulation with the standard soil 

model TERRA_LM and in the simulation coupled with VEG3D, both soil maps are plotted 

for the first soil layer in Fig. 5.9. The corresponding soil types are given in Tab. 5.1. 

VEG3D considers 16 soil types and the TERRA_LM uses 10 different soil types. The 

VEG3D map is much more structured for Germany than the COSMO model standard map. 

The structure of the HAD is even more complex than the VEG3D map (Fig. 5.9). 

The influence of different vertical soil types on the soil water budget has yet to be investi-

gated for a coupled COSMO-CLM/VEG3D simulation. One problem is the lack of ade-

quate observations, e.g. three dimensional soil moisture and soil temperature fields. These 

are necessary to evaluate whether the use of different soil types in one column improves 

the coupled simulations. The procedure developed has been modified by WOHNSIEDLER 

(2006) and some soil assignments from HAD to VEG3D have been changed. 
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Figure 5.8: Process of soil type determination for VEG3D from HAD (left). Soil types in 

different soil layers in the COSMO model coupled with VEG3D obtained by the interpola-

tion from HAD (right) for the Southwest of Germany. Soil type numbers are explained in 

Tab. 5.1. 

 

Number Soil type VEG3D Number Soil type TERRA_LM 

1 loamy sand  1 Ice (17) 

2 loam 2 rock (18)  

3 silty clay loam 3 sand (9) 

4 clay loam 4 sandy loam (7) 

5 clay 5 loam (2) 

6 peat 6 loamy clay (4) 

7 sandy loam 7 clay (5) 

8 water 8 peat (6) 

9 sand 9 sea water (8) 

10 silt loam 10 sea ice 

11 sandy clay loam     

12 silt     

13 sandy clay     

14 silty clay     

17 ice     

18 rock     
 
Table 5.1: Soil types in VEG3D and TERRA_LM and their corresponding numbers. 

Numbers in brackets give the VEG3D soil types used when soil type is taken over from the 

DWD standard map for COSMO_CLM simulations coupled with VEG3D. 
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Figure 5.9: Soil types for the uppermost soil layer from the new vertical soil type map in 

VEG3D (left), from the TERRA_LM standard map (middle), and from the soil type classi-

fication of HAD (right). Soil type numbers of VEG3D and TERRA_LM are explained in 

Tab. 5.1. HAD classification is given in Appendix 9.1. 

 

5.3 IMPLEMENTATION OF VEG3D IN COSMO-CLM 

The online coupling of VEG3D with COSMO-CLM requires multiple adaptations and 

changes in the source code. In principle, the soil model TERRA_LM is replaced by the 

VEG3D and all routines, which use variables calculated by the soil-vegetation scheme 

need to be adapted to the variables used by VEG3D. Additional data sets needed for driv-

ing VEG3D (parameters, inventories) have to be implemented in the COSMO-CLM sys-

tem. 

5.3.1 NEW PARAMETER DATA SETS  

VEG3D needs explicit land use information, which is not available in the external parame-

ter data set provided by DWD. The DWD data set only contains the derived vegetation 

characteristics leaf area index and plant cover. In the pre-processor, these vegetation char-

acteristics are computed as the area mean of the different land use classes occurring in one 

grid box, which are transferred from the CORINE, GLCC or GLC2000 land use data set 

(RITTER, personal communication, 2007). For VEG3D, the pre-processor calculates the 

majority land use class within one grid box as output; in an additional step, the 23 land use 

classes from the pre-processor are assigned to the 10 land use classes in VEG3D 
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(Tab. 5.2). The land use inventory thus produced (Fig. 5.10) is used as an input field during 

the setup of the simulation (Fig. 5.11).  

Furthermore, the new three dimensional soil type fields described in subsection 5.2.2 can 

now be read in during this initialisation step. When no three dimensional soil map is given, 

the soil types from the external parameter data set from DWD are assigned to the soil types 

used in VEG3D (Tab. 5.1). The soil and vegetation characteristics for each soil type and 

land use class in VEG3D are included as a look-up table in the source code.  

Up to now, ice and rock were not available as land use and soil types in VEG3D. In some 

alpine regions and in some Mediterranean areas ice or rock is used in the soil classification 

of the standard soil map. Therefore, ice and rock are now included in the soil data set of 

VEG3D. The new soil characteristics are given in Tab. 5.3. Ice has been introduced as an 

additional land use class in the land use data set. No vegetation cover is permitted for this 

class. 
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Figure 5.10: Land use classes of TERRA_LM (top) and VEG3D (bottom). Explanation of 

numbers is given in Tab. 5.2. 
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Number Description VEG3D Number Description TERRA_LM 
0 bare areas 1 evergreen broadleaf tree (3) 
1 artificial surfaces 2 deciduous broadleaf tree closed (3) 
2 water bodies 3 deciduous broadleaf tree open (3) 
3 broadleaf tree 4 evergreen needleleaf tree (4) 
4 needleleaf tree 5 deciduous needleleaf tree (4) 
5 mixed leaf tree 6 mixed leaf tree (5)  
6 cultivated areas 7 fresh water flooded tree (3) 
7 crop 8 saline water flooded tree (3) 
8 grassland  9 mosaic tree / other nat. veg. (5) 
9 mosaic grass / shrubs 10 burnt tree cover (5)  

10  undefined 11 evergreen shrubs closed-open (8) 
11 snow & ice 12 deciduous shrubs closed-open (8) 

    13 herbaceous cover closed-open (8) 
    14 sparse herbaceous or grass (8) 
    15 flooded shrub or herbaceous (8) 
    16 cultivated & managed areas (7) 
    17 mosaic crop/tree/natural veg. (7) 
    18 mosaic crop/shrub or grass (7) 
    19 bare areas (0) 
    20 water bodies (2) 
    21 snow & ice (11) 

  22 artificial surfaces (1) 
    23 Undefined (1) 

 

Table 5.2: Land use classes in VEG3D and TERRA_LM and their associated numbers. 

Numbers in brackets give the VEG3D land use type assigned to the TERRA_LM land use 

type. 

Parameter Variable name Rock Ice Unit 
Saturation water content dws 0.2 0.2 - 
Residual soil water content dwr 0.05 0.05 - 
Matric potential at saturation dpsis -1 -1 m 
Hydraulic conductivity at saturation dks 0 0 m/s 
Parameter for soil hydrology dlamb 1 1 - 
Albedo of dry soil dg0 0.15 0.3 - 
Albedo difference dry - saturated 
soil dgl 0 0 - 
Emissivity of dry soil deg0 0.98 0.9 - 
Emis. difference of dry and wet soil degl 0 0 - 
Quartz content dqu 0.5 0.5 - 
Heat capacity dcap 2.10E+06 1.80E+06 J/m³K 
Density of dry soil drhod 2700 900 kg/m³ 
Thermal conductivity of dry soil dcondd 2.93 2.51 W/mK 
Thermal conductivity of saturated 
soil dconds 2.93 2.51 W/mK 

 
Table 5.3: New parameter data set in VEG3D for ice and rock. 
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5.3.2 COUPLING OF VEG3D WITH THE ATMOSPHERIC PART OF THE MODEL  

All variables that are output variables in the standard soil model of COSMO-CLM and are 

used in other parts of the COSMO-CLM have to be calculated from variables available in 

VEG3D. This assignment is done at the end of the VEG3D time step. 

All parameters used in VEG3D that are not defined as global parameters have to be pre-

scribed new in the VEG3D routine at each time step in order to be available even after re-

start, e.g. time-dependent vegetation parameters like leaf area index or plant cover.  

It is important to write the variables that are only used in the VEG3D routine into the re-

start file in order to enable a correct restart procedure after a certain simulation time. These 

include the two snow temperatures, the heat fluxes, the vegetation temperature, the canopy 

temperature, and specific humidity. 

The soil-vegetation model has an explicit influence on three physics routines and the diag-

nostic routine within the source code where variables from the soil-vegetation model are 

used (Fig. 5.11). Therefore, the following routines have to be adapted to the soil model 

used: 

 

a) Radiation routine 

The surface temperature and the albedo from the soil-vegetation model are used for the 

calculation of the thermal infrared and reflected shortwave radiation from the ground. The 

surface temperature is needed for the calculation of thermal radiation from the surface and 

normally the snow weighted soil temperature from TERRA_LM is taken; when coupled 

with VEG3D, the canopy temperature is taken instead.  

The albedo is needed for the calculation of the shortwave radiation from the ground. 

TERRA_LM calculates a mean albedo from the albedo of uncovered soil, of vegetation, 

and of snow. The albedo of vegetation is kept constant in TERRA_LM, whereas VEG3D 

calculates a time-dependent vegetation albedo, which is used in the radiation routine for 

the summed albedo at the surface together with the soil and the snow albedo from VEG3D. 
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Operationally, only the net radiation balance is available from the radiation routine. How-

ever, VEG3D needs the incoming short and long wave radiation, which has to be stored as 

additional output parameters.  

b) Convection routine 

Deciding whether snow or rain reaches the ground involves considering the temperature at 

300 m above the surface and the surface temperature (TERRA_LM) or the canopy tem-

perature (VEG3D).  

c) Turbulence routine 

As lower values for the calculation of the surface fluxes by a bulk scheme, the surface hu-

midity and the surface temperature are taken when using TERRA_LM. Using VEG3D, the 

heat fluxes are already calculated by the soil-vegetation scheme and are readily available 

for use in this routine.  

d) Diagnostics 

At the end of each time step, a diagnostic routine is called to calculate near-surface values, 

e.g. 2m-temperature, 2m-humidity and near-surface winds. Using VEG3D, this part is 

switched off and these parameters are calculated directly in the soil-vegetation model. 

 

 

Figure 5.11: Sketch of the simulation steps within the COSMO-CLM. In red: major 

changes in the source code that apply when the VEG3D routine is used. In blue: routines 

where variables from the soil vegetation model are used.  



 

 

 

6 SENSITIVITY OF COSMO-CLM  REGIONAL CLIMATE   

SIMULATIONS WITH RESPECT TO VEG3D AND 

TERRA_LM  LAND SURFACE SCHEME 

In numerical weather forecast models, the detailed description of soil processes was ne-

glected for a long time. Up to now, soil moisture has been used as a tuning parameter to 

adjust the 2m-temperature by variational soil moisture analysis (HESS, 2001, RHODIN et al., 

1999) in the operational runs of the COSMO model from DWD. In the 1990s, the impor-

tance of a correct description of the soil processes was recognized and intensive studies 

were carried out on the influence of land surface schemes on precipitation (e.g. TIMBAL 

and HENDERSON-SELLERS, 1998), the partitioning of surface heat fluxes (e.g. PITMAN  and 

HENDERSON-SELLERS, 1998) and the development of boundary layer and convection (e.g. 

BELJAARS et al., 1996). The two-layer force-restore method schemes for temperature 

(DEARDORFF, 1978) and bucket models for soil water content (MANABE, 1969) used in the 

past have been replaced by complex multilayer soil models and even soil moisture freezing 

and different soil horizons are taken into account. Furthermore, in some models the subgrid 

scale heterogeneity of the land surface is modelled by so-called tile approaches (AVISSAR 

and PIELKE, 1989). Because soil processes are slow processes at the lower boundary of the 

atmosphere, their detailed description at all scales is even more important in climate mod-

els than in weather prediction models. A spurious simulation of soil water content can lead 

to biases in temperature and precipitation (VIDALE et al., 2003). The soil water content is 

of crucial importance especially for the amount of convective precipitation (SCHÄR et al., 

1999). 

The description of soil processes is very complex and many different soil-vegetation-

atmosphere transfer schemes (SVATs) are used in regional climate models, e.g. BATS 

(DICKINSON et al., 1993), ISBA (NOILHAN  and MAHFOUF, 1996) and MOSES (COX et al., 

1999). Besides the different formulations for soil water and soil heat transport they also 

differ considerably in the parameterisation of vegetation. In general, there are two possi-

bilities for considering vegetation in land surface models. The first category of schemes 

does not consider an explicit vegetation layer (e.g. COSMO-CLM (WILL et al., 2007), 
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REMO (JACOB, 2001), HIRHAM (CHRISTENSEN et al., 1996)). They assume that the vege-

tation has the same temperature as the soil and that the fluxes from the canopy can be de-

scribed by quantities already available in the soil model or by parameterisation and vegeta-

tion parameters. The surface temperature is used to calculate the sensible and latent heat 

exchange between surface and atmosphere. The second category explicitly considers at 

least one vegetation layer (e.g. RegCM (GIORGI et al., 1993), MM5 (CHEN and DUDHIA , 

2001)) and the schemes calculate transpiration and heat flux from the foliage to the canopy 

air and from the canopy air to the lower atmosphere. Since the soil-vegetation scheme in-

fluences the atmospheric processes via the exchange of latent and sensible heat, there is the 

question of how quantities like near-surface temperature and precipitation are affected by 

the use of different land surface schemes in high-resolution climate simulations for com-

plex terrain. 

To study this, the VEG3D SVAT scheme was implemented in the regional climate model 

COSMO-CLM and simulations with a 7 km horizontal resolution were performed for 

Southwest Germany. VEG3D has an explicit vegetation layer, in contrast to the operation-

ally used soil model TERRA_LM (DOMS et al., 2005), which has no explicit soil-

vegetation layer. One therefore expects to find considerable differences between the two 

schemes, especially over high vegetation. For detailed comparisons, simulations with the 

stand-alone versions of the two SVAT schemes were performed. Such simulations allow 

study of the effect of the land surface schemes on soil water content, soil temperature and 

heat fluxes without any atmospheric feedback. Simulations extending over several years 

were performed to assess the influence of the land surface scheme on the COSMO-CLM 

simulations, with each SVAT coupled online with the atmospheric part of the model. 

Section 6.1 describes briefly the two soil models used and highlights the differences be-

tween them. Section 6.2 presents a comparison of the stand-alone versions of both models 

driven by observations for low and high vegetation. COSMO-CLM simulations with each 

of the two soil models coupled online are compared for a single day in section 6.3 and for 

the year 2001 in section 6.4. Section 6.5 presents the comparison of the COSMO-CLM 

simulations with each of the two soil models coupled online for the period 1991 to 1995 

and the decade from 1991 to 2000. A brief summary is given in section 6.6. 
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6.1 DESCRIPTION OF THE MODELS  

6.1.1 TERRA_LM 

TERRA_LM is a multi-layer soil model without an explicit vegetation layer. It distin-

guishes five different soil types and also considers ice, rock and water. A changing vertical 

profile of soil temperature and soil water content is only calculated for these five soil types. 

In case of ice, the water content is kept constant and potential evaporation from an ice sur-

face is assumed. For water, the surface temperature is taken from the driving data: for rock, 

no water transport in the soil is considered, but a soil temperature profile is calculated. The 

vegetation parameters like leaf area index and fraction of plant cover are calculated as the 

weighted area mean of the different land use classes occurring in the grid box considered. 

In climate mode the model usually runs with 10 vertical soil layers with the following 

depths of main levels (m): 0.005, 0.025, 0.07, 0.16, 0.34, 0.7, 1.42, 2.86, 6.74, 11.5. 

In the lowest soil layer, temperature is kept constant at a climatological value, which is 

determined by the climatological mean of near-surface temperature. There are active and 

passive hydrological soil layers in TERRA_LM; the latter are the deeper soil layers. In the 

active layers, water transport is calculated explicitly and below these active layers, water 

content is kept at the value of the lowest hydrological active layer for thermal calculations 

in the passive layers and no water transport is calculated. Gravitational flow is assumed as 

a lower boundary condition for the lowest active hydrological layer. In the standard 

COSMO model, the hydrological active layers reach down to 2.50 m. 

 The model has an interception store and a snow store where rain or snow can be accumu-

lated. If one of these stores reaches its maximum capacity, the surplus can infiltrate into the 

soil. The model produces surface runoff if the infiltration rate is too low for the precipita-

tion rate or for the surplus from the interception store. When the soil water content reaches 

the field capacity, ground runoff from the soil is generated and the water is taken out of the 

modelling system. There is no lateral water flow in the soil.  

In case of snowfall, the model produces a snow cover on the soil and from a height of 

0.01 m onward it is considered as a snow deck and a snow temperature is calculated im-

plicitly. In TERRA_LM it is possible that a grid cell is covered partially by snow and par
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tially not. The snow temperature is calculated from a prognostic equation and the snow 

surface temperature, which is an output variable, is calculated diagnostically by linear ex-

trapolation. Snow density depends on the snow depth and also on its temperature. Ageing 

of snow results in a decrease of albedo and an increase of density. The thermal conductiv-

ity of snow is parameterised depending on the amount of snow water. 

The heat fluxes from the surface are calculated by a bulk formulation using the temperature 

and the specific humidity at the surface calculated by the soil model and the values in the 

lowest atmospheric level. The surface humidity is calculated from the sum of evaporation 

from snow store, from interception store, from bare soil, transpiration from all soil layers 

and formation of dew and rime. The surface temperature is a weighted mean between the 

temperature of the uppermost soil layer and the snow temperature. The calculation of these 

fluxes is part of the turbulence parameterisation (DOMS et al., 2005).  

Bare soil evaporation is calculated as the minimum of potential evaporation at surface tem-

perature and the maximum moisture flux through the surface the model can sustain 

(DICKINSON, 1984). Plant transpiration Tr  is parameterised basically following DICKINSON 

(1984) as a function of potential evaporation potE  at surface temperature sfcT ,  the atmos-

pheric resistance ar  and the foliage resistancefr : 

  )()( 1
sfcpotfaa TErrrTr −+= .  (6.1) 

In this formulation it is assumed that the foliage temperature equals the surface tempera-

ture and that the moisture flux between the foliage and the air inside the canopy equals the 

flux between the air inside and the air above the canopy. The foliage resistance is a func-

tion of radiation, soil water content in the root zone, 2m-temperature, leaf area index and 

the maximum and minimum values of stomatal resistance. The atmospheric resistance is 

the product of the bulk transfer coefficient for moisture and the magnitude of the wind in 

the first model layer above the surface.  

The transport of liquid water lw  in the soil is calculated by solving the prognostic Richards 

equation (HILLEL , 1980): 
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The water uptake by plants from the soil is described by wr . In this formulation, hydraulic 

diffusivity wD and hydraulic conductivity wK  have to be parameterised, which is done us-

ing exponential functions by RIJTEMA (1969): 

  ][ )/()(exp)( 10 ADPPVlPVlw wwwwDDwD −−= , (6.3) 

  [ ]ADPPVlPVlw wwwwKKwK −−= /()(exp)( 10 , (6.4) 

where 0D , 1D , 0K , and 1K are hydraulic parameters depednig on soil type, PVw  and ADPw  

are the pore volume and the air dryness point and lw  is the weighted mean of the liquid 

water content at half levels. In the presence of ice  
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replaces the water content lw  and the hydraulic coefficients are reduced by the reduction 

factor  

  
PV

kicekice

w

wwMax
r

),(
1 1,, +−= . (6.6) 

The reduction factor depends on the ice content icew  of the two adjacent soil layers k  and 

1+k  and the pore volumePVw .  

The change in soil temperatureBT  is described by the molecular heat equation: 
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The volumetric heat capacity of the soil cρ  is the sum of the volumetric heat capacity of 

the soil components dry soil ( oocρ ), water content ( ll cρ ), and ice content ( iceicecρ ): 

  iceicewlwwicelo wcwcwwcc ρρρρ ++−−= )1(0 . (6.8) 

The heat conductivity Bλ  is parameterised with a constant soil water content depending 

only on soil type (calculated as the mean of soil water content at field capacity and of soil 

water content at plant wilting point) and does not consider soil ice. Due to the very thin 

uppermost layer, the soil heat equation has to be solved implicitly. The change of soil ice, 
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soil water, and soil temperature caused by freezing and melting processes in the soil is cal-

culated diagnostically at the end of each time step. 

