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Abstract

The new weather radar network of the German Weather Service (DWD) will, after

its complete update in 2014, comprise 17 dual-polarimetric C-Band Doppler radars

evenly distributed throughout Germany for complete coverage. They provide unique

3-dimensional information about dynamical and microphysical characteristics of precipi-

tating clouds in high spatial and temporal resolutions. Up to now, these data are not used

in the operational COSMO-model of DWD except within the framework of the latent

heat nudging and for a simple nudging method of Doppler velocity. Future applications

are, however, planned to take better advantage of radar data within an upcoming new

4-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) data assimilation

system, which will be based on the operational convective-scale ensemble prediction

system (EPS) COSMO-DE-EPS (grid spacing of 2.8 km, rapid update cycle, Central

Europe domain). It is assumed that the assimilation of weather radar data is a promising

means for improvements of short-term precipitation forecasts, especially in convective

situations.

However, the observed quantities (reflectivity, Doppler velocity and polarization prop-

erties) are not directly comparable to the prognostic variables of the numerical model.

In order to, on one hand, enable radar data assimilation in the framework of the above-

mentioned 4D-LETKF-assimilation system and, on the other hand, to facilitate compar-

isons of numerical simulations with radar observations in the context of cloud micro-

physics verification, a comprehensive modular radar forward operator has been developed.

This operator simulates the measurement process of radar observables from the prognos-

tic cloud physical model variables and allows for direct comparison in terms of radar

observables. The operator consists of several modules, each of which handles a special

physical process (e.g., scattering, extinction, microwave propagation, etc.). Each of these

modules offers different formulations associated with different complexity in simulations,

which can be flexibly chosen according to user’s needs. In order to assess the performance

of the operator, a series of sensitive experiments have been conducted. The main goal



here is to find an optimal configuration of the operator in the sense of balance between

physical accuracy and computational expense. Examples of various possibilities which

can be chosen depending on the situations are: 1) the radar beam can be considered to

propagate as a simple ray or treated with the actual volume averaging characteristic; 2)

beam bending can be either derived from a 4/3 earth radius concept or from the actual

simulated vertical gradient of the refractive index of air; 3) radar reflectivity may be

calculated from the full Mie-theory or from various (more efficient) approximations. 4)

Attenuation effects may be taken into account or not. To meet operational demands,

the operator should be compatible with supercomputer architectures. Moreover, the

program code has to be as efficient as possible, which requires good parallelization and

vectorization properties of the code.

The results of sensitivity experiments show that the operator is able to efficiently

simulate reflectivity and Doppler velocity under consideration of effects like beam

bending and broadening as well as attenuation.

After having developed the operator and integrated the processing of radar data into

the 4D-LETKF software package provided by DWD, we have exemplarily performed

first data assimilation experiments. For that we have investigated the convective event of

31 May 2011. The required COSMO-DE ensemble is driven by a test ensemble of the

global model GME. The preliminary results are then presented.



Kurzfassung

Das neue Wetterradar-Netzwerk des Deutschen Wetterdiensts (DWD) wird nach seiner

vollständigen Aktualisierung im Jahr 2014 17 dual-polarisierte C-Band Dopplerradare

enthalten, die mit einer kompletten Abdeckung gleichmäßig in ganz Deutschland verteilt

sind. Wetterradare liefern einzigartige 3-dimensionale Informationen über dynamische

und mikrophysikalische Eigenschaften von Niederschlagswolken in hohen räumlichen

und zeitlichen Auflösungen. Bisher werden diese Daten noch nicht im operationellen

Wettervorhersagemodell COSMO des DWD verwendet außer bei einfachen Verfahren

zum Nudging der latenten Wärme und der Dopplergeschwindigkeit. Jedoch ist eine

Nutzung der Radardaten ist in der Zukunft geplant, nämlich indem Radardaten mit dem

zukünftigen neuen Datenassimilationssystem 4-Dimensional Local Ensemble Transform

Kalman Filter (4D-LETKF) assimiliert werden, das auf dem konvektion-erlaubenden

Ensemble-Prognose-System (EPS) COSMO-DE-EPS (horizontaler Rasterabstand von

2,8 km, schneller Update-Zyklus, Zentraleuropa) basiert. Wir gehen davon aus, dass

die Assimilation von Radardaten ein vielversprechendes Mittel zur Verbesserung der

kurzfristigen Niederschlagsvorhersage ist, insbesondere in konvektiven Situationen.