The vegetation is accounted for by the leaf area index and the plant cover, which vary from 

minimum to maximum values during the vegetation period depending on Julian day, lati-

tude and altitude, by the root depth depending on the Julian day and by the time independ-

ent roughness length; soil horizons cannot be modelled. 

Near-surface variables, e.g. 2m-temperature and wind speed in 10 m height, are calculated 

diagnostically by using a scheme based on similarity theory and developed by RA-

SCHENDORFER (DWD): 

  ( )SA
SA

SI
SL f

f φφφφ −+= . (6.9) 

The parameter Sφ is the variable value at the surface, Aφ  is the variable value at the lower-

most atmospheric layer and Lφ is the value at the height considered. The parameters SIf  

and IAf are dimensionless resistance parameters describing the resistance for the layer from 

the surface level S  to the considered level L and from the level L  to the lowermost at-

mospheric levelA . 

 

6.1.2 VEG3D 

VEG3D is a SVAT model with an explicit vegetation layer (SCHÄDLER, 1990). The vegeta-

tion is represented by the “big leaf” concept, where the vegetation is thought of as a single 

layer above the soil exchanging latent and sensible heat with the canopy air and extends 

DEARDORFF’s (1978) model. The vegetation layer is considered massless and has its own 

vegetation temperature. The model distinguishes 13 different soil types. Additionally it 

accounts for ice, rock, and water, which are handled in a similar way to TERRA_LM. 

Unlike TERRA_LM, VEG3D uses only the majority land use class within one grid box to 

determine the vegetation characteristics for the grid box. The vertical partition of soil lay-

ers has been adjusted to be the same as in TERRA_LM. At the lowest soil layer, the tem-

perature is kept constant and gravitational flux is used as boundary condition for soil mois-

ture like in TERRA_LM. Unlike TERRA_LM, there is no distinction between active and 
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passive hydrological layers. All layers are active layers. The model has an interception and 

a snow store and produces surface runoff if the infiltration rate is too low for the precipita-

tion rate or the surplus in the interception store. Runoff from soil layers is generated if the 

soil water content becomes equal to the pore volume. In contrast to TERRA_LM, the run-

off cannot leave the soil but is transported to the layers above. Runoff is only produced as 

surface runoff when all layers are saturated. Subsurface runoff, therefore, can only be gen-

erated by gravitational transport from the lowest soil layer. 

In case of snowfall, the model produces a snow cover on the soil. From a height of 0.01 m 

onward it is considered as a snow deck, for which a snow temperature is calculated, as in 

TERRA_LM. In VEG3D, it is not possible for a grid cell to be covered partially by snow. 

If a snow deck is simulated, all the ground not covered by vegetation is assumed to be cov-

ered by snow. The snow on the ground is modelled as one layer, for which an individual 

prognostic snow temperature at the top and the bottom of the layer and a snow density is 

calculated. The snow model is based on the Canadian Land Surface Scheme (CLASS) 

(VERSEGHY, 1991) and the snow model ISBA1 (DOUVILLE et al., 1995). The albedo, the 

emissivity and the transfer coefficients for the heat fluxes of the vegetation are adjusted for 

snow-covered vegetation.  

The heat fluxes from the surface are calculated by a bulk formula that takes account of the 

temperature and the specific humidity within the canopy and the values in the lowest at-

mospheric level. The transfer coefficients are calculated according to similarity theory. For 

the closure, the Monin-Obukhov length is calculated iteratively. The values within the can-

opy are calculated by considering the fluxes from bare soil and foliage. To calculate the 

fluxes from bare soil, the surface humidity is interpolated between the saturation humidity 

of the first soil layer and the humidity within the canopy. Either the temperature of the up-

permost soil layer or the snow temperature is taken as surface temperature. Neutral condi-

tions and logarithmical vertical profiles based on displacement height are assumed to cal-

culate the transfer coefficients within the canopy.  

Plant transpiration is expressed as a function of saturation humidity calculated from the 

foliage temperature fT and humidity of the first model levelafq : 

  ))(()( 1
affsfs qTqrrTr −+= − ,  (6.10) 
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where fr  is the resistance from the foliage to the surrounding air calculated by empirical 

functions according to TACONET et al. (1986) and sr  is the stomatal resistance after 

TACONET et al. (1986) and DEARDORFF (1978). When the interception store of the plant 

surface is not zero, potential evaporation from the interception store is calculated. The 

temperature of the foliage is determined iteratively from the energy balance of the leaves. 

The Richards equation for water transport is used in VEG3D in its potential form: 
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To calculate the matric potential ψ  and the hydraulic conductivity K , three different 

parameterisations are available in line with BROOKS and COREY (1964), CAMPBELL (1974) 

and VAN GENUCHTEN (1980). In most cases, the Van Genuchten parameterisation, which is 

often used in hydrological models, shows the best results in soil moisture simulation 

(BRAUN and SCHÄDLER, 2005). It is therefore used for the following simulations and is 

already described in detail together with freezing and melting of soil in subsection 5.1.2. 

As in TERRA_LM, the soil temperature is calculated by the molecular heat transport equa-

tion. In contrast to TERRA_LM, the thermal conductivity is a function of the actual water 

content and is changed in the presence of ice. The heat capacity is calculated as it is in 

TERRA_LM. 

The vegetation is described by the parameters leaf area index, plant cover, roughness 

length and displacement height, which vary from minimum to maximum values during the 

vegetation period depending on Julian day and the time-independent root depth, which is 

determined by the vegetation type. Different soil horizons can be assigned within one soil 

column, a feature not used in this study in order to provide a fair comparison with 

TERRA_LM. For the same reason, only the five soil types in VEG3D that are available in 

TERRA_LM are used.  

The near-surface parameters, e.g. 2m-temperature and 10m-wind speed, are calculated 

from the integral form of the flux gradient relationship. For 2m-temperature, the following 

form is used: 
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where L  is the Monin-Obukhov length, aθ  is the atmospheric potential temperature at the 

lowest atmospheric model level with heightrz , ∗θ is the generic turbulent temperature 

scale, ohz  is the roughness length for heat, d is the displacement height and Tf is the inte-

grated Dyer-Businger relationship for heat. 

The main differences between the two SVAT models are summarized in Tab. 6.1. 

 

 

Process TERRA_LM VEG3D 

Runoff Oversaturation in soil layers 
goes directly into runoff 

Oversaturation is transported to 
soil layer above and can leave 
model only as surface runoff 

Parameterisation of 
soil water transport 

Rijtema (1969) Van Genuchten (1980) 

Snow  Partial snow cover possible Snow deck only for whole grid 
box 

Thermal conductivity 
of the soil 

Constant soil water content 
used; no change in the presence 
of ice  

Actual soil water content use; 
changed in the presence of ice 

Plant characteristics Mean value over grid box Only major plant form consid-
ered 

Vegetation  No explicit vegetation layer Big leaf concept for vegetation 

Surface fluxes Calculation by surface values  Calculation by values inside the 
canopy 

 

Table 6.1: Main differences between the land surface models TERRA_LM and VEG3D.
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6.2 SIMULATIONS WITH THE STAND -ALONE VERSIONS OF THE 

TWO SOIL -VEGETATION MODELS  

A suitable way of comparing two SVAT models is to drive them with observed meteoro-

logical data in a stand-alone mode without coupling to an atmospheric model. With the 

same forcing data, it is possible to determine the differences in soil temperature and soil 

moisture as well as in heat fluxes that occur due to the different model formulations, with-

out possible feedback sensitivities of the atmospheric model. 

Due to the different model formulations, differences that are particularly large over high 

vegetation would be expected. To compare the capability of both models to simulate low 

and high vegetation, simulations for the Falkenberg site (NEISSER et al., 2002) and the 

Hartheim site (MAYER et al., 2000) were performed (Fig. 6.1). The measurement field Fal-

kenberg operated by DWD’s Observatorium Lindenberg is an open grassland site southeast 

of Berlin; Hartheim is an experimental forest site, including an observation tower, situated 

in a pine forest 1 km east of the river Rhine, operated by the University of Freiburg. The 

year 2005 was simulated for Lindenberg and the year 2001 for Hartheim. 

Driving the soil models with observations requires the option to calculate the heat fluxes at 

the surface within the stand-alone model. In TERRA_LM this is normally part of a turbu-

lence scheme in the atmospheric part of the COSMO-CLM, which therefore has to be in-

cluded in the stand-alone version. 
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Figure 6.1: Map of the observation sites (left). Stations are indicated by grey points. 

Sketch of the observational tower in Hartheim (center, courtesy of the Meteorologisches 

Institut der Universität Freiburg) and picture of the measurement field Falkenberg (right). 
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The included scheme is based on LOUIS (1979) and was formerly used in the COSMO 

model. In VEG3D the heat fluxes are already calculated according to similarity theory by 

the soil–vegetation scheme. 

Besides atmospheric driving data, the plant and soil parameters of the two measurement 

sites are needed. There are two ways to determine these characteristics: the soil type and 

the land use can be determined at the observation site and a parameter table can be used to 

read off the soil and vegetation parameters or the characteristics used by COSMO-CLM by 

default at this grid point are taken. Here, the first option was chosen and the parameters 

were taken from the tables given in the COSMO model documentation (DOMS et al., 2005) 

for TERRA_LM and from the tables contained in VEG3D. Differences between these two 

approaches can arise because in COSMO-CLM the vegetation characteristics and the soil 

type are an average over the land use and soil classes classified in a grid box, so they can 

differ markedly from the observed ones at the observation site. This could affect the simu-

lation results considerably because the model results are quite sensitive to changes in plant 

and soil characteristics. Because of this sensitivity, a special data set of leaf area index, 

fraction of plant cover and soil characteristics has been collected by HERET et al. (2006) for 

Lindenberg, which is used in this comparison for the TERRA_LM simulation. The vegeta-

tion characteristics, soil types and measurement heights used for each simulation are 

shown in Tab. 6.2 and Tab. 6.3. In all stand-alone simulations only the lowest soil layer in 

TERRA_LM is a hydrological passive layer. All the other layers are hydrological active 

layers. 

The models were initialised with the same soil temperature and soil water content profiles 

on January 1 of each year and were driven by the hourly means of meteorological vari-

ables.  The models were run with 10 soil layers with main level depths as set out in sec-

tion 6.2 and the model output was every hour. 
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Plant/soil               
characteristics 

Lindenberg 
TERRA_LM 

Lindenberg 
VEG3D 

Hartheim 
TERRA_LM 

Hartheim 
VEG3D 

Roughness length    
(m) 

0.03 Minimum: 0.02 

Maximum: 0.03 

1.0 1.0 

Displacement height 

(m) 

-- Minimum: 0.1 

Maximum:0.15 

-- 12.0 

Leaf area index 

minimum 

0.5 2.0 1.3 9.0 

Leaf area index 

maximum 

2.5 4.0 3.8 13.0 

Plant cover minimum 0.55 0.90 0.8 0.9 

Plant cover maximum 0.8 0.95 0.8 0.9 

Root depth (m) 0.6 1.55 0.6 2.0 

Land use grassland grassland coniferous     
forest 

coniferous 
forest 

Soil type loamy sand loamy sand sandy loam sandy loam 

 

Table 6.2: Plant and soil characteristics of TERRA_LM and VEG3D at Lindenberg (grass-

land) and Hartheim (coniferous forest). 

     

 

Table 6.3: Measurement heights of atmospheric parameters at Lindenberg (grassland) and 

Hartheim (coniferous forest). 

Parameter Lindenberg Hartheim 

Temperature 2 m 19.1 m 

Humidity 2 m 19.1 m 

Wind speed 10 m 18.8 m 

Radiation 2 m 16 m 

Precipitation Surface Plant free area 

Soil temperature   
(depth in m) 

0.05, 0.1, 0.15, 0.2, 0.3, 0.45,  0.5, 
0.6, 0.9, 1.0, 1.2 

0.01, 0.03, 0.05, 0.1, 0.2, 0.4 

Average soil moisture 
content (depth in m) 

0.03-0.09, 0.09-0.27, 0.27-0.81 Not available 

Sensible and latent   
heat flux 

2 m Calculated from temperature 
and  humidity profiles 
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6.2.1 SIMULATIONS FOR THE L INDENBERG GRASSLAND SITE 

For Lindenberg, a comparison of soil moisture, soil temperature, and heat fluxes with 

measurements is possible. The observed soil water content is averaged to three layers from 

3–9, 9–27 and 27–81 cm. In the two upper soil layers, the amplitude of soil moisture 

change due to rainfall is captured well by both models during winter and spring but the 

absolute values are too low (Fig. 6.2). This is due to the fact that the soil type loamy sand 

used in the simulations has a lower field capacity than the soil at the measurement site 

(25 vol.-%). The field capacity of loamy sand in TERRA_LM is 19 vol.-% and in VEG3D 

12 vol.-%, which explains the stronger decrease of water content in both simulations at the 

beginning of the simulation compared to observations.  
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Figure 6.2: Observed and simulated soil water content for three different soil layers and 

observed precipitation (prec) for the year 2005 at Lindenberg. 
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During the summer months the water content is simulated reasonably well by both models 

in the two upper soil layers, with slightly better VEG3D results in the first layer and con-

siderably better VEG3D results in the second layer where maximum differences of up to 

10 vol.-% occur in the TERRA_LM simulation compared to the observations (Fig. 6.2). 

Both models capture the simulation of strong drying out at the beginning of summer and of 

refilling afterwards. In the lowest soil layer, the models do not simulate the amplitude of 

the soil moisture change correctly. The amplitude is smoothed by the models and differ-

ences up to 15 vol.-% occur between the observations and the TERRA_LM simulation 

during the summer months. In summer, the VEG3D simulation shows considerable better 

results than the TERRA_LM simulation for the lowermost layer.  

The annual cycle of soil temperature averaged over the depth from 0.07 to 1.42 m is simu-

lated well by VEG3D (Fig. 6.3). The correlation coefficient for the daily mean of soil tem-

perature is 0.998. In the TERRA_LM simulation, the correlation coefficient is 0.992 and 

there is an underestimation up to 3 K during the summer months. This underestimation is 

caused by a too strong nighttime cooling (Fig. 6.3). The maximum daytime temperatures 

are similar for both simulations in the third soil layer (0.07 m) but in the night differences 

of up to 3 K between the VEG3D and the TERRA_LM simulation occur, which can also 

be found in the deeper soil layers and cause the too strong cooling compared to observa-

tions. 
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Figure 6.3:  Daily mean of observed and simulated soil temperature averaged over the soil 

layers from 0.07 to 1.42 m for the whole year 2005 (left) and hourly soil temperature of the 

third soil layer (0.07 m) for the two simulations and the observations for a summer period 

in 2005 for the Lindenberg site (right). 
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Figure 6.4: Comparison of simulated and observed latent (left) and sensible (right) heat 

fluxes at Lindenberg site for the year 2005. Points indicate the simulations, dashed lines 

indicate the linear fit and the solid line is the bisecting line. For purpose of clarity, only 

every tenth point is shown. 

 

The partition into sensible and latent heat flux is not captured well by both models (Fig. 

6.4). The latent heat flux is underestimated by the TERRA_LM simulation and the correla-

tion coefficient is poor (0.55). The VEG3D simulation also underestimates the latent heat 

flux but the correlation is much better (0.85). 

The sensible heat flux is overestimated by both simulations, with higher correlation for the 

VEG3D simulation (0.65) than for the TERRA_LM simulation (0.50). The latent heat flux 

is overestimated by the TERRA_LM simulation mostly during the summer months 

(more than 10 W m-2) where the VEG3D simulation underestimates the latent heat flux 

(about 5 W m-2) (Fig. 6.5). The sensible heat flux is strongly overestimated by both models 

(25 W m-2) during the summer months and no model is to be preferred. 

During winter, VEG3D results for latent heat flux are quite good but the sensible heat flux 

is overestimated. The opposite behaviour is observed for the TERRA_LM simulation, 

which estimates sensible heat flux well but strongly overestimates latent heat flux. The 

total amount of sensible and latent heat flux  for the winter months is captured well in both 

models, with a maximum difference of 20 W m-2 compared to the measurements and a 

maximum difference of 7 W m-2 between the model simulations (Fig. 6.6). In the summer 

months, the difference between the total amount of heat fluxes in TERRA_LM and 

VEG3D is around 15 W m-2. This is due to the lower albedo in TERRA_LM (0.16) com-
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pared to the albedo of the VEG3D simulation (0.22). The sum of latent and sensible heat 

flux is overestimated by both models compared to observations (Fig. 6.6) but the overesti-

mation is stronger in the TERRA_LM simulation (30 W m-2) than in the VEG3D run 

(15 W m-2).  

For the chosen land use type and soil type, VEG3D performs better than TERRA_LM with 

regard to heat fluxes and soil temperatures even for rather low vegetation where one would 

have expected only small differences between the two models. The main differences in soil 

water occur in the deeper soil layers, where TERRA_LM underestimates the soil water 

content considerably. 
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Figure 6.5: Comparison of observed (OBS) and simulated monthly means of latent (left) 

and sensible heat fluxes (right) at Lindenberg site for the year 2005. 
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Figure 6.6: Comparison of observed (OBS) and simulated monthly means of the sum of 

sensible and latent heat fluxes at Lindenberg site for the year 2005. 

 



 6 Sensitivity of COSMO-CLM with respect to VEG3D and TERRA_LM  

 

 

94 

 

6.2.2 SIMULATIONS FOR THE HARTHEIM FOREST SITE  

For Hartheim, a comparison of soil temperature and energy balance with observations is 

possible. Unfortunately no water content measurements are available for the year 2001. 

Unlike the Lindenberg station, the temperature measurements only cover the upper 40 cm 

of the soil. In this depth range, the average of soil temperature shows good agreement with 

the observations for the VEG3D simulation except during the summer months, where it 

overestimates soil temperature by up to 3 K (Fig. 6.7). The TERRA_LM simulation under-

estimates the temperature during the cold season and overestimates it during the warm sea-

son. This overestimation is much higher than the overestimation by the VEG3D simula-

tion. In the upper soil layers the temperature overestimation during daytime reaches 8 K 

and more in the TERRA_LM simulation compared to observations (Fig. 6.7). In the 

VEG3D simulation, the additional vegetation layer prevents this heating and the tempera-

ture agrees better with the simulations. The maximum difference is only about 5 K. The 

temperatures during night time are simulated better by the TERRA_LM model. The 

VEG3D model simulates temperatures that are slightly too high (up to 2 K); the vegetation 

layer prevents the necessary cooling during nighttime.  

In agreement with the observations, the vegetation layer in VEG3D inhibits the strong 

cooling during winter simulated by TERRA_LM (Fig. 6.8). Unrealistic soil freezing is 

prevented in the VEG3D simulation as well. 
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Figure 6.7: Comparison of daily mean simulated soil temperature averaged over the up-

permost 40 cm with measurements for the whole year 2001 (left) and comparison of hourly 

values of observed and simulated soil temperature at 0.07 m for a summer period at the 

Hartheim site. 



6.2 Simulations with the stand-alone versions of the two soil-vegetation models 95 

 

 

-6

-4

-2

0

2

4

6

8

10

12

40 45 50 55 60

Julian days

so
il 

te
m

pe
ra

tu
re

 (
°C

)
0.025_OBS 0.025_TERRA 0.025_VEG3D

 

Figure 6.8: Comparison of hourly values of observed and simulated soil temperature at 

0.025 m for a winter period in 2001 for the Hartheim site. 

 

The absolute value of thermal net radiation at the surface is higher than in the TERRA_LM 

simulation (Fig. 6.9). In contrast, the net shortwave radiation is lower than observed in the 

TERRA_LM simulation (Fig. 6.9). This is caused by an albedo (0.15) higher than the one 

in the observations (0.11). VEG3D simulates an albedo (0.12) similar to the observed one 

and consequently the simulation of the net shortwave radiation agrees well with observa-

tions. The net thermal radiation is also overestimated by VEG3D but not as strongly as in 

the TERRA_LM simulation. The correlation of the heat fluxes is worse than at the Linden-

berg site. The correlation coefficients for the latent/sensible heat flux are 0.09/0.09 for the 

TERRA_LM simulation and 0.14/0.13 for the VEG3D simulation. In general, the results 

from the VEG3D simulation are slightly better than those of the TERRA_LM simulation 

and both models tend to underestimate sensible and latent heat flux (Fig. 6.10). Both mod-

els underestimate the sensible heat flux throughout the whole year, whereas they underes-

timate the latent heat flux only during winter and spring and show an overestimation of 

latent heat flux during summer. 

The water content cannot be compared to observations but the water up-take by the roots is 

quite different in both models because of the different root depth. TERRA_LM takes up 

water mainly from the uppermost six soil layers, whereas VEG3D also takes up water from 

much deeper layers. Therefore, the water content in the uppermost six layers in the 

VEG3D simulation does not show as strong a decrease during summer time as it does in 

the TERRA_LM simulation (Fig. 6.11). The total change of water content over all soil 

layers is relatively similar until the end of the simulation period. 
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Figure 6.9: Monthly means of surface net longwave (left) and shortwave (right) radiation 

for the year 2001 at Hartheim site. 
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Figure 6.10: Comparison of simulated and observed heat fluxes for the year 2001 at Hart-

heim site. Points indicate the simulations, dashed lines indicate the linear fit and the solid 

line is the bisecting line. For clarity, only every tenth point is shown. 
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Figure 6.11: Column soil water content for the upper (0.00-1.06 m) and lower (1.07-8.64 

m) soil layers in the TERRA_LM and VEG3D simulation for the year 2001 at Hartheim 

site. 
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For the Hartheim forest site, VEG3D performs better than TERRA_LM. As expected, the 

differences between the two simulations, especially in the soil temperatures, are much 

higher than for the grassland site. Both models show deficiencies in modelling the heat 

fluxes, due to an incorrect partitioning into latent and sensible heat flux. Apart from uncer-

tainties from applying the Bowen ratio method to forest sites, the parameterisations used in 

the models may not be suitable for forest canopies (DENMEAD and BRADLEY, 1985) and 

may thus contribute to the poorer agreement compared to grassland.  

 

6.3 DAILY SIMULATIONS WITH THE ONLINE COUPLED LAND 

SURFACE SCHEMES 

Simulations with the land surface schemes coupled to COSMO-CLM were performed for a 

day with shallow convection to investigate the influence of the land surface scheme on the 

boundary layer and the formation of clouds and to check the reliability of the results of the 

online coupled COSMO-CLM/VEG3D system. GME forecasts were used as driving data. 

On 1 June 2002, an intensive observation period of the VERTIKATOR experiment (Verti-

cal Exchange and Orography) took place in Southwest Germany (Barthlott et al., 2006). 

Radiosondes were launched at two sites in the Rhine Valley and in the Black Forest and a 

ground-based observation network had been installed to collect information about near-

surface meteorological variables such as 2m-temperature and humidity, 10m-wind and heat 

fluxes. A description of the measurement network and the synoptic conditions on that day 

can be found in MEISSNER (2004).This data set is used to evaluate the influence of the 

VEG3D land surface scheme on the planetary boundary layer and on cloud formation. The 

radio soundings of 6, 12 and 18 UTC are compared with the COSMO-CLM simulations 

coupled online with TERRA_LM and VEG3D for the stations Freistett and Horb (stations 

are depicted in Fig. 9.11). 

At Freistett, the vertical profiles between the two simulations vary even at 6 UTC 

(Fig. 6.12). The VEG3D simulation shows lower specific humidity and higher temperature 

than the TERRA simulation up to 950 hPa. Neither of the two models simulates the strong 
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inversion in temperature in the lowest 50 hPa, so no model gives better results than the 

other. For humidity, the TERRA simulation shows better results than the VEG3D simula-

tion at 6 UTC. At 12 UTC both simulated temperature profiles are quite similar and under-

estimate the observed profile by up to 1 K. The first inversion is not simulated in both runs. 

For specific humidity, both profiles match well up to a height of 950 hPa. Above this 

height, humidity is reduced in the VEG3D simulation up to a height of 900 hPa and in-

creased above 900hPa, compared to the TERRA simulation. The absolute values of spe-

cific humidity agree better with observed values for the VEG3D simulation but the bound-

ary layer height is lower than in the TERRA simulation, which is not in accordance with 

the observations.  
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Figure 6.12: Vertical profiles of specific humidity and temperature of observations (black 

dots), TERRA simulation (red line) and VEG3D simulation (blue line) at the Freistett site 

for 1 June 2002 at 6 (left), 12 (middle) and 18 UTC (right). 
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At 18 UTC, the temperature profile in the VEG3D simulation is slightly colder than the 

TERRA profile, which disagrees with the observation. However, the VEG3D simulation is 

able to simulate the inversion, which is not simulated in the TERRA run. Both profiles 

agree well with the observations for specific humidity, with slightly higher humidity values 

and therefore better agreement with the observations in the TERRA simulation. 

At Horb, the differences at 6 UTC are not as pronounced between the two simulations as in 

Freistett (Fig. 6.13). Both specific humidity profiles are rather similar. The temperature is 

simulated better in the VEG3D run but the inversion in the lowermost 50 hPa is missing in 

both simulations. 
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Figure 6.13: Vertical profiles of specific humidity (top) and temperature (bottom) of ob-

servations (black dots), TERRA simulation (red line) and VEG3D simulation (blue line) at 

the Horb site for 1 June 2002 at 6 (left), 12 (middle) and 18 UTC (right). 
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At 12 UTC, the temperature profile between both simulations is quite similar, as was al-

ready found for Freistett. The humidity in the boundary layer shows higher values in the 

VEG3D simulation than in the TERRA simulation. Compared to the observations, both 

models simulate a humidity amount that is too high in the boundary layer and too low 

above the boundary layer. As in Freistett, the boundary layer height is given more realisti-

cally by the TERRA simulation. These differences in vertical humidity profile are en-

hanced until 18 UTC. In the VEG3D profile, the surplus of specific humidity compared to 

observations is located nearer to the surface than in the TERRA simulation and leads to an 

overestimation of specific humidity by up to 1.5 g kg-1 compared to the observations. In the 

TERRA simulation, the humidity is transported in higher altitudes and therefore the values 

of humidity agree better with the observations up to 870 hPa.     

The cloud development is quite similar in both simulations (Fig. 6.14). As can be seen 

from the satellite images, the cloud development at 12 UTC agrees well with the observed 

one. As observed, clouds form over the northern and the southern part of the Black Forest 

in both simulations. The intensity of cloudiness is similar in both simulations. At 16 UTC, 

strong cloud cover is simulated only for the southern Black Forest by both models and the 

cloudiness is slightly higher in the VEG3D simulation. In the Northern Black Forest the 

cloud-covered area is even reduced in the simulations. This disagrees with the observa-

tions, where the cloud cover in the Northern Black Forest increases. 

The heat fluxes show differences, especially in the Rhine Valley and the Vosges Moun-

tains (Fig. 6.15). The latent heat flux values in the Rhine Valley are quite low (<100 Wm-2) 

in the TERRA simulation and quite high (up to 500 W m-2) in the Vosges Mountains. In 

reverse, the sensible heat flux is too low over the Vosges Mountains (<100 W m-2) and too 

high in the Rhine Valley (400 W m-2). For forested areas, such as the Vosges Mountains, 

one would expect a bowen ratio (ratio of sensible to latent heat flux) of 1.0 and for areas 

with grassland, as the Rhine Valley, one would expect a bowen ratio of 0.7 (ROST and 

MAYER, 2006). In the TERRA simulations we get values of 0.25 for forest and 4 for grass-

land. In the VEG3D simulation, the difference between the heat fluxes for forested and 

cultivated areas is smaller but clearly visible. The amount of 300 W m-2 and 200 W m-2  for 

latent heat flux over forest and cultivated areas and 200 W m-2 and 100 W m-2 for sensible 

heat flux seems adequate compared to literature values (ROST and MAYER, 2006). 
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The variability in the radiation balance is much higher in the VEG3D simulation 

(Fig. 6.16). The values of the radiation balance are higher over the forested areas and lower 

over the cultivated areas due to the lower albedo over forest, and maximum differences of 

120 W m-2 are observed. In the TERRA simulation, this difference is not as pronounced 

and maximum differences of 80 W m-2 are observed. 
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Figure 6.14: Satellite images of cloud cover (top) and simulated cloud  cover in percent of 

grid box  from VEG3D simulation (middle) and TERRA simulation (bottom) for 12 UTC 

(left) and 16 UTC (right) at 1 June 2001. 
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Figure 6.15: Latent (left) and sensible (right) heat flux for 1 June 2002 at 12 UTC for the 

VEG3D simulation (top) and the TERRA simulation (bottom). 
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Figure 6.16: Radiation balance for 1 June 2002 at 12 UTC for the TERRA simulation 

(left) and the VEG3D simulation (right). 
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For a more detailed comparison, the results of the two simulations were evaluated by ob-

served station data. For this comparison, the observations at the Sasbach and Musbach sites 

were used. These were the only two sites measuring the radiation balance as well as the 

heat fluxes and the 2m-temperature.  

At Sasbach site, the values of sensible heat flux are simulated well by the VEG3D run but 

they are about 100 W m-2 too high in the TERRA run (Fig. 6.17). The values of latent heat 

flux between both models agree well and an earlier decrease in the diurnal cycle can be 

observed in the VEG3D simulation. Unfortunately, no latent heat flux was measured on 

that day. The radiation balance is similar for both simulations and the daily variation 

agrees well with the observations (Fig. 6.17). During night time, both models underesti-

mate the radiation balance by about 50 W m-2. At noon, an overestimation of about 

50 W m-2 is found for the TERRA run and about 10 W m-2 for the TERRA run. The diurnal 

cycle of 2m-temperature is well represented by both models, with slightly higher tempera-

tures than observed during the night (Fig. 6.17). The amplitude is slightly too small in both 

simulations. This leads to an underestimation of temperature at noon in the VEG3D simu-

lation and to an overestimation in the TERRA simulation. The values of near-surface spe-

cific humidity are similar during nighttime but during the day the value is about 2 g kg-1 

higher in the VEG3D simulation (Fig. 6.17).  

At the Musbach site, the simulated heat fluxes are similar in both models with slightly 

higher values for latent heat flux in the TERRA simulation (30 W m-2 ) and slightly higher 

values of sensible heat flux for the VEG3D simulation (20 W m-2) (Fig. 6.18). The mod-

elled values for latent and sensible heat flux are higher than observed by about 50 W m-2. 

The radiation balance is also higher than the observed one by about 70 W m-2 (Fig. 6.18). 

Adding up radiation balance and heat fluxes a maximum soil heat flux of 120 W m-2 is 

obtained for both model runs, which is similar to the observed one (100 W m-2). The am-

plitude of the diurnal cycle of 2m-temperature is reproduced well by both models. For the 

TERRA simulation, realistic results are obtained compared to the observations but for the 

VEG3D simulations the values are about 2 K too low (Fig. 6.18). This is due to the land 

use class forest, which is used at this grid point in the model. A detailed explanation for 

this underestimation is given in subsection 6.4.2. The diurnal cycle of near-surface specific 

humidity is quite similar in both models and differences are lower than 1 g kg-1. 
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Figure 6.17: Latent and sensible heat flux (top), radiation balance (middle), 2m-

temperature and near-surface humidity (bottom) for observations (obs) and VEG3D and 

TERRA simulation for 1 June 2002 at the Sasbach site.  
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Figure 6.18: Latent and sensible heat flux (top), radiation balance (middle), 2m-

temperature and near-surface humidity (bottom) for observations (obs) and VEG3D and 

TERRA simulation for 1 June 2002 at the Musbach site.  

 

Both models are able to reproduce the vertical profiles and the diurnal cycle of heat fluxes, 

radiation balance and 2m-temperature but differences between the two simulations are 

clearly visible. For a first comparison and for a check of qualitative reliability daily simula-

tions are adequate and both models have proven this reliability. Performing daily simula-

tions is the method normally used to test new parameterisations. Due to the necessary spin-

up time of the soil model, which normally takes at least several months, the evaluation of 

longer time scales is essential for an adequate comparison between the two online coupled 

land surface schemes.  
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6.4 SIMULATIONS WITH THE TWO LAND SURFACE SCHEMES 

COUPLED ONLINE WITH COSMO-CLM  FOR THE YEAR 2001 

Simulations with the two SVATs coupled to COSMO-CLM were performed for the year 

2001 using GME analysis data (MAJEWSKI et al., 2002) as driving data. From the water 

balance point of view, 2001 can be considered an average year, without extended periods 

of draught or wetting. The advantage of GME data compared to ERA or NCEP reanalysis 

data is its higher resolution (about 60 km). Therefore, the COSMO-CLM simulations with 

7 km grid size can be driven directly without a nesting step. This corresponds with the way 

the operational COSMO-EU weather forecast model is run. The simulations were run from 

the first of December 2000 to January 2002. Due to the proximity to the Alps, the area of 

simulation is much larger than the investigation area and includes the whole alpine region 

(see subsection 4.3.1) (Fig. 6.19). Model results are evaluated for the Southwest of Ger-

many (Fig. 6.19). The simulations are compared with observational data from 55 weather 

stations operated by the German Weather Service (DWD) that were pre-processed by the 

PIK Potsdam (ÖSTERLE et al., 2006). 

COSMO-CLM version 4.0 is used, with a horizontal resolution of 0.0625° and a time step 

of 40 seconds. The parameter settings and parameterisations are the same as they are for 

the ERA/7km run described in section 4.1.  For the simulation with TERRA_LM only the 

lowest soil layer in TERRA_LM is a hydrological passive layer. All other layers are hydro-

logical active layers.  

In addition to the quantities considered in section 6.2, annual precipitation and near-surface 

temperatures are also compared. Annual precipitation, evaporation sums, soil water content 

and soil temperature are compared for the entire investigation area. Maximum, minimum 

and mean 2m-temperature and precipitation are compared at observation sites. 
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Figure 6.19: Left: Simulation domain with investigation area (grey rectangle). Right: In-

vestigation area with measurement stations. Forest stations are indicated by black dots and 

non-forest stations by black triangles (for explanation see text sec. 6.4.2) 

 

6.4.1 COMPARISONS FOR THE WHOLE INVESTIGATION AREA  

The observed annual precipitation sum in the investigation area ranges from 500 mm in the 

Rhine Valley to 2000 mm in the Black Forest.  A lee effect with a pronounced reduction of 

the precipitation sum can be observed in the east of the Black Forest.  For the Swabian Jura 

precipitation is about 900 – 1400 mm: further north it is about 600 – 1000 mm in the low-

lands and 1000 – 1400 mm at elevated sites. Both simulations reproduce this precipitation 

distribution qualitatively but the total amounts at the elevated sites are overestimated by up 

to 600 mm. A comparison of the annual precipitation sum between the two simulations is 

shown in Fig. 6.20. The total precipitation amount in the VEG3D simulation is higher at 

the western slopes of the Black Forest (which is the windward side for the prevailing west-

erly flows) and also over the whole area of the Swabian Jura (Fig. 6.20). In the area of the 

Black Forest and the region north of it, the precipitation amount is generally lower than in 

the TERRA_LM simulation and differences reach values of up to 150 mm. These patterns 

can also be found in the annual grid scale precipitation (Fig. 6.20). For the convective 

(subgrid) precipitation, patterns are similar to the total precipitation in the southern part of 

the investigation area; for the northern part, higher convective precipitation in VEG3D is 

offset by grid scale precipitation resulting in a total precipitation lower than in the 
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TERRA_LM simulation for that region (Fig. 6.20). The area average of total precipitation 

is about 50 mm higher in the TERRA_LM simulation (Tab. 6.4) due to higher grid scale 

precipitation (55 mm). The convective precipitation amount is slightly higher in the 

VEG3D simulation (5 mm). The monthly grid scale precipitation is higher in the 

TERRA_LM simulation all year, whereas the monthly convective precipitation is only 

from May to July. The rest of the year, monthly convective precipitation amount is equal to 

or lower than it is in the VEG3D simulation.  
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Figure 6.20: Difference in annual precipitation sum for 2001 between VEG3D and 

TERRA_LM simulation for total precipitation (left), grid scale precipitation (middle) and 

convective precipitation (right). 

 

Precipitation (mm) TERRA_LM  VEG3D 

Total 1271 1222 

Grid scale 888 834 

Convective 382 387 

 

Table 6.4: Area average of total, grid scale and convective precipitation for TERRA_LM 

and VEG3D simuation for the year 2001.  
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Figure 6.21: Annual evapotranspiration sum for VEG3D simulation (left) and 

TERRA_LM simulation (middle) and difference between VEG3D and TERRA_LM an-

nual evapotranspiration sum (right) for the year 2001. 
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The patterns of the annual evapotranspiration sum are similar between the two simulations 

in most regions (Fig. 6.21). Large differences of up to 160 mm per year between the two 

simulations can be found for transition areas where different land use classes are mixed 

within one grid box in the TERRA_LM simulation and there is mainly a mixture of forest, 

fields and grassland (Fig. 6.21). Evapotranspiration rates in the TERRA_LM simulation 

are too high in these areas compared to climatological averages given in the Hydrological 

Atlas Deutschland (HAD, 2003), the overestimation being in the range of 50 mm. On the 

other hand, the values obtained by VEG3D are slightly too low in these areas (underesti-

mation of about 25 mm). For the rest of the investigation area the amount of evapotranspi-

ration is similar between the two simulations and the values in the Hydrological Atlas. 

However, since there is no observed evapotranspiration data for 2001, apart from assuming 

that 2001 is close to the climatological average, a quantitative assessment of the quality of 

the simulations is not possible. To compare the behaviour of the soil temperature, the soil 

temperatures are averaged over the uppermost nine soil layers (a depth of 8.60 m) and over 

the whole investigation area. The annual amplitude is similar in both simulations 

(Fig. 6.22). The VEG3D soil temperatures are higher by up to 1 K throughout the summer 

period. During winter, the TERRA_LM simulation is sometimes warmer than the VEG3D 

simulation for some periods over several days due to differences in snow cover. For the 

soil water content the amount over the uppermost nine layers, which are the active soil 

layers in TERRA_LM, is summed up and is then averaged over the whole investigation 

area. The total soil water content decreases strongly during the first month in the 

TERRA_LM simulation (Fig. 6.22). This is due to the runoff formulation discussed in sec-

tion 6.1. A second strong decrease can be found during the summer months where the total 

water content is reduced by about 0.3 m. This is mainly due to evapotranspiration. The 

decrease in summer due to evaporation is lower in the VEG3D simulation by about 0.2 m. 