Doch die Radardaten (Reflektivität, Dopplergeschwindigkeit und Polarisationsparame-

ter) sind nicht direkt vergleichbar mit den prognostischen Variablen COSMO-Modells.

Um einerseits Radardaten in das oben genannte 4D-LETKF-Assimilationssystem zu

assimilieren, und um andererseits den Vergleich zwischen Daten der numerischen Simu-

lationen und Radardaten im Rahmen der Verifikation der Wolkenmikrophysik zu erle-

ichtern, wird ein umfassender modularer Radarvorwärtsoperator entwickelt. Der Oper-

ator simuliert den Messvorgang von Radardaten aus den prognostischen wolkenmikro-

physikalischen Modellvariablen und ermöglicht den direkten Vergleich in Form von

Radardaten. Der Operator besteht aus mehreren Modulen, die jeweils ein spezielles

physikalisches Verfahren (z.B., Streuung, Extinktion, Ausstrahlungsausbreitung, usw.)

beschreiben. Jedes dieser Module bietet verschiedene Formulierungen mit unterschiedlichen

Simulationskomplexitäten, die nach Bedarf flexibel gewählt werden können. Um die



Leistung des Operators zu überprüfen, werden mehrere Sensitivitätsexperimente wur-

den durchgeführt. Das Hauptziel ist dabei eine optimale Konfiguration im Sinne eines

Gleichgewichts zwischen physikalische Genauigkeit und Rechenaufwand zu finden. So

kann zum Beispiel: 1) Jede Radartrahlung kann der Einfachheit halber als eine einzelne

Linie betrachtet werden oder als tatsächlichen Volumenmittelungseigenschaft behandelt

werden. 2) Die Ausbreitungstrajektorie kann entweder aus einem einfachen Konzept

vom 4/3 Erdradius abgeleitet werden oder aus Methoden, die auf der Berüsichtigung

der vertikalen Gradienten des Brechungsindexes der Luft beruhen. 3) Reflektivität kann

aus der Mie-Theorie oder aus den anderen effizienteren Näherungen berechnet werden.

4) Dämpfungseffekte werden berücksichtigt oder nicht. Um den Operator operationell

betreiben zu können, sollte er kompatibel mit der Supercomputer-Architektur sein. Dabei

ist die Effizienz ist ein wichtiges Entwurfkriterium, sodass auf eine gute Parallelisierung

und Vektorisierung des Codes Wert gelegt wird.

Die Ergebnisse von Sensitivitätsexperimenten zeigen, dass der Operator in der Lage

ist, Reflektivität und Dopplergeschwindigkeit unter Berücksichtigung der Effekte wie

Strahlbeugung, Strahlausbreitung und Dämpfung effizient zu simulieren.

Nach der Entwicklung des Operators and Integration von Radardaten in das 4D-LETKF

Software-Paket, sind wir soweit, die ersten Datenassimilationsexperimente durchzuführen.

Dazu haben wir das konvektive Ereignis vom 31.05.2011untersucht. Das benötigte

COSMO-DE Ensemble wird angetrieben von einem Testensemble des globalen Modells

GME. Die vorläufigen Ergebnisse werden zum Schluss vorgestellt.
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1. Introduction

1.1. Motivation and background

Reliable quantitative precipitation forecasts (QPFs) are regarded as one of the most

challenging tasks in numerical weather prediction (NWP). Especially in case of heavy

precipitation events associated with small-scale convection like thunderstorms, the current

operational forecast models have their problems. In order to resolve clouds and to describe

the microphysical processes more accurately at the convective-scale, the current NWP

models are and will be in the near future replaced or complemented by a new generation

of nonhydrostatic mesoscale models with a horizontal resolution of 1-3 km. For instance,

Meteo-France is working on the model AROME (Application of Research to Operations

at Mesoscale), while the american model WRF (Weather Research and Forecasting) is

developed and operated by the National Center for Atmospheric Research (NCAR), the

National Oceanic and Atmospheric Administration (NOAA), the Center for Analysis

and Prediction of Storms (CAPS) and by many scientists from universities becomes very

popular in the atmospheric and climate science community.