The decrease of water content at the beginning of the simulation is not as strongly visible 

in the VEG3D simulation as it is in the TERRA_LM simulation due to the different runoff 

formulation. The difference between the two simulations is about 0.2 m in total soil water 

content at the beginning of the vegetation period; at the end of the simulation period the 

difference in total soil water content is about 0.35 m for the uppermost nine soil layers.  
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Figure 6.22: Annual cycle for the mean soil temperature (top) and the mean total water 

content of the first nine soil layers (bottom) averaged over the investigation area. 

 

Table 6.5 shows the components of the soil water balance from the start of the simulation 

in December 2000 until end of December 2001, averaged over all land points within the 

investigation area. It is noticeable that the evaporation and the precipitation sum of the 

TERRA_LM simulation is about 61 and 56 mm per grid box higher than it is in the 

VEG3D simulation. The total runoff in the TERRA_LM simulation is about 4 mm higher 

and surface runoff about 21 mm lower compared to the VEG3D results, whereas ground 

runoff is higher by about 25 mm. The modelled change in soil water content is larger in 

VEG3D in contrast to the findings in Fig. 6.22. The difference in soil water content visible 

in the nine active soil layers is enhanced by the soil water decrease in the tenth layer of 

VEG3D. In general, the water balance of both models is similar, especially for runoff.  

 

Model run 
Evaporation 

(sum) 
Surface runoff 

(sum) 
Ground runoff 

(sum) 
Precipitation 

(sum) 
Water content 

(difference) 

TERRA_LM 577 228 1077 1341 -563 

VEG3D 516 249 1052 1285 -610 

 
Table 6.5: Water balance in mm averaged over all land points within the investigation area 

for the period from December 2000 to December 2001. 
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6.4.2 COMPARISONS WITH DATA FROM OBSERVATION SITES  

For climate simulations, the commonly compared meteorological variables are near-

surface temperature and precipitation. To investigate the influence of the land surface 

scheme on these parameters, the annual minimum, maximum, mean 2m-temperature and 

the precipitation amount of the two simulations are compared with observations from 

55 weather stations. The observed station data is compared to a weighted mean of the val-

ues for the surrounding four grid boxes of the simulations. 

The ability of VEG3D to simulate temperature in line with observations differs strongly 

between stations with forest land use and stations with other land use. This is due to the 

fact that weather stations are often located on grassland sites near a forest and not within 

the forest. Therefore, the land use near the weather station is often not forest, even if the 

majority of the land use within the corresponding grid box is forest and is used by the 

model. It is obvious that such a comparison will show large differences. Therefore, the 

comparison is partitioned into two parts: in the first section, sites where the surrounding 

four grid boxes are not classified as forest are compared. This restricts the number of sta-

tions for the comparison of 2m-temperatures to 15 stations (see Fig. 6.19). In the second 

category, the 40 forest stations are compared with the simulations. The same partitioning is 

used to evaluate the precipitation amount. 

The comparison of the maximum and mean 2m-temperatures and the precipitation amount 

shows similar results for the TERRA_LM and VEG3D simulation for the non-forest sites 

(Fig. 6.23). The maximum differences between the two simulations are about 0.3 K and 

150 mm. The correlation of the annual mean and maximum 2m-temperature and the annual 

precipitation amount with the observations are slightly better for the VEG3D simulation. 

The non-forest sites are mainly situated in areas where the total precipitation amount de-

creases in the VEG3D simulation compared to the TERRA_LM simulation (Fig. 6.19, Fig. 

6.20). The observed total precipitation amount is also lower in these areas explaining the 

better results obtained with the VEG3D, which are expressed by a lower intercept and a 

slope closer to one (Tab. 6.6). Larger differences between the two simulations can be 

found for the minimum 2m-temperature (Fig. 6.23). Temperatures in the VEG3D simula-

tion are up to 1 K lower compared to the TERRA_LM simulations. The TERRA_LM 

simulation generally overestimates the minimum temperature so that the results with cou-
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pled VEG3D model agree better with observations than the results with the coupled 

TERRA_LM model and the intercept is about 1 K lower for the VEG3D simulation (Tab. 

6.6). 
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Figure 6.23: Observed versus simulated annual mean, minimum and maximum 2m-

temperature and annual precipitation amount for 15 non-forest sites for the year 2001. 

Lines indicate the least squares fit. 

 a_VEG3D a_TERRA b_VEG3D b_TERRA r_VEG3D r_TERRA  

Mean 

temperature 0.997 0.912 -0.478 0.333 0.970 0.967 

Minimum 

temperature 0.958 0.818 0.907 1.998 0.856 0.859 

Maximum 

temperature 0.901 0.836 -0.348 0.508 0.891 0.875 

Precipitation 0.879 0.860 229.150 297.750 0.590 0.524 

 

Table 6.6: Linear correlation coefficient (r), slope (a), and intercept (b) of the least squares 

fit between observed and simulated meteorological variables for 15 non-forest sites. 
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For forest sites, the annual mean 2m-temperature is strongly underestimated by the 

VEG3D simulation, which is not as pronounced in the TERRA_LM simulation (Fig. 6.24). 

This underestimation is due to temperatures in the summer months that are too low. During 

summer, the canopy prevents the near-surface air from heating. Therefore, an underestima-

tion compared to the TERRA_LM simulation and the observations occurs.  

The precipitation amount is overestimated for most of the forest stations by both simula-

tions but the differences between the two simulations are small (< 50 mm). A reduction of 

precipitation amount and therefore better results compared to the observations at these sta-

tions can be observed in the VEG3D simulation. The largest differences between the two 

model results are found for stations where the modelled precipitation amount is lower than 

the observed one. Here differences up to 100 mm occur and the underestimation is stronger 

by VEG3D. The majority of these stations are located in the eastern part of the Black For-

est where precipitation is reduced compared to the TERRA_LM simulation, as already 

discussed for Fig. 6.20.  The linear regression statistics given in Tab. 6.7 show clearly that 

neither models perform as well for forest as for non-forest observation sites and that the 

agreement of the VEG3D simulations with observations is less than for the TERRA_LM 

simulation, for the reasons discussed above. 
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Figure 6.24: Observed versus simulated annual mean 2m-temperature (left) and annual 

precipitation (right) for 40 forest sites. Lines indicate the least squares fit. 
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 a_VEG3D a_TERRA b_VEG3D b_TERRA r_VEG3D r_TERRA 

Mean temperature 1.05 0.94 -1.56 -0.05 0.86 0.90 

Precipitation 0.68 0.75 530.14 494.69 0.48 0.54 

 

Table 6.7: Linear correlation coefficient (r), slope(a), and intercept (b) of the least squares 

fit between observed and simulated meteorological variables for 40 forest sites. 

 

6.5 LONG-TERM EVALUATION  

To determine whether the findings for the comparison of online-coupled VEG3D and 

TERRA_LM simulations obtained for the year 2001 are also valid for longer periods and 

different driving data, a COSMO-CLM simulation coupled with VEG3D was performed 

for the period 1988-2001. For this simulation, the model setup described in section 4.1 was 

used, with 7 km horizontal resolution, ERA-40 driving data for the 50 km run and a large 

domain size. The only difference from the ERA-40/7 km simulation, which was evaluated 

in subsection 4.3.2, is the use of the VEG3D land surface scheme instead of the 

TERRA_LM scheme. The two simulations are compared to determine the influence of the 

land surface scheme for longer timescales. 

In the first subsection, the simulation with VEG3D for the period from 1991 to 1995 is 

evaluated, as it was done for the changed convection parameterisations and the changed 

time level scheme in subsection 4.3.3. The variability in simulation results induced by a 

different land surface scheme is compared to the variability obtained by using other physi-

cal and dynamical parameterisations. In the second subsection, the period from 1991–2000 

is evaluated as it was done for the year 2001. In the following the ERA-40/7km run with 

TERRA_LM land surface scheme is referred to as TERRA run and the simulation with 

VEG3D land surface scheme as VEG3D run. 



6.5 Long-term evaluation                                        115 

                              

 

6.5.1 EVALUATION FOR THE PERIOD FROM 1991 TO 1995 

As shown in subsection 4.3.3, changes in soil moisture content, active soil layers and 

greenhouse gas amount only have a small effect on the simulation results. Therefore, the 

simulation results obtained by using VEG3D are compared to the simulations with the 

Kain-Fritsch scheme (kf), the Runge-Kutta scheme (rk), the TERRA run (ref), and the ob-

servations (mes). For 2m-temperature the comparison is made for the average of the 

15 non-forest stations. For precipitation the comparison is made for the average of all 

55 stations within the investigation area. 

The differences between the averaged annual mean 2m-temperature of the TERRA run and 

the VEG3D run are similar to the differences between the other two schemes and the 

TERRA run (about 0.2 K) (Fig. 6.25). In four of the five years the temperature values of 

the VEG3D simulation show the same tendencies as the results obtained with the Kain-

Fritsch scheme and underestimate the temperature values compared to the reference run. In 

these years, the reference run agrees better with the observations than the VEG3D simula-

tion.  

Smaller averaged annual precipitation amounts than in the TERRA run can be observed for 

the VEG3D run in four of five years (not corresponding to the four years where tempera-

ture is underestimated).  In these years the VEG3D run fits better with the observations 

than the TERRA run (Fig. 6.25). The variance in precipitation amount (up to 60 mm) pro-

duced by the VEG3D simulation is smaller than the variance produced by the other two 

simulations with changed parameterisations (up to 200 mm). 

Comparing the station average of monthly mean 2m-temperature averaged over the period 

from 1991 to 1995, the VEG3D produces higher temperatures and therefore better simula-

tion results compared to observations than the TERRA run for nearly all months, except 

the summer months from July to October (Fig. 6.26). Here differences up to -0.4 K occur 

compared to the TERRA run. The monthly average differences between the VEG3D run 

and the TERRA run for precipitation are much smaller than the ones between the Kain-

Fritsch scheme and the Runge-Kutta scheme (Fig. 6.27).  

The highest differences from the TERRA run are produced by the VEG3D scheme for 

temperature and by the Runge-Kutta scheme for precipitation. 
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Figure 6.25: Station average of annual mean 2m-temperature (left) and annual precipita-

tion sum (right) for the period 1991–1995 for observations and simulations (abbreviations 

are explained in the text). 
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Figure 6.26: Station average of monthly mean 2m-temperature over the period 1991–1995 

for observations and simulations (abbreviations are explained in the text). 

0

50

100

150

200

jan feb mar apr may jun jul aug sep oct nov dec
month

 a
ve

ra
ge

d 
m

on
th

ly
 m

ea
n 

pr
ec

ip
ita

tio
n 

su
m

 (
m

m
)

nd_mes nd_rk nd_kf nd_ref nd_veg3d

 

Figure 6.27:  Station average of monthly mean precipitation sum averaged over the period 

1991–1995 for observations and simulations (abbreviations are explained in the text).  
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Figure 6.28: Difference of annual mean 2m-temperature (left) and annual precipitation 

sum (right) averaged over the period 1991–1995 between VEG3D and TERRA simulation. 

 

The differences in annual mean 2m-temperature between the VEG3D simulation and the 

TERRA simulation are lowest for the Rhine valley and the area north of the Swabian Jura 

and are most pronounced over the forested areas and higher elevated sites (Fig. 6.28). The 

difference in the annual precipitation sum between VEG3D simulation and the TERRA 

simulation varies greatly, from -100 mm over the Black Forest to +50 mm over the 

Swabian Jura (Fig. 6.28). The area of strongest decrease of precipitation amount over the 

Black Forest can also be observed in the comparison for the year 2001. 

 

6.5.2 EVALUATION FOR THE PERIOD FROM 1991 TO 2000 

The same evaluations are undertaken for the average of the annual values over the period 

1991 to 2000 as they were for the year 2001. In general, the patterns of increase and de-

crease of precipitation and evapotranspiration in the VEG3D simulation, compared to the 

TERRA simulation, are the same as for the year 2001. The differences between the 

TERRA run and the VEG3D run are also of the same magnitude as they were for 2001 

(Fig. 6.29, Fig. 6.30). The total precipitation amount decreases by about 100 mm on the 

western site of the Black Forest in the VEG3D run and there is a decrease in grid scale 

visible over the whole domain. The convective precipitation decreases at the western side 

of the Black Forest and the Swabian Jura and increases in the rest of the domain in the 

VEG3D simulation compared to the TERRA simulation. The large evaporation amount in 

the TERRA_LM simulation in the transition zones is also found for the decadal simulation. 
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Figure 6.29: Averaged difference of annual precipitation sum between VEG3D and 

TERRA simulation for the period 1991–2000 for total precipitation (left), grid scale pre-

cipitation (middle) and convective precipitation (right). 
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Figure 6.30: Annual evapotranspiration sum for VEG3D simulation (top, left) and 

TERRA simulation (top, right) and difference between VEG3D and TERRA annual 

evapotranspiration sum (bottom) averaged over the period 1991–2000. 

 

Precipitation (mm) TERRA VEG3D 

Total 1166 1136 

Grid scale 829 774 

Convective 347 362 
 

Table 6.8: Area average of total, grid scale and convective precipitation for TERRA and 

VEG3D simulation averaged over the period 1991–2000.  
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A decrease in total precipitation (30 mm) and in grid scale precipitation amount (45 mm) is 

observed in the VEG3D simulation compared to the TERRA simulation and a slight in-

crease of convective precipitation (15 mm) is observed for the area mean averaged over the 

period from 1991 to 2000. This corresponds to the findings for the year 2001. 

The annual cycle of soil water content for the uppermost seven soil layers down to a depth 

of 1.40 m shows similar values for both simulations over the decade, especially during 

winter (Fig. 6.31). The drying out in summer in the uppermost layers in the TERRA run is 

visible throughout the whole decade. This is mainly due to the thinner root zone. In 

TERRA_LM, the root zone is restricted to the uppermost 0.8 m of the soil and therefore, 

water is mainly evaporated from the uppermost first meter of the soil, whereas in VEG3D, 

the root depth reaches much deeper into the soil. Water is also taken up from much deeper 

soil layers and the decrease in water content is not as pronounced in the VEG3D simula-

tion as in the TERRA simulation for the uppermost 1.40m.  

In the simulation with TERRA_LM the number of active layers is restricted to the upper-

most seven soil layers and therefore, the total water content over all ten soil layers can only 

be evaluated for the VEG3D simulation. A comparison of the soil water amount of all soil 

layers where the soil water content is calculated prognostically shows that the soil water 

content in the TERRA run remains quite stable over the decade, only showing a decrease 

due to evapotranspiration in summer. The water content of the VEG3D simulation shows 

an increase over the first five years and remains nearly constant afterwards (Fig. 6.32). 

This can be explained by the fact that the initialisation is done by using a climatology pro-

duced with the TERRA_LM (see section 4.1) and therefore gives initialisation values for 

the soil moisture profiles that are well suited for the TERRA simulation but are slightly to 

low for the equilibrium state of the VEG3D simulation. The soil is filling up during the 

first five years until it reaches an equilibrium state. 

The difference in monthly mean soil temperature for the uppermost seven soil layers be-

tween the VEG3D simulation and the TERRA simulation averaged over the investigation 

area shows an annual cycle. The soil temperatures in the summer months are about 1 K 

higher in the VEG3D simulation than in the TERRA run and lower or equal in winter 

(Fig. 6.33). This difference varies over the investigation area. As shown in Fig. 6.34, the 

main differences between both simulations occur in the Rhine Valley and north of the 
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Black Forest and the Swabian Jura. Over forested areas, such as the Black Forest, the soil 

temperature between both simulations is quite similar in summer and winter. Highest dif-

ferences are obtained in summer for grassland and cultivated areas. In general, the differ-

ences over the whole investigation area are smaller in winter.  
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Figure 6.31: Annual cycle for mean total water content of the uppermost seven soil layers 

averaged over the investigation area. 
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Figure 6.32: Annual cycle for the total water content in all active soil layers averaged over 

the investigation area. 
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Figure 6.33: Annual cycle of the temperature difference between VEG3D simulation and 

TERRA simulation in the uppermost seven soil layers averaged over the investigation area. 
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Figure 6.34: Difference in monthly mean soil temperature averaged over the uppermost 

seven soil layers between VEG3D simulation and TERRA simulation for June 1997 and 

December 1997. 

4

5

6

7

8

9

10

11

12

4 5 6 7 8 9 10 11 12

annual mean 2m-temperature observation (°C)

an
nu

al
 m

ea
n 

2m
-t

em
pe

ra
tu

re
 s

im
ul

at
io

n 
(°C

)

t_mean_veg3d

t_mean_terra

terra

veg3d
0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

annual precipitation amount observation (mm)

an
nu

al
 p

re
ci

pi
ta

tio
n 

am
ou

nt
 s

im
ul

at
io

n 
(m

m
)

nd_veg3d

nd_terra

terra

veg3d

 

Figure 6.35: Observed versus simulated annual mean 2m-temperature and annual precipi-

tation amount. Lines indicate the least squares fit and the grey line is the bisecting line. 

 

 

Model 
run 

Evaporation 
(sum) 

Surface runoff 
(sum) 

Ground ruoff 
(sum) 

Precipitation 
(sum) 

Water content 
(difference) 

TERRA 5678 1933 4114 11643 37 

VEG3D 5209 2344 3651 11355 219 

 

Table 6.9: Water balance in millimetres averaged over all land points within the investiga-

tion area for the period from January 1991 to January 2001. 
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The linear fit between observations and simulations for annual mean 2m-temperature is 

quite similar in both simulations (Fig. 6.35). The correlation coefficient is 0.53 for the 

TERRA run and 0.52 for the VEG3D run. The absolute differences between the TERRA 

run and the VEG3D run can reach up 0.5 K at single stations. 

The correlation coefficient is quite poor for the annual precipitation amount, with 0.26 for 

the TERRA run and 0.25 for the VEG3D run. The absolute differences between the refer-

ence run and the VEG3D run can reach 150 mm at single stations (Fig. 6.35). 

The water balance was calculated for the period from January 1991 to January 2001 

(Tab. 6.9). The evaporation and precipitation amount is quite similar in both simulations. 

The higher precipitation amount in the TERRA run is compensated by higher evaporation. 

The VEG3D simulation produces more surface runoff than the reference run (400 mm) but 

less ground runoff (450 mm). The difference in water content is 150 mm higher in the 

VEG3D simulation. In both models, an increase of soil water content is observed over the 

decade. 

 

6.6 SUMMARY  

Comparisons of simulations with the stand-alone versions of the schemes for a grassland 

and a forest site show increasing differences in soil temperature with increasing vegetation 

height. The damping effect of vegetation with regard to the amplitude of soil temperature 

is clearly visible. The partitioning into sensible and latent heat flux shows large differences 

between the two models. Overall, the agreement of the stand-alone simulations with obser-

vations is better for the grassland site than for the forest site. In order to improve the model 

performance over forested areas, better parameterisations are necessary, as well as more 

representative observations especially for the heat fluxes.  