Seven European national meteorological services including German Weather Service

(Deutscher Wetterdienst, abbr. DWD) cooperate in the framework of the Consortium for

Small-scale Modeling (COSMO) for both operational and research applications. The

COSMO-model is a limited area non-hydrostatic and fully compressible NWP model in

advection form, initially known as “Local Model (LM)” (Steppeler et al., 2003). While

hydrostatic models like the global model GME of DWD are restricted to a grid spacing

larger than about 10 km, non-hydrostatic models could in principle be applied at an

extremely high resolution, e.g., 100 m, to resolve convective events.

From a mathematical point of view, NWP constitutes an initial (and boundary) value

problem, which means that in order to be able to predict what the weather looks like

in a few hours or days, it is a prerequisite to know the present weather as precisely as

possible. Although a NWP model may provide the necessary framework for an explicit
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1. Introduction

Fig. 1.1.: Meteorological observing system (Hagedorn, 2010)

description of microphysical properties in the atmosphere due to its high resolution,

improvements in forecasts can only be achieved if appropriate techniques for initialization

of models based on observations in comparable spatial and temporal resolutions are also

available. Data assimilation is presently the most popular one of these techniques,

which analyzes the likely current state of the atmosphere and determines the error of this

analysis on the basis of incomplete and potentially faulty observations and an approximate

description of the atmosphere given by the forecast model equations. The observed data

used by DWD are provided by a world-wide Meteorological Observation Network (see

Fig. 1.1). Considering the types of observations we can distinguish them in conventional

observations (i.e., in situ observations) and non-conventional observations (i.e., remote

sensing observations). The most important conventional observations are

• SYNOP data, i.e., temperature, pressure, humidity and 10-m wind at surface levels,

measured by synoptic stations, at uniform times (i.e., at least at 00, 06, 12 and 18

UTC);

• SHIP data, i.e., weather reports from ships;

• DRIBU data, i.e., pressure and wind at or near sea surface level, measured by

drifting buoys;

2



1.1. Motivation and background

• TEMP data, i.e., highly accurate vertical profiles of temperature, humidity and wind

in the upper air. The radiosondes are launched (nearly) simultaneously worldwide

twice a day;

• PILOT data, i.e., wind measurements in the free atmosphere by tracking small

ascending small balloons;

• PROFILERS data, i.e., measuring vertical wind profiles with remote sensing proce-

dures, provide wind speed and wind direction observations at very high temporal

and vertical resolutions;

• AIREP data (manual aircraft reports), AMDAR (Aircraft Meteorological Data Re-

lay) and ACARS (automatic aircraft reports) supply vertical profiles of temperature

and wind. AMDAR and ACARS systems usually provide more information than

AIREP. During landing and take-off, ACARS deliver data in quantity, quality and

location comparable to radiosondes.

Non-conventional observations are data from weather satellite and radar1. Weather

satellite data are more and more being used because of their almost global coverage.

However, accuracy and resolution of satellite data are inferior to those of radar data,

so their use are of less importance for convective-scale models, especially over land,

where more and more countries invest to achieve a good areal radar coverage. Modern

weather radars are mostly polarimetric pulse-Doppler radars, whose typical observables

are reflectivity, Doppler velocity and polarimetric parameters. Reflectivity is the amount

of transmitted power returned to the radar receiver and depends among others on scatterer

concentration, size, phase (liquid or ice) and orientation. Based on that, raw estimate

of the precipitation rate are possible. Doppler velocity is basically a volume-averaged

measure of the component of scatterer motion away from or toward a radar. It is deduced

from Doppler phase shift from one pulse to the next and can be used to estimate the

precipitation’s motion. Most liquid hydrometeors have a larger horizontal axis due to

the drag of air during sedimentation, which makes the water molecule dipole orient in

the horizontal direction so radar pulses are generally polarized horizontally to receive

1The term RADAR was coined in 1940 by the United States Navy as an acronym for RAdio Detection
And Ranging. The term radar has since entered English and other languages as the common noun
radar, losing all capitalization.

3



1. Introduction

Fig. 1.2.: Map of the DWD radar network (from DWD)
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1.1. Motivation and background

the maximal power. A polarimetric radar sends out horizontally and vertically oriented

pulses simultaneously or one after another and records the reflected power from both.

By comparing these reflected power returns in different ways (ratios, correlations, etc.),

it is possible to differentiate precipitation types (spherical drops, irregular ice particles,

hail, etc.), non-meteorological targets, and to produce better rainfall estimates. However,

with a single radar it is difficult to observe synoptic scale weather phenomena, such as

cold fronts in the midlatitudes. This highlights an essential feature of radar observations

and, in fact, that of all meteorological observations, namely the need for networking. A

wide range of atmospheric phenomena can be observed with a well-distributed network

of radars, which supports many applications such as operational weather monitoring and

nowcasting. DWD is currently in the process of installing/upgrading a radar network of

16 dual-polarimetric C-band Doppler radar stations with a uniform scan strategy (17 after

completion of network renewal). They are distributed throughout Germany for complete

coverage (see Fig. 1.2 and details in Tab. A.1 in Appendix A) and delivers radar volume

scans every 15 minutes for the Doppler velocity and intensity and every 5 minutes a

precipitation scan, with a high spatial resolution of 1 km in range and 1◦ in azimuth. The

Doppler volume scan (dual PRF, 800/1200 Hz, maximum range 124 km) is comprised of

single sweeps with 18 elevations ranging from 0.5◦ to 37◦. A sweep means a complete

antenna revolution at a constant elevation, which geometrically corresponds to a cone.

The intensity volume scan (500 Hz, max. range 256 km) has a larger areal cover and

considers only the lower 5 elevations from 0.5◦ to 4.5◦. The precipitation scan (600 Hz,

max. range 150 km) is a terrain-following scan. In order to observe precipitation near the

Earth’s surface, the radar beam is then closely following the horizon line with an elevation

offset, which should be large enough to minimize beam blockage and suppress clutter

from orographic obstacles. Here, what we call “beam” is understood as a collection

of neighboring rays (infinitesimally thin subparts of a beam) which individually may

undergo different refraction, leading to a distortion of the beam.

However, to date only conventional data are operationally assimilated into the COSMO-

model except the radar-derived precipitation rates, which are assimilated using the latent

heat nudging approach (Stephan et al., 2008). Note that there are only O(106) con-

ventional observations available but O(107) state variables in an NWP model. Thus,

it is impossible to use those observations alone to provide the initial conditions for

the model, in other words, NWP is an under-determined initial value problem. Since

5



1. Introduction

the weather radar is regarded as the only tool with the ability of observing the micro-

physical processes and dynamical movements in rapidly developing mesoscale weather

phenomena on relevant temporal and spatial resolutions and COSMO-model provides

the possibility to incorporate high frequency measurements into the model, the data gap

left by the conventional observations could at least partially be filled by employing radar

observations.

However, radar observations do not provide explicit measurements of the model vari-

ables, and it is difficult to estimate relevant model variables from radar measurements

because their relations are complex and usually not unique. One possibility is to apply

a so-called radar forward operator which simulates the measurement process of radar

observables from the prognostic model outputs and allows for comparisons in terms

of radar observables. Then, based on this operator, radar data maybe assimilated by

using advanced techniques (see below). A few operators are already available in publi-

cations, which often just concentrate on specific aspects. For instance, Krajewski and