Comparisons of annual and decadal high-resolution simulations with the two different land 

surface schemes coupled online to the COSMO-CLM show a considerable influence of the 

land surface scheme on the simulation results of COSMO-CLM. The area average of the 

changes in annual precipitation amount and evapotranspiration is in the order of 5% and 
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10 % of the total amount and for several regions changes up to 10% and 20% occur. The 

highest differences in evapotranspiration can be observed in heterogeneous regions where 

different land use classes are contained within one model grid box. The differences be-

tween the two simulations in annual convective and grid scale precipitation reach up to 

40% and 15% of the total amount respectively and are most pronounced at the windward 

side of the elevated sites. The area means of evaporation and total precipitation are higher 

for the TERRA_LM simulation than for the VEG3D simulation while convective precipi-

tation is lower. Only small differences (0.5 K maximum) in the mean near-surface tem-

perature between both simulations for non-forest stations can be found. The lower precipi-

tation amounts in the VEG3D simulation accord better with the observed values.  

The soil water content and the soil temperature trend show no pronounced differences be-

tween the simulations with the two land surface schemes. Nevertheless, seasonal differ-

ences between both simulations occur. Unlike the stand-alone versions of the models, the 

differences in soil temperature between the VEG3D and the TERRA simulation are great-

est in areas with low vegetation and smallest in areas with high vegetation. This can be 

explained by the feedback mechanism with the atmosphere, which is not considered in the 

stand-alone simulations.  

The differences in 2m-temperature and precipitation compared to the TERRA simulation 

are of the same magnitude as the changes in other physical parameterisations.  

 

 



 

 

 

7 STATISTICAL -DYNAMICAL DOWNSCALING  

Dynamical regional high-resolution climate simulations are very time consuming. The 

simulation of a 30 year period, which is a standard time period for climate investigations, 

may need weeks or even months of CPU computing time, depending on the computer plat-

form available. Therefore, methods are required that can replace this method of explicitly 

simulating each single day. One possibility is statistical-dynamical downscaling, which 

consists of an algorithm classifying weather patterns from synoptic meteorological fields 

(e.g. reanalysis data), and then explicitly simulating the classified weather patterns (often 

corresponding to single days) with a regional model like COSMO-CLM. In this thesis, the 

classification is done by the SOM algorithm (Kohonen et al., 1995). In single-day simula-

tions no adjustment time for the soil moisture and soil temperature profiles is available and 

a method is needed to provide adequate soil profiles for these simulations. 

In the first part of this chapter the method of producing soil moisture and soil temperature 

profiles for single day simulations is presented and their influence on COSMO-CLM simu-

lations is described. The second part presents a description of the SOM algorithm and a 

comparison of dynamical and statistical-dynamical simulations with observations.  

 

7.1 INFLUENCE OF INITIAL SOIL MOISTURE AND SOIL 

TEMPERATURE PROFILES ON COSMO-CLM  SIMULATIONS  

The influence of soil moisture and soil temperature initialisation on long term RCM simu-

lations has been investigated in section 4.2 and 4.3, and it has been shown that it takes at 

least one year of spin-up time for the soil profiles for the area of Southwest Germany if the 

initialisation is taken over from the coarse driving data. Therefore initializing the land sur-

face scheme (LSS) in a regional model from the driving data with coarser resolution and 

different soil model physics for a daily simulation can cause unrealistic drifts in the model 

results due to the different equilibrium states in the driving model soil physics and the re-

gional model soil physics (RODELL, 2005). The best method to provide adjusted initialisa-
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tion data for the LSS of a regional model is therefore to start the continuous simulation 

with the regional model some years before the investigation period. This is rather time 

consuming and not practicable for statistical-dynamical downscaling because this spin-up 

time would destroy the advantage of saving time by only modelling single days. A practi-

cable method for the initialisation of the LSS in short-term simulations with a regional 

model is the use of soil variable profiles produced by a stand-alone version of a LSS ini-

tialised some years before the starting day of the regional model simulation and run until 

this starting day (SMITH  et al., 1994), ideally driven by the same kind of coarse driving data 

used for the regional model simulation later on and, for consistency, using the same LSS. 

The profiles of the soil variables have then some years to adapt to the physics of the LSS 

and these adjusted soil profiles can then be used to initialise the regional model. The com-

putational costs are strongly reduced compared to the dynamical simulation with the com-

plete regional model including the atmospheric part. 

This initialisation method and its influence on regional climate simulations with COSMO-

CLM have been investigated for the region of Southwest Germany. As driving data for the 

LSS and the regional model we used the ERA-40 reanalysis data (SIMMONS and GIBSON, 

2000). A detailed description of the soil-vegetation model VEG3D, which is used here in 

stand-alone mode to produce the adjusted soil profiles, is given in section 6.1.2 and a de-

scription of the parameterisations used in COSMO-CLM is given in section 4.1. The simu-

lation with the stand-alone version of VEG3D was started in 1995 and the COSMO-CLM 

simulation (version 3.22) took the soil variables from this simulation on the first of April 

2001 as initialisation for the regional simulation. The regional model simulation was then 

run from the first of April to end of December 2001 with a horizontal grid resolution of 

7 km and 64x64 grid points (Fig. 7.1). As driving data for the 7 km simulation a 50 km run 

with COSMO-CLM driven by ERA-40 reanalysis data for the whole European region was 

used (Fig. 7.1). Two 7 km runs were performed: one with the soil initialisation taken over 

from the ERA-40 reanalysis data (henceforth called ERA run) and one with the soil ini-

tialisation taken over from the run with the stand-alone soil model (henceforth called 

VEG3D run). Daily means and sums of observed meteorological variables for comparison 

with the simulations are available for 23 stations within the area (Fig. 7.1). The observa-

tions were provided by the German Weather Service (ÖSTERLE et al., 2006).  
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Figure 7.1: Left: Area of the 50 km COSMO-CLM simulation containing the area of the 

7 km run (dashed rectangle). Right: Area of the 7 km run with observation stations indi-

cated by white dots. 

 

In the follwing root mean square errors (rmse) and root mean square deviations (rmsd) are 

calculated. The term error is used when simulations are compared to observations and the 

term deviation is used when two simulations are compared. 

The soil moisture and soil temperature profiles are quite different in the two model runs at 

the initialisation day. We find soil temperature differences of up to 6.5 K and differences 

of up to 7 volume percent in soil moisture content for the area average of the whole inves-

tigation area (Fig. 7.2). The rmsd of soil moisture content between the two simulations 

decreases considerably for the whole profile during the first two months and stays nearly 

constant during the rest of simulation (Fig. 7.3). The rmsd of soil temperature shows a 

strong decrease only in the upper soil levels during the simulation. In the lower levels the 

temperature cannot adapt because the temperature at the lowest level is kept constant on 

the initialisation temperature over the whole simulation (Fig. 7.3). At the end of the simu-

lation in December 2001 the soil moisture profile is rather similar in both simulations and 

the rmsd is less than one volume percent for the area average. The temperature profile has 

only slightly smoothed and shows increasing rmsd with increasing soil depth.  

In the first month, the rmse between the observed and modelled monthly mean 2m-

temperature and the monthly precipitation is largest for the 23 stations (Fig. 7.4). The rmse 

of 2m-temperature is about 0.4 K lower in the VEG3D run than in the ERA run and 2m-

temperature is therefore better simulated by the VEG3D run. The rmse of precipitation 

increases in the VEG3D simulation by about 5 mm in the first month. After three months 

of simulation time we get quite similar results for the rmse of the VEG3D and the ERA 

simulation. 
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Figure 7.2: Profiles of soil moisture content (left) and soil temperature (right) averaged 

over the whole investigation area at the initialisation date for ERA (black solid line) and 

VEG3D (grey dashed line). 

 

 

 

 

 

 

Figure 7.3: Root mean square deviation of soil moisture content (left) and soil temperature 

(right) between the two simulations for different soil depths (in metres) for the simulation 

period from April to December 2001.  
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Figure 7.4: Root mean square error between monthly mean 2m-temperature (left) and pre-

cipitation sum (right) of observations and ERA (black) and observations and VEG3D 

(shaded) for the simulation period from April to December 2001. 
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Figure 7.5: Root mean square deviation between ERA and VEG3D run for monthly pre-

cipitation sum (dashed line) and monthly mean 2m-temperature (solid line). 

 

The rmsd between both simulations for the monthly mean and sum of 2m-temperature and 

precipitation approaches zero over the simulation time (Fig. 7.5). After a strong decrease 

during the first two months the rmsd stays constant for 2m-temperature and even increases 

for precipitation during the summer months from June to August. This is due to the con-

vection during the summer months, which is influenced even by small changes in soil 

moisture and soil temperature and has a strong non-linear feedback on precipitation 

amount and 2m-temperature, which prevents the rmsd decreasing further. In the late au-

tumn, the precipitation is mainly grid scale and the influence on the precipitation amount 

by variations in soil moisture and soil temperature decrease so that the RMSD of precipita-

tion decreases further. 

The rmse of daily mean 2m-temperature between observation and simulation is strongly 

reduced in the VEG3D simulation for the first day of simulation compared to the ERA run 

by up to 2 K (Fig. 7.6). The rmse for daily precipitation is slightly enhanced in the VEG3D 

run in the first days of simulation by a maximum of 0.5 mm (Fig. 7.6). This is caused by 

the higher evapotranspiration due to the higher soil moisture content in the upper soil lev-

els.  

The initialisation of the soil moisture and soil temperature profiles has a strong impact on 

the results of the temperature forecast for the first three days of the simulations, with dif-

ferences of at least 0.5 K in the rmse between the two simulations. The rmse shows the 

same values in precipitation for both simulations for the first time after 13 days and after 

this period the difference of rmse for 2m-temperature is lower than 0.1 K for the first time.  
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Comparing the precipitation amount for the whole simulation period, differences of up to 

50 mm occur between both simulations with an enhancement of precipitation in the south-

east of the investigation area and a decrease in the northwest for the VEG3D run (Fig. 7.7). 

This increase in precipitation corresponds to the increase in evapotranspiration in the 

VEG3D run for the southern area, which is up to 100 mm higher than in the ERA simula-

tion (Fig. 7.7).  
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Figure 7.6: Root mean square error between daily mean 2m-temperature and daily precipi-

tation sum of observations and ERA (black) and observations and VEG3D (shaded) simu-

lation for 2m-temperature (top) and precipitation (bottom) for April 2001. 
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Figure 7.7: Difference between ERA and VEG3D simulation for the total precipitation 

amount (left) and the evapotranspiration (right) amount for the period April to December 

2001. 

 

Using soil moisture and soil temperature profiles pre-processed by a stand-alone soil model 

seems to be an appropriate solution for the initialisation problem occurring for short-term 

simulations. In this case the use of pre-processed soil profiles improves the 2m-

temperature forecast considerably for the first days of simulation. The higher soil moisture 

content, which leads to an unrealistic enhancement of precipitation especially in the south-

east of the investigation area, may have several causes: (1) the driving data of the stand-

alone model produce too high precipitation amounts for this region so that the soil is too 

wet at this initialisation date or (2) the equilibrium soil moisture profile provided by the 

stand-alone model of VEG3D is not consistent with the equilibrium soil moisture profile 

that would be produced by the soil model TERRA_LM used in the COSMO-CLM, and the 

surplus of soil moisture is therefore released into the atmosphere by evapotranspiration. To 

determine which of these effects is the cause for the high precipitation amount, additional 

comparisons with high-resolution observation data would be necessary. This is difficult 

due to the lack of adequate observations of soil moisture, soil temperature and heat flux 

measurements. 
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7.2 COMPARISON OF DYNAMICAL AND STATISTICAL -DYNAMICAL 
DOWNSCALING FOR THE YEAR 2001 

7.2.1 USING SELF-ORGANIZING MAPS FOR STATISTICAL -DYNAMICAL 

DOWNSCALING  

Self-organizing maps (SOM) (KOHONEN, 1995) are a kind of cluster analysis used here to 

classify weather patterns by using fields of meteorological variables. A detailed description 

of the algorithm and its application to meteorological fields can be found in SASSE (2004) 

and therefore only a short description of the algorithm is given here: 

Using n two-dimensional fields of meteorological variables with nx longitudinal grid 

points and ny latitudinal grid points a (n*nx*ny )-phase space of input vectors is created for 

which a prescribed number of nodes are defined and distributed randomly in this phase 

space. The position of the nodes is then iteratively adjusted by their Euclidean distance to 

the n*nx*ny input vectors. During one iteration cycle, not only the actually considered 

node is drawn towards an input vector, but also other nodes in a defined neighbourhood are 

drawn towards the input vector. At the end of the iterations a certain number of input vec-

tors can be assigned to each node, which are closer to the specified node than to any other 

node in the phase space. The ratio of the number of input vectors assigned to one node and 

the total number of input vectors then gives the relative frequency of the node. 

There are two major differences between the SOM methodology and other clustering algo-

rithms (HEWITSON and CRANE, 2002): 

(1) The primary goal of the algorithm is not grouping data or identifying clusters. Instead, 

SOM attempt to find positions of the nodes in the data space that are representative of the 

nearby clouds of data and describe the multi-dimensional distribution function of the data 

set all together. Thereby nodes are clustered in regions with high data density. 

(2) More than one node is updated during the iteration cycle: Surrounding nodes are in-

crementally adjusted depending on their distance to the node considered. 
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An advantage of SOM is that there is no statistical model needed, which describes the data 

distribution. Intensive studies with geopotential and surface pressure fields have been car-

ried out by SASSE (2004) to determine the parameters adjustable in the algorithm, e.g. the 

number of iteration steps, the number of nodes and the neighbourhood function. He found 

that the number of iteration steps should be 100.000 and that 20 nodes seem to be an ade-

quate number for classifying near-surface pressure fields and that a step-neighbourhood 

function for the determination of the influenced nodes is better than a gaussian one. Sasse 

also found that the size of the meteorological fields is very important: The area has to con-

tain the typical structures of the investigation area (SCHÄDLER and SASSE, 2006). 

For this study the classification of 20 nodes (weather patterns) and their relative frequency 

for the year 2001 obtained by HALLER (2005) is used for the statistical-dynamical down-

scaling: the classification has been done by using the geopotential in 500 hPa and/or the 

surface pressure. Every class represents one characteristic weather pattern and is repre-

sented by one day of the year. This day is simulated explicitly with COSMO-CLM and the 

daily means of meteorological variables are then multiplied by the relative frequency of the 

class. This is done for all classes and the sum of this product of daily mean times frequency 

is then divided by the total number of days in the year and the annual mean of the meteoro-

logical variables is obtained. 

Unlike the method used by SASSE (2004), who simply multiplied the surface pressure by a 

constant factor to get geopotential and surface pressure in the same range for the SOM 

algorithm, the method presented by HALLER (2005) normalises the meteorological fields 

by: 

σ
xx

x
−=' . 

The normalised field 'x  is obtained by subtracting the area mean of the field x  from the 

input field xand dividing this difference by the standard deviation σ  of the field. 

For the classification of the 20 classes, HALLER (2005) used NCEP reanalysis data 

(KANAMITSU  et al., 2002) for the area from 30° north to 70° north and from 20° west to 30° 

east. 
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7.2.2 COMPARISON OF THE TWO DIFFERENT DOWNSCALING TECHNIQUES  

FOR THE YEAR 2001 

GERSTENGARBE et al. (1999) classified 29 synoptic weather patterns (“Grosswetterlagen”) 

for Central Europe from observed meteorological data. From these patterns, nine of them 

have a relative frequency of less than 2% so that a number of 20 classes for one year for 

the SOM algorithm seems adequate to allow the algorithm to classify the most common 

weather patterns. Four different combinations of geopotential in 500 hPa and surface pres-

sure have been used by HALLER (2005) for the classification: 

• Geopotential 500 hPa without normalisation (Gp) 

• Geopotential 500 hPa with normalisation (Gpn) 

• Geopotential 500 hPa and surface pressure without normalisation (GpSp) 

• Geopotential 500 hPa and surface pressure with normalisation (GpSpn) 

The 20 classes, with their relative frequency for the year 2001, are shown in Tab. 7.1. The 

algorithm does not classify all of the 20 Großwetterlagen for that year. As shown by 

HALLER (2005), some days classified by SOM belong to the same Großwetterlage. De-

pending on the parameter used for classification different days of the year are classified 

and therefore simulated explicitly by the climate model for the statistical-dynamical down-

scaling. 

As is obvious from Tab. 7.1, the algorithm classifies mainly days in spring, autumn, and 

winter. Summer days are rare especially for the classes GpSp and Gp. This means that 

convective summer days, which are quite often observed in the area of Southwest Ger-

many, are not well represented in 2001 although they contribute an important amount of 

convective precipitation for that region in summer in many other years. This means also 

that the number of warm days and their frequency, which are important for a correct 2m-

temperature, is smaller than the number of cold days or days with moderate temperature. 

From the diploma thesis of HALLER (2005), it is known that the statistical-dynamical 

downscaling yields good results for temperature compared to observed data. But the strat-

egy used by Haller is not applicable for climate simulations: he simulated the year 2001 in 

a continuous dynamical simulation and extracted from this run the 20 days classified by the 
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SOM algorithm. With these 20 days he calculated annual means by using the relative fre-

quency given by SOM. This strategy cannot be used for climate runs because the dynami-

cal simulation of decades is to be avoided in the statistical-dynamical downscaling. The 

strategy presented here is therefore different. The 20 days are simulated individually by 

COSMO-CLM as single day simulations. The daily means and sums of meteorological 

variables from these 20 simulations are multiplied by the relative frequency given by the 

SOM algorithm and then summed up to annual means. 

 

SOM  

class 

GpSpn 

Day    freq. 

GpSp 

Day    freq. 

Gpn 

Day   freq. 

Gp 

Day    freq. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

12.12.   4.93% 

17.02.   4.66% 

18.11.   3.56% 

01.06.   6.58% 

16.04.    6.75% 

22.06.   7.67% 

27.07.   4.11% 

06.11.   4.11% 

08.04.   4.93% 

26.02.   2.74% 

17.01.   3.84% 

24.07.   7.12% 

07.06.   6.21% 

13.03.   3.56% 

18.03.   4.93% 

06.10.   4.66% 

14.10.   6.58% 

11.03.   6.48% 

03.01.   4.93% 

24.03.   4.66% 

28.10.   4.11% 

01.04.   3.56% 

05.04.   4.38% 

04.01.   6.21% 

01.03.   2.19% 

30.05.   9.86% 

05.10.   6.75% 

23.04.   3.29% 

19.03.   6.75% 

27.12.   4.93% 

09.08.   6.03% 

21.10.   4.93% 

17.01.   3.56% 

20.04.   2.74% 

06.11.   2.47% 

30.06. 10.68% 

21.09.   6.58% 

10.12.   4.93% 

14.02.   4.66% 

31.01.   4.38% 

09.08.   4.11% 

12.07.   4.66% 

03.01.   6.85% 

21.08.   6.03% 

03.08.   6.75% 

05.03.   2.74% 

07.04.   3.56% 

09.04.   7.40% 

27.07.   4.66% 

23.10.   4.93% 

20.03.   6.03% 

02.09.   3.56% 

06.11.   7.4% 

16.02.   4.38% 

18.01.   4.93% 

26.12.   6.21% 

03.06.   4.38% 

31.01.   6.03% 

12.01.   2.74% 

10.12.   4.66 % 

01.03.   2.19% 

04.01.   6.21% 

05.04.   4.38% 

01.04.   3.56% 

28.10.   4.11% 

25.12.   4.93% 

19.03.   6.75% 

22.01.   3.29% 

05.10.   6.75% 

03.09.   9.86% 

05.11.   2.47% 

20.04.   2.74% 

03.05.   3.56% 

21.10.   4.93% 

09.08.   6.03% 

31.01.   4.11% 

14.02.   4.93& 

10.12.   4.93% 

21.09.   6.58% 

30.06.  10.68% 

 

Table 7.1: SOM classes with assigned day and relative frequency for the four combina-

tions of geopotential and surface pressure. Summer days are bold typed. 
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Due to the coarse resolution of the ERA-40 reanalysis driving data we have to use the same 

downscaling chain as explained in section 4.1: first the 50 km simulations driven by ERA-

40 data for whole Europe have to be performed for these 20 days and then the daily high-

resolution runs with 7 km horizontal resolution for the alps area are nested therein. The 

simulations have been done for all four combinations of geopotential and surface pressure, 

once with the initialisation of soil moisture and soil temperature profiles from the ERA-40 

driving data and once from the pre-processed soil profiles obtained by VEG3D, as pre-

sented in the previous section (referred to in the following as OB and MB simulation). In 

total, we have eight simulations that can be compared to observations and the continuous 

ERA-40 simulation (ERA) with 7 km horizontal resolution evaluated in subsection 4.3.2.  