Chandrasekar (1993) simulated radar reflectivity for realistic precipitation events using a

stochastic space-time model and a statistically generated drop size distribution. Haase

and Crewell (2000) developed a complete radar reflectivity simulator, the RADAR Simu-

lation Model (RSM), which used the three dimensional fields of LM. A more advanced

tool has been presented by Caumont (2006) at Meteo-France , who took, among others,

Doppler observations and beam bending into account. SynPolRad, designed by Pfeifer

et al. (2008), integrated polarimetric radar quantities using T-matrix calculations into

RSM. With respect to Doppler velocity, Sun and Crook (1997) considered the vertical

fall speed of hydrometeors in their operator and extended it in Sun and Crook (2001)

by taking the beam broadening effect in vertical direction into account. Weighting the

fall velocity by reflectivity was introduced by Wu et al. (2000) and Tong et al. (2008).

A further refinement regarding weighting Doppler velocity by reflectivity can be found,

for instance, in May et al. (2007), Cheong et al. (2008) as well as Caumont and Ducrocq

(2008).

The goal of this thesis is to develop a comprehensive modular radar observation

operator, which comprises all relevant physical aspects of radar cloud measurements

in a quite accurate way, but offers also a variety of possible simplifications for each

module. The choice of options has to consider a balance between physical accuracy and

computational effort inasmuch as the model sophistication allows it, which may vary

6



1.1. Motivation and background

according to special applications, such as radar data assimilation or verification of cloud

microphysical parametrizations. The latter one is done jointly with another PhD-project

Jerger et al. (2012).

In terms of data assimilation, various techniques have been explored in the last few

decades, which combine a prior forecast state with observations to produce an estimate

of the analysis state of the atmosphere, which will be used as initial conditions for the

next NWP run. The prior forecast state is also known as the background state, while

the analysis state is obtained after the observational data have been assimilated into the

background state. Those techniques can be divided into two main categories depending

on the fact whether they are statistical methods or not.

The most important non-statistical approach is nudging (Hoke and Anthes, 1976). This

method involves adding a term to the prognostic model equations that effectively nudges

the solution towards observations. This nudging term is time dependent and should be

large enough to be influential on the solution but small enough not to dominate the other

terms (Stauffer and Seaman, 1990). Up to date, data assimilation in the COSMO-model is

operationally done by nudging, but this has several disadvantages. First, it doesn’t contain

a mathematical formalism to determine a theoretically optimal solution to the analysis

problem. Hence, there are several free parameters, whose optimal values can only be

roughly estimated by means of physical reasoning and tuning experiments. Second,

nudging can be only applied on the prognostic variables of models and thus its application

to remote sensing data from satellites and weather radars is limited.

With regard to statistical techniques there is a mathematical representation of unknown

uncertainties involved in observations and model states, so the means about which we

try to find a solution is statistical (i.e., maximum likelihood, or probability). The goal is

then to find an optimal combination of the model forecast background and observations

with weights determined by their error statistics. It is done by minimizing a cost function,

defined as a measure of the difference between the forecast states and observations.

Depending on the computational methods solving this minimization problem, there are

two main types of statistical techniques in modern weather forecasting (Bouttier and

Courtier, 2002): variational assimilation methods and sequential methods. The former

one integrates both the nonlinear model and its adjoint model over the assimilation

window to compute the gradient of the cost function, and this process is repeated until

a sufficient approximation to the minimum is obtained. Many meteorological centers

7



1. Introduction

use three-dimensional variational data assimilation (3D-VAR) due to its ease of im-

plementation and statistical reliability. 3D-VAR assumes that within the assimilation

time window all observations are all taken at the actual analysis update time and the

forecast error covariance is constant. So it does not include the dynamic model in the

minimization algorithm and the effects of “errors of the day”, that is, having forecast error

covariances reflecting the current atmospheric state. Four-dimensional variational data

assimilation (4D-VAR) is a direct generalization of 3D-Var, in which the observations

now are distributed in time and compared to the forecast state at the exact time, and

the forecast error statistics are implicitly flow-dependent. 4D-VAR evolves the forecast

error covariance implicitly from a constant initial forecast error covariance within the

assimilation window and computes the model trajectory which best fits the observations

distributed within the assimilation window with the dynamics described by the model.

Although 4D-VAR shows especially good performance in a longer assimilation window,

high costs arise from the development and maintenance of the adjoint model, which have

limited its operational applications in large and complicated NWP systems.

Sequential methods include the linear Kalman filter (KF) and its nonlinear extension,

the extended Kalman filter (EKF) (Gelb, 1974), which process in two steps. In the first

forecast step, the model is used to integrate an earlier state estimate over the assimilation

window to provide a forecast state at the time of the latest observations. In the analysis

step the observations are used to improve the prior forecast state, producing a current state

estimate referred to as an analysis. This analysis is used to initialize the next forecast,

which is subsequently used in the next analysis, and so forth. EKF also has to use

costly adjoint model. The Ensemble Kalman Filter (EnKF) is an attempt to overcome

this disadvantage, which applies estimation theory with a Monte Carlo method to the

conceptual and mathematical framework of KF. The starting point is to choose a set of

sample points, i.e., an ensemble of state estimates that represents the initial probability

distribution of the state. These sample points are then propagated through the true

nonlinear system and the probability density function of the actual state is approximated

by the ensemble of the estimates. EnKF retains the flow-dependent nature of the forecast

error covariance matrix of KF. In the past decade, several types of EnKF have been

developed. An important development was achieved by Houtekamer and Mitchell (1998),

using an ensemble of pseudo-random perturbed observations to estimate the correct

statistics from the analysis ensemble. A second type of EnKF is a class of deterministic
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(square root) filters (Anderson, 2001), which consist of a single analysis based on the

ensemble mean, and the analysis perturbations are obtained from the square root of the KF

analysis error covariance. Given the same size of ensemble, the square root filters are more

accurate than perturbed observation filters because random errors are introduced through

the perturbed observations (Whitaker and Hamill, 2002). So far different square root filters

have been explored, such as Ensemble Adjustment Kalman filter (EAKF) (Anderson,

2001) and Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001). The latter

approach improves the computational efficiency of the algorithm by transforming the

matrices into the subspace spanned by the forecast ensemble perturbations and doing all

the matrices computation in this subspace.

It should be emphasized that a low dimensionality of the ensemble usually introduces

sampling errors in the forecast error covariance, especially at long distances. Simply

enhancing the size of ensemble reduce the efficiency of the method and can not be the

ideal solution. Fortunately, adopting a covariance localization is able to mitigate this

problem by greatly increasing the number of degrees of freedom available to fit the data.

For instance, Ott et al. (2004) developed the Local Ensemble Kalman Filter (LEKF),

which carries out the analyses locally in space. This reduces the computational efforts

because the analyses at each grid point are independent and thus can be performed in

parallel. Hunt et al. (2004) proposed an alternative type of LEKF using the ensemble

transform approach introduced by Bishop et al. (2001), which is called Local Ensemble

Kalman Filter (LETKF). Adding the dimension of time, Hunt et al. (2007) extended

the LETKF to 4D-LETKF, which shares the main advantage of 4D-VAR to assimilate

asynchronous observations at the right time.

In the field of radar data assimilation, research efforts have been achieved in the

last decade, most of which have been carried out in research mode regarding specific

convective case studies. Sun and Crook (1997) demonstrated a 4D-VAR scheme to

assimilate radar reflectivity and Doppler velocity into a simulated moist convection

case. In spite of the encouraging results, several difficulties such as the construction

of the moist adjoint retrieval model and specification of background error matrix have

been encountered. Lindskog et al. (2004) investigated the impact of the assimilation

of Doppler velocity and velocity-azimuth display (VAD) profiles, deduced from the

Swedish radar network, using the 3D-VAR of hydrostatic High-Resolution Limited Area

Model (HIRLAM). Xiao and Sun (2007) introduced a radar reflectivity 3D-VAR data

9
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assimilation scheme within the fifth-generation Pennsylvania State University-National

Center for Atmosphere Research (NCAR) Mesoscale Model (MM5), where some positive

impacts have been found on rainfall forecasts for two particular convective cases in