Three main questions will be answered by this comparison:  

 

(1) Is the method of statistical-dynamical downscaling able to reproduce the results ob-

tained by the dynamical downscaling and by observations? 

(2) Which combination of geopotential and surface pressure produces the most reliable 

results? 

(3) Does the use of pre-processed soil moisture and soil temperature profiles enhance 

the results of statistical-dynamical downscaling? 

In the following 2m-temperature and total precipitation were examined to answer these 

three questions. For comparison of the statistical-dynamical downscaling results with ob-

servations the data from the 23 DWD stations were used, as described in the section be-

fore.  

To get an initial idea of the representativeness of the SOM classes for the year 2001, the 

observed annual mean 2m-temperature and the annual total precipitation amount at the 23 

weather stations are compared to the results for the statistical-dynamical method using ob-

served daily means and sums instead of values from the COSMO-CLM simulation to cal-

culate the annual mean value and the annual sum of 2m-temperature and precipitation. By 

using observations as “perfect” simulations, the skill of the method and the classified days 

can be determined. Averaging the annual mean 2m-temperature and the annual precipita-

tion sum over the 23 stations we get a mean value that can be used for a first evaluation of 

the reliability of the results. Using the statistical-dynamical method with observed data we 
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get maximum differences in this mean value of up to 1.9 K for 2m-temperature and 

350 mm in precipitation between the single combinations (Tab. 7.2). The best results are 

obtained by using the GpSpn combination with a difference of only 0.1 K between the ob-

served averaged annual mean 2m-temperature and the statistical-dynamically calculated 

one and of only 50 mm between the mean precipitation amounts for these two methods.  

The difference for the single observation sites between continuously observed annual mean 

2m-temperature and statistical-dynamically produced annual mean 2m-temperature with 

the combination GpSpn is lower than 0.4 K, which is quite good. The difference in precipi-

tation amount between the observed and calculated values can reach 800 mm at single sta-

tions. For 14 sites the difference is more than 100 mm and at most of these sites precipita-

tion is underestimated by the statistical-dynamical downscaling. This compensates for the 

strong overestimation of 822 mm for the Feldberg site so that the average over all sites 

shows quite good results for the statistical-dynamical method with GpSpn combination. 

The ranking of the combinations is the same for temperature and for precipitation: GpSpn 

gives the best results compared to continuous observations followed by Gp, GpSp and 

Gpn. This order was expected because the use of two instead of one meteorological field 

should improve the classification of adequate days and, therefore, the simulation results 

and the normalisation when using two meteorological fields should give better results than 

using two fields without normalisation. 

The statistical-dynamical downscaling method does not match perfectly the continuous 

observations, but the 20 classes identified by the SOM algorithm seem to be placed ade-

quately to represent the annual mean and sum at least for the GpSpn and Gp combination. 

But the strong differences in annual precipitation obtained with even “perfect” conditions 

should be kept in mind for the evaluation of the statistical-dynamical method used with 

simulations later on. 
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Station obsT GpSpnT GpSpT GpnT GpT obsP GpSpnP GpSpP GpnP GpP 

AULEND 8.8 8.9 8.39 6.98 8.44 916.5 818.8 918.5 1683.8 806.6 

BADENW 10.1 9.9 9.81 8.07 9.98 1240.3 1197.4 1035.9 1364.2 720.1 

EBERBA 10.1 9.9 9.13 8.04 9.59 1267.2 1229.7 768.7 1698.8 1117.1 

EPPING 10.5 10.4 9.7 8.62 10.13 924.2 845.4 511.4 979.5 882.1 

FELDBE 3.6 3.4 2.9 1.64 3.09 1944.1 2766.9 1111.1 2487.3 727.7 

FRHBF 11.8 11.6 11.3 9.87 11.58 1127.6 1438.7 1308.9 1348.2 705.6 

FST 7.3 7.3 6.9 5.32 6.99 1887.7 1817.1 1024.3 2671.7 1098.1 

GSCHWE 8.9 8.7 8.3 7.1 8.74 1263.0 850.9 870.7 1300.2 724.4 

HECHIN 9.1 8.8 8.5 7.04 8.72 916.2 671.5 311.3 1020.5 301.7 

HOEHEI 9.3 8.9 8.4 7.41 8.75 1157.6 1188.3 1556.8 1435.4 1945.1 

ISNY 7.5 7.7 7.2 5.96 7.57 1887.5 1768.4 2229.4 3165.5 2174.5 

KARLSR 11.3 11.1 10.4 9.39 10.69 873.1 999.8 739.2 808.5 1355.1 

KLIPPE 6.9 6.9 6.4 5.3 6.7 1147.4 892.5 416.9 1085.2 411.6 

LAHR 11.0 10.8 10.4 9.04 10.58 1030.3 967.3 451.9 1328.9 336.4 

LENNIN 8.3 8.2 7.8 6.2 8.1 1229.2 1116.5 820.9 1702.8 807 

MANNHE 11.1 10.8 10.2 9.16 10.68 726.1 895.9 467.1 1250.2 554.6 

MERGEN 9.7 9.7 8.8 7.82 9.43 938.6 755.5 561.8 931.5 870.2 

MUENSI 7.4 7.3 6.7 5.35 7.06 1087.2 1032.8 684.2 1740.9 772.1 

OEHRIN 10.1 10 9.2 8.18 9.79 940.3 544.4 582.9 735.4 918.3 

STOETT 7.6 7.4 6.9 5.71 7.58 1223.5 836.5 645.2 1481.4 716.6 

TRBG 7.8 7.6 7.2 6.1 7.35 2196.0 2323.6 1560.8 2248.6 1545.2 

UEBERL 9.2 9.1 8.7 7.3 8.85 1107.3 1078.9 794 1810.8 815 

VILLIN 7.5 7.3 7.0 5.55 7.16 1122.9 954.9 675.4 804.6 798.5 

Mean 8.9 8.8 8.3 7.0 8.6 1224.1 1173.6 871.6 1525.4 917.5 

 

Table 7.2: Results of the statistical-dynamical method using observed meteorological data 

for annual mean 2m-temperature (T) and annual precipitation sum (P) and the annual val-

ues obtained by continuous observation (obs) at the 23 stations. 
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7.2.2.1 COMPARISON OF THE RESULTS OF THE TWO DOWNSCALING SCHE MES FOR    

ANNUAL MEAN 2M-TEMPERATURE  

HALLER (2005) found that for 2m-temperature best results compared to observations are 

obtained by using the GpSpn combination. This is also found with the statistical-dynamical 

method using simulations and with the statistical-dynamical method using observations. 

Comparing the average over all 23 sites we find a value of 8.9°C for the observations, 

8.1°C for the dynamical simulation (ERA) and 8.0°C for the GpSpnOB simulation 

(Tab. 7.3). The reason for the too low temperatures of simulations compared to observa-

tions seems to be the ERA-40 reanalysis data (see section 4.2 and 4.3). The difference be-

tween dynamical and statistical-dynamical downscaling is rather small (0.1 K) for the 

GpSpnOB simulation but the absolute difference at single sites is quite large with up to 

0.8 K. Using the VEG3D profiles for initialisation we also get best results for the GpSpn 

simulations but the mean temperature is 0.4 K lower than with initialisation of soil profiles 

from ERA-40 data. The absolute difference of the mean temperature over all sites between 

the four combinations of geopotential and pressure is up to 1.8 K, which is comparable to 

the range given by the statistical-dynamical downscaling with observed data. The lowest 

mean temperature, and therefore the worst result compared to observations, yields the Gpn 

combination for MB and OB simulation, in agreement with the results of HALLER. With 

1.6 K the spread in the MB simulations is quite similar to the spread of the OB simulations. 

The ranking of simulation results is the same for OB and MB simulations: the best result 

compared to observations is obtained by the GpSpn simulation followed by the Gp simula-

tion, the GpSp simulation and the Gpn simulation.  

With the GpSpn combination, the statistical-dynamical downscaling is able to reproduce 

the dynamical downscaling results. For half of the sites we get better results for annual 2m-

temperature with the statistical-dynamical method than with the dynamical method com-

pared to observations.   

To explain the lower 2m-temperatures in the MB simulations, the difference of OB and 

MB simulations was compared for the whole investigation area (Fig. 7.8). For the Rhine 

Valley, the MB simulations show higher absolute annual mean 2m-temperatures than the 

OB simulations and for the area west of the Rhine Valley and north of the Swabian Jura 

the annual mean temperatures of MB simulation is only up to 0.4 K lower than the 
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OB simulation for the GpSpn and GpSp combination and even up to 0.3 K higher than the 

OB simulations for the Gp and Gpn simulations. This means that, for some regions, the 

MB simulations are as warm as the OB simulations and in some regions even warmer - in 

better agreement, therefore, with observations.  

 

Station name Abbr
. 

Obs 
 

ERA 
 

GpSpn 
OB 

GpSpn 
MB 

GpSp 
OB 

GpSp 
MB 

Gpn 
OB 

Gpn 
MB 

Gp 
OB 

Gp 
MB 

AULENDORF-SPIEGLER AU 8.8 8.3 7.5 7.0 6.6 6.5 5.7 5.4 7.0 6.7 

BADENWEILER BA 10.1 9.4 9.4 9.3 8.7 8.6 7.2 7.4 8.7 8.6 

EBERBACH/NECKAR EB 10.1 9.5 9.7 9.4 8.8 8.7 8.1 8.0 9.2 9.2 

EPPINGEN EP 10.5 9.8 9.4 9.4 8.6 8.7 7.8 7.9 8.9 9.1 

FELDBERG/SCHW. FE 3.6 2.5 2.9 2.6 2.5 2.3 1.1 1.0 2.4 2.2 

FREIBURG I. BR. HBF FR 11.8 10.3 9.6 9.8 8.9 9.1 7.6 7.9 9.0 9.1 

FREUDENSTADT FS 7.3 6.4 6.6 6.4 5.9 5.6 4.7 4.6 6.0 5.8 

GSCHWEND KR. OSTALB GS 8.9 8.0 8.0 7.7 7.3 7.2 6.4 6.2 7.8 7.7 

HECHINGEN HE 9.1 8.6 8.8 7.9 8.0 7.2 6.8 6.1 8.2 7.4 

HOECHENSCHWAND HO 9.3 5.6 5.8 5.4 5.0 4.9 3.7 3.7 5.1 4.9 

ISNY IS 7.5 7.5 6.9 6.5 6.2 6.2 5.1 5.2 6.6 6.5 

KARLSRUHE KA 11.3 10.8 9.6 9.9 8.6 9.1 7.7 8.2 8.9 9.4 

KLIPPENECK KL 6.9 5.8 6.0 5.2 5.5 4.7 4.1 3.6 5.5 4.8 

LAHR LA 11.0 10.4 9.8 9.9 9.0 9.1 7.8 8.0 9.1 9.2 

LENNINGEN LE 8.3 6.9 7.1 6.2 6.5 5.9 5.5 4.8 7.0 6.1 

MANNHEIM MA 11.1 10.2 9.7 9.8 8.9 9.2 8.0 8.3 9.3 9.5 

MERGENTHEIM ME 9.7 9.5 9.3 9.1 8.6 8.5 7.7 7.6 9.2 9.1 

MUENSINGEN MU 7.4 6.9 7.0 6.1 6.1 5.6 5.4 4.7 6.6 5.8 

OEHRINGEN OE 10.1 9.4 9.5 9.2 8.8 8.6 7.9 7.8 9.2 9.1 

STOETTEN ST 7.6 6.8 7.0 6.1 6.4 5.7 5.5 4.7 6.9 6.0 

TRIBERG TR 7.8 7.5 7.8 7.5 7.3 7.0 5.9 5.9 7.3 7.0 

UEBERLINGEN/BODENSEE UE 9.2 8.7 8.1 6.5 7.1 6.1 5.9 5.0 7.2 6.1 

VILLINGEN-S. VI 7.5 7.5 7.5 7.2 6.9 6.6 5.5 5.4 6.8 6.7 

Mean  8.9 8.1 8.0 7.6 7.3 7.0 6.2 6.0 7.5 7.3 

 

Table 7.3: Annual mean 2m-temperature in °C for observations (obs), the dynamical 

downscaling simulation (ERA) and the statistical-dynamical simulations with COSMO-

CLM for the four combinations of geopotential and near-surface pressure with soil initiali-

sation from ERA-40 data (OB) and from VEG3D profiles (MB) for the year 2001.  
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For the south eastern part of the investigation area, ranging from the Swabian Jura to the 

Alps, differences of up to 2 K occur between the MB and the OB simulations and these are 

strongest in the GpSpn combination. The rectangular structure of the area, which covers 

nearly one quarter of the investigation area, gives a hint that these strong differences come 

from the soil profiles obtained by the stand-alone LSS model driven by the ERA-40 re-

analysis data. The investigation area is covered by 4 ERA-40 reanalysis grid points and the 

area covered by one ERA grid point covers the area of strongest differences exactly.   

When the grid point data used to drive the LSS in this area is too cold or contains precipita-

tion rates that are too high, the values of the soil temperature profiles of the LSS used for 

initialisation of the regional model can be too low and can cause the observed too low 2m-

temperature in the MB simulations. To determine whether these too low temperatures are 

an effect observable over the whole year the daily means of 2m-temperature for the 20 

classes are plotted for three sites within the south-eastern region: Aulendorf (Au), Hechin-

gen (HE) and Überlingen (UE) (Fig. 7.9). 
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Figure 7.8: Difference of annual mean 2m-temperature between OB and MB simulation 

for the year 2001 for the GpSpn (upper left), Gp (upper right), GpSp (lower left) and Gpn 

(lower right) combination. Observation sites are indicated by points (for explanation of the 

abbreviations, see Tab. 7.3). 
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Figure 7.9:  Comparison of observations (black), MB and OB simulations of 2m-

temperature for the GpSpn combination for all days classified for this combination for the 

Aulendorf (top, left), Hechingen (top, right) and Überlingen site (bottom). 

 

In Aulendorf we get a higher daily mean 2m-temperature and therefore better results with 

VEG3D initialisation for six classes compared to observations and for nine classes with 

ERA-40 initialisation. For five classes, the results of OB and MB simulations are nearly 

the same for 2m-temperature. For Hechingen, we get better results for the MB simulation 

for eight classes and better results for the OB simulation for nine classes and indifferent 

results for three classes. For Überlingen, 15 classes are simulated better in the OB simula-

tion and only two classes are simulated better with MB initialisation.  

The temperature is not underestimated for all classes of the sites in the south-eastern area 

so that the driving data, and therefore, the soil profiles are not inadequate for the whole 

year. Nevertheless, further comparisons of the NCEP driving data and the results obtained 

by the LSS with observed values for this region should be carried out to determine the rea-

son for this underestimation of temperature on some days.  A height correction of driving 
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temperature should also be taken into account for the LSS simulations. When the altitude 

of the ERA-40 grid point is higher than the grid point of the regional model it is obvious 

that the pre-processed soil temperature is too low at this grid point. 

 

Simulation a b r 

GpSpnOB 0.83 0.56 0.82 

GpSpnMB 0.94 -0.81 0.83 

GpSpOB 0.79 0.17 0.8 

GpSpOB 0.89 -0.89 0.82 

GpnOB 0.82 -1.2 0.78 

GpnMB 0.92 -2.18 0.81 

GpOB 0.81 0.28 0.79 

GpMB 0.92 -0.94 0.81 

ERA 0.95 -0.38 0.84 

 

Table 7.4: Linear correlation coefficient (r), slope (a), and intercept (b) of the annual mean 

of 2m-temperature for statistical-dynamical simulations and the dynamical simulation.  
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Figure 7.10: Scatter plot of the annual mean 2m-temperature of observation and dynami-

cal (ERA) and statistical-dynamical downscaling simulations. The grey line is the bisecting 

line and the other lines are the linear fits. 
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The correlation of all four MB initialisations with the observations is better than the corre-

lation of OB simulations (Tab. 7.4). The slope of the linear fit is closer to one and the fit is 

nearly parallel to the fit of the continuous ERA-40 simulation (Fig. 7.10). The initialisation 

by pre-processed soil moisture and soil temperature profiles therefore leads to a better cor-

relation with observed 2m-temperature, even if the absolute temperature values are too low 

compared to the OB simulation, which can be seen by the intercept of the fits. 

 

7.2.2.2 COMPARISON OF THE RESULTS OF THE TWO DOWNSCALING SCH EMES FOR 

ANNUAL PRECIPITATION  

For precipitation, HALLER (2005) found that none of the four combinations of geopotential 

and surface pressure gives better results than the other. In the simulations presented here, 

an overestimation of averaged precipitation amount can be noticed for the dynamical 

downscaling, the Gpn and the Gp simulations and an underestimation for the GpSp and 

GpSpn simulation for OB and MB simulations (Tab. 7.5). The use of VEG3D soil moisture 

and soil temperature profiles leads to a better prediction of the averaged annual precipita-

tion amount over all sites for all four combinations than the use of ERA-40 data. The dif-

ferences in the mean annual precipitation amount between OB and MB simulations are in 

the order of 1 to 61 mm. The best results compared to observations for the mean precipita-

tion amount is obtained by the combination GpMB. Better results are found for the MB 

simulations than for the OB simulations compared to observations not only for the aver-

aged precipitation amount for this combination, but also for the majority of the precipita-

tion amounts at the single sites.  

Ordering the combinations by their accordance to the mean precipitation in contrast to the 

findings for the 2m-temperature, the order is not the same for OB and MB simulations. For 

OB simulations, the GpSp combination fits best, followed by the Gp, the Gpn and the 

GpSpn combinations. For MB simulations, the Gp combination fits best, followed by the 

GpSp, the Gpn and the GpSpn combinations. The worst result of all simulations is obtained 

by the dynamical downscaling, which overestimates the average precipitation amount by 

335 mm. The dynamical downscaling gives higher precipitation amounts at most of the 

sites; for the statistical-dynamical downscaling there is an even distribution of over and 

underestimation at single sites. Most striking are the worse results for the GpSpn combina-
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tion, which had shown best results for 2m-temperature. The strong underestimation is due 

to the classification of five summer days, from which four classes have precipitation 

amounts lower than 1 mm per day, but all together have a frequency of more than 25%. 

However, these summer days lead to the good performance of this combination for the 2m-

temperature. This means, that for some combinations we get better results for one variable, 

due to the wrong representation of another variable. 