Korea. This approach was then operationally implemented in the Korean Meteorological

Administration Doppler Radar Network in another study (Xiao et al., 2008). In recent

years, EnKF has been becoming more and more appealing in radar data assimilation. The

first successful study of EnKF with radar observations appeared in Snyder and Zhang

(2003), where simulated radar data of single convective cells were assimilated into a

cloud model. The same EnKF was tested with real radar data of a tornadic supercell in

Dowell et al. (2003). The first pseudo-operationally regional-scale EnKF system was

established at the University of Washington in January, using the WRF model (Torn

and Hakim, 2008). Zhang et al. (2009) demonstrated that the radar data assimilation

could improve the initialization and forecast of Hurricane Humberto. Overall, all of these

studies show a positive impact of the assimilation of radar data on the short-range QPF.

These promising results and the fact that DWD runs a radar network with a complete

coverage over Germany have motivated us to take advantage of this significant amount

of information to acquire more precise initial conditions of NWP, so as to improve the

quality of QPF, especially at the convective scale. Since 2010, COSMO started with

the priority project "KENDA" (Km-Scale Ensemble-Based Data Assimilation) under

the lead of DWD, with the goal to provide suitable perturbed initial conditions for an

ensemble prediction system. One of its main tasks is to develop a general 4D-LETKF

data assimilation system for the COSMO-model. As part of this task, an efficient radar

forward operator is desired for radar data assimilation in the new LETKF-system.

1.2. Outline

The present thesis is organized as follows. Chapter 2 briefly describes the COSMO-model.

In Chapter 3, fundamentals of weather radars are described and a detailed description

of the radar forward operator is given in a modular manner, followed by corresponding

experiments. Chapter 4 is devoted to an overview of code implementation of the operator

because it is one of major efforts in this thesis. The performance of the forward operator

is assessed in two case studies in Chapter 5. Chapter 6 introduces the theory of the

traditional Kalman Filter and its variants in brief. The following Chapter 7 addresses
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the results of our first data assimilation experiments. Finally, the last chapter gives a

summary of this thesis, draws some conclusions and hints to some perspectives.
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2. Description of the COSMO-model

The COSMO-model is based on the former NWP model LM (Lokal Modell). LM is

a nonhydrostatic fully compressible regional atmospheric forecast model that has been

developed and used at DWD and used operationally since December 1999 for both

operational NWP and scientific applications on the meso-β (20-200 km, dealing with

phenomena like sea breezes) and meso-γ scales (2-20 km, dealing with phenomena

like thunderstorms and complex terrain flows). The basic equations of LM describe

compressible flow in a moist atmosphere, which are formulated in rotated geographical

coordinates with terrain following heights and consider various parametrization schemes

for characterization of physical processes (see Section 2.4).

In addition to the physical basis of the forecast model itself, LM requires other compo-

nents, e.g., data assimilation, interpolation of boundary conditions from a driving model,

in order to run the model in NWP-mode or for case studies.

The further development in the field of high-resolution modeling has been done in

close cooperation with other European weather services including those from Greece,

Poland, Romania, Russia and Switzerland. In 2007, LM was renamed as COSMO to

show this joint effort. Actually, DWD operationally runs two configurations. According

to the configuration in which the model is run, the model name is specified by the

appendix. For instance, COSMO-EU (COSMO Europe, Fig. 2.1a) covers the Eastern

Atlantic and Europe with 665× 657 = 436905 grid points at a horizontal resolution

of 7 km and 40 vertical levels from the surface up to approximately 24 km, that is

436905×40∼ 17.5 million grid points in total. Since 2003, DWD has been developing

a new version of the COSMO-model called COSMO-DE with a horizontal resolution of

2.8 km (∼ 0.025◦). The COSMO-DE model has been operationally run since April 2007

and provides forecasts every three hours, each forecast has a run time of 21 hours. The

domain of COSMO-DE (Fig. 2.1b) covers a field of about 1300×1200km2 including

Germany, Switzerland, Austria and some small parts of the neighbouring countries, with

horizontally 421×461 grid points.
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2. Description of the COSMO-model

(a) The domain of COSMO-EU (b) The domain of COSMO-DE

Fig. 2.1.: Orography (height [m] in color bar) of the operational domains of the COSMO-EU
(left) and COSMO-DE (right) at DWD

The development of the COSMO-model is an ongoing task. The following sections

introduce briefly the main features and characteristics. For the present thesis, the version

COSMO-4.21 hase been used. For a more detailed description, we refer to Doms and

Schättler (2002).