 

Station obs ERA 

GpSpn 

OB 

GpSpn 

MB 

GpSp 

OB 

GpSp 

MB 

Gpn 

OB 

Gpn 

MB 

Gp 

OB 

Gp 

MB 

AULEND 

BADENW 

EBERBA 

EPPING 

FELDBE 

FRHBF 

FST 

GSCHWE 

HECHIN 

HOEHEI 

ISNY 

KARLSR 

KLIPPE 

LAHR 

LENNIN 

MANNHE 

MERGEN 

MUENSI 

OEHRIN 

STOETT 

TRBG 

UEBERL 

VILLIN 

Mean 

916.5 

1240.3 

1267.2 

924.2 

1944.1 

1127.6 

1887.7 

1263.0 

916.2 

1157.6 

1887.5 

873.1 

1147.4 

1030.3 

1229.2 

726.1 

938.6 

1087.2 

940.3 

1223.5 

2196.0 

1107.3 

1122.9 

1224.1 

1332.7 

2286.77 

1559.11 

1164.41 

2095.75 

1900.03 

1607.7 

1423.02 

1459.55 

1741.27 

2719.07 

1112.17 

1444.46 

1219.62 

1553.14 

1214.08 

1122.87 

1241.22 

1592.27 

1603.91 

1862.11 

1291.59 

1354.59 

1560.9 

742.42 

756.45 

1135.89 

655.66 

2101.22 

760.58 

983.62 

778.72 

679.39 

1535.07 

908.12 

762.07 

1077.4 

517.4 

749.44 

682.83 

787.31 

663.25 

870.31 

704.6 

1310.37 

582.57 

1011.22 

902.4 

814.7 

1144.32 

1198.44 

806.94 

2112.97 

993.77 

997.75 

793.6 

684.94 

1645.33 

934.04 

878.93 

1186.74 

540.95 

731.92 

752.65 

766.4 

574.8 

937.75 

723.08 

1303.19 

639.05 

1002.62 

963.7 

1356.57 

987.84 

1049.39 

714.14 

1993.73 

891.76 

1165.96 

1229.39 

1057.49 

1639.77 

1637.02 

631.1 

1426.6 

539.62 

1055.75 

898 

902.75 

1078.76 

1052.87 

1099.93 

1648.21 

1216.62 

1333.07 

1156.8 

1246.38 

1160.99 

1039.29 

730.38 

1841.15 

884.81 

1127.7 

1229.06 

872.16 

1565.98 

1513.65 

756.7 

1384.94 

679.54 

944.28 

829.4 

830.28 

1050.13 

996.67 

1077.54 

1412.33 

1162.93 

1315.67 

1115.3 

1489.43 

1498.45 

1036.22 

919.52 

2732.35 

1631.95 

1814.53 

1001.85 

1219.97 

2073.8 

2216.43 

853.08 

1541.45 

992.94 

1025.17 

811.8 

618.52 

997.84 

869.5 

836.17 

1947.8 

1397.95 

1782.1 

1361.3 

1544.42 

1497.03 

1133.86 

854.02 

2626.06 

1506.08 

1827.62 

953.25 

1349.5 

2047.01 

2243.17 

846.05 

1542.89 

1063.37 

1021.15 

888.42 

640.18 

972.51 

860.81 

843.48 

1854.94 

1388.8 

1771.92 

1359.8 

1433.19 

1227.88 

1184.16 

865.82 

2368.28 

1079.62 

1298.91 

1402.37 

1186.99 

1877 

1591.77 

797.92 

1640.12 

598.05 

1212.1 

1174.89 

1029.25 

1244.02 

1161.67 

1176.08 

1856.32 

1325.4 

1538.2 

1316.1 

1323.19 

1398.87 

1162.7 

900.89 

2246.67 

1106.25 

1279.61 

1401.31 

1009.43 

1816.73 

1464.43 

911.47 

1594.3 

746.04 

1119.93 

1115.05 

954.59 

1218.64 

1119.7 

1166.26 

1641.75 

1265.46 

1537.73 

1282.7 

 
 

Table 7.5: Annual precipitation amount in mm for observations (obs), the dynamical 

downscaling simulation (ERA) and the statistical-dynamical simulations for the four com-

binations of geopotential and near-surface pressure with soil initialisation from ERA-40 

data (OB) and from VEG3D profiles (MB)  for the year 2001.  
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For the linear fit between observations and simulations, the correlation of the OB simula-

tions with observations is higher than for the MB simulations, the slope is nearer to one 

and the intercept is lower, except for the Gpn simulation (Tab. 7.6, Fig. 7.11). 

 

Simulation a b r 

GpSpnOB 0.55 225.0 0.36 

GpSpnMB 0.50 345.2 0.29 

GpSpOB 0.61 407.4 0.45 

GpSpOB 0.50 492.9 0.43 

GpnOB 0.95 189.5 0.50 

GpnMB 1.02 112.4 0.52 

GpOB 0.62 545.2 0.40 

GpMB 0.53 625.9 0.38 

ERA 0.69 705 0.45 

 

Tab. 7.6: Linear correlation coefficient (r), slope (a), and intercept (b) of the statistical-

dynamical simulations and the dynamical simulation. 
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Figure 7.11: Scatter plot of the annual precipitation amount of observations (x-axis) and 

dynamical (ERA) and statistical-dynamical downscaling simulations (y-axis). The grey 

line is the bisecting line and the other lines are the linear fits. 
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The precipitation patterns within the investigation area are captured well by the dynamical 

and the statistical-dynamical downscaling compared to observations. The precipitation 

amounts on the ridges of the mountains are overestimated by the OB and the MB simula-

tion for the Gp combination and the ERA simulation and the precipitation maxima over the 

ridges are shifted slightly to the west, which is normally the windward side of the moun-

tains (Fig. 7.12). There is a strong overestimation in all parts of the investigation area in 

the dynamical simulation compared to the measurements. 

The difference in the precipitation patterns for OB and MB simulations is depicted in 

Fig. 7.13 for the total, the convective and the grid scale amount. In general, we get an in-

crease of total precipitation for the Gp, the GpSpn and the GpSp combinations for the west 

side of the Black Forest for the MB simulations compared to the OB simulations, with the 

strongest increase in the GpSpn simulation. A decrease in total precipitation over the ridge 

of the Black Forest for all four combinations with strongest differences in the Gpn simula-

tion can be observed. For the Gpn simulation the areas with decreasing precipitation in the 

investigation area east of the Black Forest compensate the areas with increasing precipita-

tion for the MB simulation in that region, so that on average we find a decrease of precipi- 
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Figure 7.12: Total precipitation amount for the year 2001 for the ERA dynamical simula-

tion (top, left), the observations (top, right), the GpOB (bottom, left) and the GpMB (bot-

tom, right) simulation. 
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tation in the MB simulations there. For the GpSpn simulation we get an increase of precipi-

tation for the MB simulations in this area instead; for the Gp and the GpSp combination the 

areas of increasing precipitation are as frequent as areas of decreasing precipitation in this 

region. 

The difference in convective precipitation for all four combinations show the same patterns 

as the total precipitation amount, but the differences are even stronger than in the total pre-

cipitation amount for the west side of the Black Forest (Fig. 7.13).  
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Figure 7.13: Difference of total (left), convective (middle) and grid scale (right) precipita-

tion amount between OB and MB statistical-dynamical simulations for the four combina-

tions Gpn (first line), Gp (second line), GpSpn (third line) and GpSp (fourth line). For ab-

breveations see page 137. 
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The differences in grid scale precipitation (max. 130 mm) are not as strong as in the con-

vective precipitation (max. 400 mm) (Fig. 7.13). The patterns in the Rhine Valley and the 

Black Forest look quite similar in the Gp, GpSpn and GpSp simulations and a decrease of 

grid scale precipitation in the MB simulations compared to the OB simulations can be ob-

served. The Gpn simulation is the only one that shows an increase in precipitation amount 

for the MB simulation over the Black Forest and the Swabian Jura. 

As expected, the main differences in precipitation between the OB and the MB simulations 

are due to differences in the convective precipitation. To determine the influence of the soil 

initialisation on the precipitation amount of single classes for the Gp combination, OB and 

MB simulations were compared with the observed values for these classes for three sites, 

which are positioned in the areas with the largest differences between the two simulations.  
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Figure 7.14:  Comparison of observed (black) and simulated precipitation amount for the 

Gp combination for the Lahr (top, left), Freudenstadt (top, right) and Hechingen site (bot-

tom). 
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For the Lahr site situated west of the Black Forest, the difference in the annual precipita-

tion amount is about 150 mm between the two simulations with higher values for the MB 

simulation. This fits better with the observation but is nevertheless 280 mm too low com-

pared to the observed value. The precipitation amounts in the simulations that are too low 

are mainly caused by two classes, for which the model produces less or even no rain at all, 

but where precipitation was observed (Fig. 7.14). The higher precipitation amounts of the 

simulations obtained in other classes cannot compensate for this difference due to their 

lower frequency. The precipitation amounts for the single classes are quite similar in both 

simulations for most of the classes and we get maximum differences of 2.5 mm. In eight of 

the 13 classes, for which precipitation is simulated, precipitation amounts are enhanced in 

the MB simulation. This enhancement is unrealistic compared to the observations.  

For the Freudenstadt site, which is situated in the Black Forest, the difference in annual 

precipitation amount is about 20 mm between the OB and MB simulations with better re-

sults for the OB simulation. The simulated precipitation amount is about 600 mm lower 

than the observed one. The number of classes (four) where the precipitation amount fits 

better to the observed one in the OB simulation is equal to the number where it fits better 

for the MB simulation (Fig. 7.14). As for the Lahr site, we get lower and no precipitation 

in the simulation for class 8 and 10, although precipitation had been observed. This leads 

to the underestimation of the annual precipitation amount by the simulations. This cannot 

even be compensated by the 10 classes where the precipitation amount is overestimated by 

the simulations due to the high frequency of class 8 and 10.  

For the Hechingen site in the east of the Black Forest, there is an overestimation of the 

annual precipitation amount by the simulations of about 100 mm. This is due to an overes-

timation of precipitation by the simulations in nearly all classes where precipitation is ob-

served (Fig. 7.14). The results for the OB and the MB simulations differ by maximum 1 

mm in all classes except class 20. In class 20, the difference is about 5 mm with unrealistic 

precipitation amounts for the OB simulation and quite good results for the MB simulation. 

As this is the most frequent class, we get a difference of 180 mm between OB and MB 

simulation and better results compared to observations for the MB simulation. For seven 

classes the MB simulation gives better simulation results than the OB simulation compared 

to observations and the OB simulation only shows better results for one class. 
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From these three examples it may be concluded that adequate annual precipitation sums 

are sometimes obtained for the wrong reasons. The model is not able to simulate the pre-

cipitation amounts correctly for each class but the underestimation of precipitation amount 

by some classes compensates the overestimation by other classes. The difference in pre-

cipitation amount is lower than 1 mm for most of the classes between OB and MB simula-

tions. The influence of soil moisture and soil temperature on precipitation is largest in 

summer for days in May and June (class: 13 and 20). On these days, the differences in pre-

cipitation amounts between OB and MB simulations are strongest. For some sites and 

classes the use of VEG3D soil profiles leads to an enhancement of precipitation and some-

times to a decrease. This fits better to observations for some site/class combinations and 

not for others. Due to the limited number of summer days, it is not possible to decide 

whether the method of using pre-processed soil profiles or the method of using ERA-40 

reanalysis data as initialisation for the soil profiles gives better results. A statistical evalua-

tion of daily simulations initialised with ERA-40 data and initialised with VEG3D data for 

summer days of different synoptic conditions is necessary to judge the efficiency of both 

methods. For non convective days, the initialisation by VEG3D soil variable profiles seems 

to work well when only precipitation is compared.  

7.3 SUMMARY  

In this chapter it has been shown that the statistical-dynamical downscaling method pre-

sented here is able to reproduce the results for 2m-temperature obtained by dynamical 

downscaling and it shows even better results for the precipitation amount than the dynami-

cal downscaling. This may be caused by the development of an own climate in the dy-

namical simulations where feedbacks with evaporation over longer time scales than a sin-

gle day can cause higher precipitation rates on some days. The underestimation of 2m-

temperature at all sites with the statistical-dynamical downscaling compared to observa-

tions is mainly due to the too low temperatures in the driving data for the daily simulations. 

The average precipitation amount is reproduced reasonably well by statistical-dynamical 

downscaling, although differences of up to 700 mm in the annual precipitation amount can 

occur at the individual sites. 
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The GpSpn combination generates the most reliable results for 2m-temperature as does the 

Gp combination for precipitation. This difference in suitability of one combination for 2m-

temperature and precipitation simulation is mainly due to the over or underrepresentation 

of summer days by the different combinations. Due to this sensitivity to classified days, it 

is not possible to decide in advance for any other year, which of the four combinations 

gives best results and, if a combination can be found which fits best for 2m-temperature 

and precipitation amount. Ideally, for a practicable statistical-dynamical downscaling 

method with focus on temperature and precipitation, a SOM classification should be de-

veloped, which guarantees best fits for temperature and precipitation so that only simula-

tions for one combination are necessary. This could be achieved by using more than two 

meteorological fields for the classification of the 20 classes or by taking into account more 

than 20 classes to better represent summer days with convective precipitation. It would be 

also possible to force the algorithm to identify important classes or to determine the num-

ber of classes, which are to be classified in a certain period of the year. Further meteoro-

logical fields for classification could be the relative humiditiy in 700 hPa or the equivalent-

potential temperature between 850 and 500 hPa (HEIMANN  and SEPT, 2000). An increase in 

the number of classes would prevent a too strong influence of single classes on the result 

and perhaps offer the possibility to take into account more convective summer days. In-

creasing the number of classes from 20 to 30 would mean an increase of 50% in computing 

time, but this is only an increase from 5% to 8% in the computing time needed for a dy-

namical simulation. Even if different combinations for the calculation of the 2m-

temperature and for the calculation of the precipitation amount would be necessary, the 

method would save 80 % of computing time compared to the dynamical method.  

The use of pre-processed soil moisture and soil temperature profiles seems to be an advan-

tage. However, the values of the soil variables depend largely on the quality of the driving 

data of the stand-alone model. Too coarse driving data may be a disadvantage because it 

affects a considerable part of the investigation area and if the data are not consistent, the 

results of the statistical-dynamical downscaling in this part may be worse than with soil 

profiles taken directly from the driving data. Possibilities to overcome this problem would 

be the use of driving data with a finer horizontal resolution or the height correction of driv-

ing data at least for temperature.  Further steps in the development of a more homogeneous 

statistical-dynamical downscaling method could be the use of the same data for SOM clas-
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sification and boundary data for the driving model and the use of the same LSS for stand-

alone and regional model simulations. In this study the SOM classification has been done 

using the NCEP reanalysis data and ERA-40 reanalysis data has been used as driving data 

for the regional model. This could be harmonised by using the same reanalysis data as data 

for classification and as driving data. The LSS VEG3D was used for the production of the 

adjusted soil profiles; the COSMO-CLM uses TERRA_LM as LSS. In principle, it is also 

possible to use TERRA_LM for the production of the adjusted soil profiles. 

 

 

 



 

 

 

8 SUMMARY AND OUTLOOK  

Until today, very few high-resolution regional climate simulations with horizontal resolu-

tions finer than 15 km have been carried out and many questions about the advantages and 

uncertainties of such simulations regarding meteorological as well as hydrological quanti-

ties still remain open. In this thesis, basic investigations on high-resolution regional climate 

modelling over complex terrain were carried out to assess the advantages and uncertainties 

of high-resolution regional climate simulations; this was done by performing ensemble 

simulations. The focus is on the sensitivity and reliability of the 2m-temperature as an im-

portant quantity to detect climate trends and on precipitation as an important quantity of 

the hydrological cycle. Both quantities may be compared to observations and are therefore 

suitable to evaluate the high-resolution simulations and to determine the added value com-

pared to simulations with coarser horizontal resolution. 

Three main topics were investigated, with the aim of promoting high-resolution regional 

climate simulation with the regional climate model COSMO-CLM. First, an adequate 

model setup for high-resolution regional climate simulations for the area of Southwest 

Germany was defined by the evaluation of ensemble simulations with the regional climate 

model COSMO-CLM. Secondly, an advanced land surface scheme with an explicit vegeta-

tion layer was coupled to COSMO-CLM to improve the parameterisation of the soil and 

vegetation processes, and to study the influence of land surface schemes on regional cli-

mate simulations and particularly on the water cycle. Third, a statistical-dynamical down-

scaling method was developed to replace the time-consuming dynamical simulations.  

The regional climate model COSMO-CLM was used for all the studies. The model has 

been developed in recent years from the weather prediction model COSMO of the German 

Weather Service. So far, the model has never been used with horizontal resolution finer 

than 10 km for climate applications over decadal periods for Southwest Germany. The 

1990s were selected as an evaluation period since the climate change is most pronounced 

in recent years and the availability and quality of driving data and observations is highest 

during this period. The necessity and strengths of high-resolution climate simulations can 

be demonstrated best for areas of complex topography. Therefore, the evaluation has been 

done for the region of Southwest Germany. 
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A model setup for climate simulations can be considered suitable when the simulation 

yields best results compared to the observations of past decades. Based on the performance 

of ensemble simulations over the period from 1988 to 2001 and by varying domain size, 

horizontal resolution, driving data, physical parameterisations, and time integration 

schemes, an adequate model setup was determined. A suitable model setup includes the 

following: ERA-40 reanalysis data as driving data, a horizontal resolution of at least 7 km, 

a model domain containing the Alps, and climatological soil water and soil temperature 

initialisation. The better performance of higher resolution simulations compared to simula-

tions with coarser resolution has been clearly shown in this study. The Runge-Kutta time 

integration scheme can be considered as a promising alternative to the leapfrog scheme but 

further studies should be carried out to demonstrate the benefit of this scheme, which was 

originally used only for horizontal resolutions finer than three kilometer. 

The variability obtained by using different model setups is largest for the change of the 

driving data at the lateral boundaries of the model. For temperature, the regional model is 

able to correct differences between the driving data due to the production of an own cli-

mate, which is more influenced by the processes within the simulation domain than by the 

data given at its lateral boundaries. For large scale phenomena like cyclones, the differ-

ences in the driving data sets cannot be compensated by the regional model and are there-

fore reflected and even amplified in the precipitation results of the regional model. Hence, 

differences between simulations with different driving data sets are largest in winter time 

when the large-scale forcing dominates the circulation in the regional climate model. In 

summer, when the large-scale forcing is weak, the regional model results are much more 

independent of the driving data set. Overall, the ERA-40 reanalysis data set provides better 

driving data for the selected region than the NCEP reanalysis data set. 

The variability obtained by changing the initial soil moisture content, the number of active 

soil layers and greenhouse gas concentration are quite small and a clear sensitivity is only 

observed for the change of the convection scheme and the time-integration scheme.  

The influence of simulation setup on single components of the water balance of the soil is 

quite different; evaporation and soil water content are rather unaffected by the change of 

horizontal resolution or driving data, whereas precipitation and runoff show a clear de-

pendency on such changes. 
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All ensemble simulations show a negative bias in 2m-temperature and a positive bias in 

precipitation, which has also been detected by other model studies with COSMO-CLM 

(BÖHM et al., 2006). The bias in temperature is about -0.8 K and in precipitation about 

20%. For horizontal resolution of 50 km, model intercomparison studies found a bias of +/-

2°C and a precipitation bias of +/- 50% for regional climate models (IPCC, 2001). Com-

paring the bias obtained in COSMO-CLM simulations with these findings, the results ob-

tained by high-resolution climate simulations with COSMO-CLM are more than satisfying. 

The still significant overestimation of precipitation compared to observations, especially in 

winter, may also be a problem of the observation error that leads to an underestimation of 

observed precipitation in winter.  

With the adequate model setup, COSMO-CLM is able to reproduce the orders of magni-

tude of the observed temperature trends of the last decade. 

In this thesis, the operationally used land surface scheme TERRA_LM was replaced by the 

VEG3D land surface scheme in COSMO-CLM. To provide a VEG3D version that is ade-

quate for climate simulation, the freezing and melting processes in the soil were imple-

mented in VEG3D. Freezing and melting processes in the soil are important for the correct 

simulation of soil temperature and soil water content and therefore for the calculation of 

the heat fluxes into the atmosphere. Stand-alone simulations with the newly implemented 

parameterisation show good agreement to observations and better results than the version 

without soil freezing processes. 

In most models, within the soil column of a regional model grid box only one soil type is 

considered for the whole column, although the soil generally consists of several layers with 

different soil types. The use of different soil types within one soil column improves the 

simulation results of the stand-alone VEG3D version with respect to the soil water trans-

port considerably. Therefore, a soil-type inventory was provided in this thesis, which can 

be used for simulations with the COSMO-CLM/VEG3D system.  

Better agreement of soil temperature and heat fluxes with observations is obtained in 

stand-alone simulations with the VEG3D scheme compared to the TERRA_LM scheme, 

especially over high vegetation. This is due to the explicit consideration of a vegetation 

layer and a different formulation of soil water transport and root depth in the VEG3D 

scheme.  
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The performance of the COSMO-CLM/VEG3D system was assessed by single-day simu-

lations. The near-surface parameters, such as e.g. heat fluxes and 2m-temperature, show 

reasonable results and also the evolution of the boundary layer that depends on the heat 

fluxes, calculated by the land surface scheme, seems to be realistic.  

The findings for the annual simulation with the online coupled system, which were driven 

by GME analysis data, are similar to the findings for the decadal simulation, which were 

driven by ERA-40 reanalysis data. The area average of annual precipitation shows lower 

amounts in the VEG3D simulation, which is in better agreement with observations. The 

convective precipitation increases in the simulation with VEG3D compared to the simula-

tions with TERRA_LM and the grid scale precipitation decreases. Due to the nonlinearity 

of the processes involved, several reasons are responsible for this behaviour. One possible 

reason is the reduced evaporation over the land areas, which leads to a lower humidity in 

the atmosphere, and, therefore, to a reduction of grid scale precipitation in the simulation 

with VEG3D. For the triggering of convection, and therefore also for the production of 

convective precipitation, the heating of the soil is important. The heating is higher in the 

VEG3D simulation in the Rhine Valley and the slopes of the Black Forest. This may lead 

to more frequent convective precipitation and to an increase in the convective precipitation 

amount. The differences in annual 2m-temperature and precipitation in VEG3D and 

TERRA simulation are comparable to the differences between the TERRA simulation and 

simulations, where the convective scheme or the time-integration scheme are changed. 

Neither of the two land surface schemes gives clearly better results for 2m-temperature and 

precipitation than the other in the online coupled simulations. Due to the fact that observa-

tions of heat fluxes, soil temperature and soil water content are quite rare, the model per-

formance in regard to observations can only be investigated by comparing 2m-temperature 

and precipitation. In the same vein, the differences in the water balance can only be inves-

tigated qualitatively: the area averages of the absolute values in both simulations are quite 

similar with higher precipitation and evaporation amounts in the TERRA simulation (dif-

ference of 3 and 8% in the decadal sum) and higher runoff rates in the TERRA simulation 

(difference of 3% in the decadal sum). The increase in soil water content over the decade is 

higher in the VEG3D simulation; that is due to the higher water holding capacity of the 

soil. Although the differences in the area averages are below 10%, larger differences in the 

water balance components for single parts of the model area are found. Therefore, the use 
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of a different land surface scheme yields a noticeable effect on the water cycle and this 

influence of land surface scheme on hydrological variables should be kept in mind when 

studying the water cycle with meteorological models. 

In this thesis, a strategy for an efficient statistical–dynamical downscaling scheme was 

developed for regional climate simulations. The SOM algorithm is used to select single 

days within a period, which are representative for the circulation patterns occurring during 

this period. These days, classified by the SOM algorithm, are simulated explicitly by the 

COSMO-CLM and the results are added up, weighted with the frequency of the pattern 

represented. This can save about 80% of the CPU time needed for an explicit simulation of 

every day of the year; however, up to now only averages over the time period can be ob-

tained this way. The problem of the soil initialisation was solved by using pre-processed 

soil moisture and soil temperature profiles. These profiles are produced by running the soil 

model in stand-alone mode driven by the reanalysis data used also as driving data for the 

daily simulations. These simulations are initialised some years before the starting date of 

the daily simulations and the soil profiles can therefore adapt to the land surface scheme 

and the driving climate.  

The statistical-dynamical method provided here is able to reproduce the results obtained by 

dynamical downscaling for the annual means of 2m-temperature and precipitation. Com-

pared to observations, both methods underestimate the 2m-temperature and overestimate 

the precipitation. This disagreement of statistical-dynamical downscaling with observa-

tions is not caused by the classification of days, however. This has been shown by using 

the observed daily mean values for the calculation of the annual means by the statistical-

dynamical method. With observed values, the results of the statistical-dynamical down-

scaling agree well with the annual mean values obtained from continuous observations. 

The disagreement is rather caused by the driving data as demonstrated by the performance 

of simulations with different driving data sets. 

The use of pre-processed soil temperature and soil water profiles shows the potential to 

improve the single day simulations but the profiles are strongly influenced by the driving 

data especially during the summer months and, therefore, further studies are necessary to 

investigate and improve the quality of the driving data. 
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In this thesis, a first step towards reliable high-resolution climate simulations with 

COSMO-CLM was made, which can serve as the basis for further studies. Simulations 

using the adequate model setup, but with a horizontal resolution of 2.8 km, and ensemble 

simulations, where the initial and boundary conditions will be disturbed, are planned at the 

institute to study present and future climate change on regional scales. The Runge-Kutta 

scheme seems to be an alternative to the leapfrog scheme and further studies should be 

carried out to confirm the advantages and disadvantages of this time-integration scheme.  

Further evaluation of the VEG3D coupled online to the COSMO-CLM is planned and a 

reconsideration of the calculation of near-surface parameters will be necessary to provide 

near-surface values more suitable to the observed ones over high vegetation. A reconsid-

eration of the boundary layer parameterisation may be useful to take better account of the 

additional vegetation layer. Until now, three-dimensional maps were provided to take into 

account different soil types within one soil column, but the evaluation of coupled simula-

tions using these maps needs to be undertaken.  

Statistical-dynamical downscaling reveals a high potential to replace time-consuming dy-

namical simulations for the provision of annual mean values of meteorological variables, 

but the classification of single days has to be reconsidered and further studies should be 

carried out on the initialisation of the soil profiles. 

 

 

 

 

 

 

 

 



 

 

 

9 APPENDIX 

9.1 ASSIGNMENT OF SOIL TYPES FROM HAD  TO VEG3D 

In the Hydrologischer Atlas Deutschland (HAD, 2003) 60 soil forms are classified for the 

area of Germany depending on their geological history (Fig. 8.1). Each soil form consists 

of at least one soil horizon and each soil horizon consists of one or more different soil 

types (Fig 8.2). To use the information from HAD in VEG3D, the 34 soil types defined in 

HAD for each soil form are assigned to the 13 soil types used in VEG3D (Tab. 8.1). A 

digitized map of HAD is then used to produce a three dimensional digital inventory of 

VEG3D soil types. The soil classification of HAD ranges down to a depth of 2 m. Below 

this depth, loam is assumed as soil type for all VEG3D layers. 

 

soil type VEG3D soil type HAD 

loamy sand (lS) 
SI4, SI3, lu, Sl2, St2, Su4, 
Su3, Su2 

loam (L) Ls2 

silty clay loam (utL) Lt3 

clay loam (tL) Lt2 

clay (T) Tl, Tt 

peat (Tf) Hn, Hh 

sandy loam (sL) St3, Ls4, Ls3 

sand (S) Ss, fS, mS, gS 

silt loam (uL) Uls,Lu, Ut4, Ut3 

sandy clay loam (stL) Lts 

silt  (U) Ut2 

sandy clay (sT) Ts4, Ts3, Ts2 

silty clay (uT) Tu4, Tu3, Tu3      

 

Table 9.1: Assignment of HAD soil types to VEG3D soil types (left) and example for soil 

type assignment for soil form 13 (right). 



 9 Appendix   

 

 

160  

 

Figure 9.1: Map of soil forms in Germany from HAD (Courtesy of RICHTER et al., 2003).  
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Figure 9.2: Soil forms with assigned soil types from HAD (courtesy of RICHTER et al., 

2002). 
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9.2 EVALUATION OF THE REVISED CLOUD MICROPHYSICS 

SCHEME OF COSMO MODEL  

In COSMO model version 3.22 a revised cloud microphysics scheme is implemented to 

overcome the problem of overestimated precipitation in winter, too frequent very light pre-

cipitation, and overestimation of orographic precipitation. Main changes in the cloud mi-

crophysics scheme were: 

(1) The replacement of the Kessler-type autoconversion/accretion scheme by the 

parameterisation of SEIFERT and BEHENG (2001) 

(2) The introduction of a new parameterisation for the intercept parameter in the snow 

size distribution 

(3) The introduction of a temperature dependent sticking efficiency and 

(4) The change in geometry of snow and terminal fall velocity 

These changes lead to a slower formation of rain and snow and a reduced sedimentation 

velocity for snow. A more detailed description of the changes made and their influence on 

COSMO model results can be found in SEIFERT (2007). 

To evaluate the long term behaviour of the scheme, two different kinds of simulations were 

performed: 

1) Simulations driven by GME analysis data every six hours for the period from 

1.12.2000 to 31.12.2001 with a grid size resolution of 0.0625° and 64x64 grid 

points for Southwest Germany 

2) Simulations driven by reanalysis data every six hours for the period from 1988 to 

2001 with a grid size resolution of 0.44° for the whole European region (80x61 grid 

points) 

The simulations were run with the COSMO model version 3.21 containing the old scheme 

and the COSMO model version 3.22, where the new scheme is implemented. The only 

difference between the two model versions is the change in the cloud microphysics 

scheme. 



 163 

 

 

a) Evaluation of the GME driven simulations for the year 2001 

The comparison of the total precipitation shows two main differences between the old and 

the new scheme (Fig. 9.3): The precipitation is transported more to the lee side of the 

mountains with the new scheme, resulting in a decrease of precipitation amount at the 

windward side of the mountains and an increase on the lee side, which is much more real-

istic compared to observations. The area average of precipitation increases by about 1 mm 

with the new scheme. 

Comparisons of the grid scale precipitation between the two schemes show a decrease of 

precipitation amount over the Black Forest and an increase of precipitation on the lee side 

of the mountains in the simulation with version 3.22 (Fig. 9.4). 

Comparisons of the convective precipitation show no significant differences between the 

two schemes (Fig. 9.5). 
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Figure 9.3: Annual total precipitation amount for the year 2001 for the old (upper left) and 

new (upper right) microphysics scheme for the whole area and for observations within 

Germany (bottom). 
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Figure 9.4: Annual grid scale precipitation amount for the year 2001 for the old (left) and 

new (right) microphysics scheme. 
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Figure 9.5: Annual convective precipitation amount for the year 2001 for the old (left) and 

new (right) microphysics scheme. 

 

A comparison of the monthly total and grid scale precipitation sums shows that the largest 

differences between the two schemes occur in the winter months with maximum differ-

ences of about 25 mm, but there is no version, which generally produces more or less pre-

cipitation over all months (Fig. 9.6). 

The convective precipitation shows a slight decrease of up to 5 mm per month with the 

new cloud microphysics scheme and the maximum differences occur in summer (Fig. 9.7). 

In the monthly mean 2m-temperature there are only marginal differences of up to 0.2 K 

(Fig. 9.7) 
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Figure 9.6: Monthly total (left) and grid scale (right) precipitation amount for the year 

2001 with the model version 3.21 (red) and 3.22 (yellow).  
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Figure 9.7: Monthly convective precipitation amount (left) and monthly mean 2m-

temperature (right) for the year 2001 with the model version 3.21 (red) and 3.22 (yellow). 

 

b)  Comparison of the ERA 40 driven simulations for the period 1990 - 1999 

Simulations have been done with ERA-40 and NCEP Reanalysis data as driving data and 

with climatological soil initialisation as described in section 4.1. For the evaluation the 

average of the annual precipitation sums for the period 1990 – 1999 has been compared. 

An increase of precipitation with the new version 3.22 can be observed for Germany, the 

north of France and Eastern Europe by up to 100 mm per year in the simulation with 

NCEP driving data (Fig. 9.8). A decrease of precipitation amount with the new scheme can 

be observed for the alpine region and Spain by up to 200 mm. The same findings are also 

valid for the simulation with ERA-40 as driving data (Fig. 9.8). 
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Figure 9.8: Difference of averaged annual precipitation sum for the period 1990–1999 

between the new and the old microphysics scheme for simulation driven by NCEP (left) 

and ERA-40 (right) reanalysis data. 

 

9.3 INFLUENCE OF GME  DRIVING DATA ON DAILY SIMULATIONS  

Since the year 2005, the GME uses the multi layer soil model and data for a correct initiali-

sation of the multi layer soil model in COSMO model is available. Using the interpolation 

program int2lm it is also possible to interpolate the GME data before 2005, which contain 

the older two layer soil scheme (TERRA), onto the multi layer grid of the multi-layer soil 

scheme (TERRA_LM) in the COSMO model. Due to the formulation of the soil schemes 

the uppermost soil layer in the older two layer scheme contains in general more soil water 

than the equivalent layers in the new multi-layer scheme would do for the same simulation 

period. For climate simulation this is not as important because the surplus in water content 

is evaporated after some days, but for simulations of single days this can be of crucial im-

portance.  

Two different simulations have been performed to investigate the influence of the soil 

moisture initialisation onto COSMO model simulations for a single day: In the first one the 

multi layer soil model in the COSMO model was initialised by the data from the two layer 

soil model from the GME data. In the second one the soil initialisation was taken over 

from newly processed GME data, which already contain the multi layer soil model. In the 

second simulation only the soil initialisation has been taken over from the new GME data. 

The atmospheric forcing is the same as in the first simulation. 

  mm 
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Simulations for the first of June 2002 with a horizontal resolution of 7 km for the region of 

Southwest Germany show that the results in near-surface specific humidity can differ by 

up to 3 g kg-1 between the two simulations with higher values in the simulation where the 

two soil layer GME data has been interpolated onto the multi-layer COSMO model. These 

values are too high compared to observations and the simulation where multi layer soil 

model data from GME was used for the initialisation of COSMO model agree better with 

the observed near-surface values (Fig. 9.9). 

Differences are also visible in the boundary layer where we find unrealistic high specific 

humidity in the first kilometre above the surface. The specific humidity is up to 1 g kg-1 

higher than in the simulation where we initialised with the multi layer data and 1.5 g kg-1 

higher than the observed one. As a consequence, we observe an unrealistic low potential 

temperature, which is up to 1 K lower than for the correct soil initialisation and the ob-

served one (Fig. 9.10).  

In the simulation where the two layer scheme was used for initialisation this higher humid-

ity in the boundary leads to an unrealistic enhancement of cloud formation compared to 

satellite images (Fig. 9.11). 

As a consequence of this comparison, it is therefore recommended to choose one of the 

following configurations for simulations before 2005 with GME driving data: 

 

(1) Usage of the two layer scheme for GME and COSMO model simulations. This 

means an interpolation from the two layer scheme to the two layer scheme for ini-

tialisation or 

(2) Usage of newly processed GME analysis data, which is produced by using the 

multi-layer soil scheme or 

(3) Simulation of periods, which are long enough to reduce the humidity by 

evapotranspiration. 

 

Using newly processed GME analysis data from the years before 2005 one should keep in 

mind that they can differ considerably from the older ones, which have been obtained by 

the operational system! 
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Figure 9.9: Simulations for the first of June 2002 with soil moisture initialisation from the 

old two layer soil model of GME (top) and from the multi layer scheme of GME (bottom). 

The observations are indicated by dotted lines and the simulations by solid lines. The loca-

tion of the observation sites is depicted in Fig. 8.11. 

 

 

Figure 9.10: Profiles of potential temperature for the first of June 2002 with soil moisture 

initialisation from the old two layer soil model of GME (left) and from the multi layer 

scheme of GME (right). The observations are indicated by dotted lines and the simulations 

by solid lines. 
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Figure 9.11: Cloud cover for the first of June 2002 in the Black Forest region obtained by 

the simulation with soil moisture initialisation from the old two layer soil model of GME 

(left), by the simulation with soil moisture initialisation from the multi layer scheme of 

GME (middle) and observed by satellite (right). The abbreviations for the observation sta-

tions mean FT: Freistett, HB: Horb, SB: Sasbach, BM: Brandmatt, BR: Brandrüttel, HO: 

Hornisgrinde. 

 

 

9.4 ABBREVIATIONS  

COSMO 

LM  Lokal-Model 

CLM  Climate version of LM  

COSMO model  new name for LM 

COSMO-CLM  new name for CLM 

COSMO-EU  operational COSMO model setup with 7 km grid size 
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Institutes 

DMI  Danish Meteorological Institute 

DWD  Deutscher Wetterdienst 

ECMWF  European Centre for Medium-Range Weather Forecast 

GKSS  Gesellschaft für Kernenergieverwertung in Schiffbau und Schiffahrt 

IMK  Institut für Meteorologie und K limaforschung, Universität Karlsruhe 

MPI  Max Planck Institute for Meteorology in Hamburg 

NCEP  National Centers for Environmental Prediction  

PIK  Potsdam Institut für K limafolgenforschung 

 

Global models 

GCM  General Circulation Models 

ERA-40  ECMWF Re-Analysis data 

ECHAM5  fifth-generation atmospheric general circulation model developed at 

MPI in Hamburg 

HadCM3  Hadley Center Coupled Model version 3 

 

Regional models 

RCM  Regional Climate Model 

CRCM  Canadian Regional Climate Model 

HIRHAM  Regional climate model developed by MPI and DMI 

KAMM   Karlsruhe Mesoskaliges Modell 

MM5  Mesoscale Model 5 

RegCM  Regional Climate Model 

REMO  Regional Model 

 



 171 

 

 

Land surface schemes 

LSS  Land Surface Scheme 

SVAT  Soil Vegetation Atmosphere Transfere model 

BASE  Best approximation of surface exchanges 

BATS  Bioshere Atmosphere Transfer Scheme 

ISBA  Interaction Soil Biosphere Atmosphere 

MOSES  Met Office Surface Exchange Scheme 

PILPS  Project of intercomparison of land-surface parameterization schemes 

SiB2  Simple Biosphere 2 

SNOWMIP2  Snow Model Intercomparison Project  

TERRA_LM  Soil vegetation model of COSMO 

VEG3D  Soil-vegetation model of KAMM 

 

Others 

CRU  Climate Research Unit 

EU  European Union 

IPCC  Intergovernmental Panel on Climate Change 

KLIWA  Kl imaveränderung und Konsequenzen für die Wasserwirtschaft  

RMSD  Root Mean Square Difference 

RMSE  Root Mean Square Error 

SLEVE   Smooth Level Vertical 

SOM  Self-Organizing Maps 

VERTIKATOR Vertika ler Austausch und ORographie 
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