2.1. Model equations

To describe the atmospheric state and its spatio-temporal development in an appropriate

manner, the atmosphere is treated as a multicomponent continuum which is composed

of dry air, water vapor, liquid water and water in solid state forming an ideal mixture.

Water in liquid and solid forms may be further divided into various categories as cloud

droplets, raindrops, pristine ice crystals, rimed aggregates of crystals, graupel and hail,

etc.. Considering forces from gravity and earth rotation (by the Coriolis force) as well as

internal processes due to heat, mass and momentum balances and phase changes of water,

the general hydrothermodynamic equations describing compressible nonhydrostatic flow

in a moist atmosphere without any scale approximations are given by:
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2.1. Model equations

ρ
d~v
dt

=−∇p+ρ~g−2~Ω× (ρ~v)−∇ ·~~τ , (2.1)

dp
dt

=
cp
cv

p∇ ·~v+
(

cp
cv
−1
)

Qh +

(
cp
cv

)
Qm , (2.2)

ρcp
dT
dt

=
dp
dt

+Qh , (2.3)

ρ
dqx

dt
=−∇ ·~Jx

+ Ix , (2.4)

ρ = p/ [Rd(1+α
m)T] . (2.5)

The index x represents a specific constituent of the mixture with

x = d for dry air,

x = v for water vapor,

x = l for liquid water, and

x = f for water in the solid state, i.e., ice.

The total derivative of a field ψ is related to partial time and space variations by the Euler

decomposition:

dψ

dt
=

∂ψ

∂ t
+~v ·∇ψ . (2.6)

The list of symbols in Eqs. (2.1-2.5) are given in Tab. 2.1.

Several modifications should be made in Eqs. (2.1-2.5) since they are numerically

solved on a structured grid. First of all, differential operators appearing in the equations

are approximated by difference operators and thus only valid in the limit when the

time interval ∆t and the spatial increment ∆V (∆V := ∆x∆y∆z) approaches zero. For a

physically meaningful interpretation, on one hand, spatial increment ∆V muss be much

larger than the spacing between molecules to contain a sufficient number of molecules to

apply statistical thermodynamics, but on the other hand, it must be much smaller than

macroscopic dimensions so that the values of variables do not strongly change within

∆t and ∆V. These conditions restrict the direct application of Eqs. (2.1-2.5) to space

scales on the order of about 1 cm and to time scales of about 1 s. However, as mesoscale
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2. Description of the COSMO-model

t Time
p Pressure
T Temperature
ρx Partial density of mixture constituent x
ρ = ∑x ρx Total density of the air mixture
qx = ρx/ρ Mass fraction (specific content) of constituent x
~v = (u,v,w) Wind vector
cp, cv Heat capacities for constant pressure and volume

αm =

(
Rv

Rd
−1
)

qv−ql−q f Moisture term

Rv, Rd Gas constant for water vapor and dry air
Ix Source/sinks of constituent x
~J

x
Diffusion flux of constituent x

Qh Diabatic heating

Qm = ρRdT
dαm

dt
Impact of changes of humidity

~~τ Stress tensor due to friction
~Ω Constant angular velocity vector of earth rotation
~g Apparent acceleration of gravity
∇ Gradient Nabla operator

Tab. 2.1.: The list of symbols in Eqs. (2.1-2.5)

circulations have horizontal scales up to 100 km and vertical scales up to 10 km, using

a numerical model of grid spacing on the order of 1 cm to simulate such flows is not

feasible. To circumvent this problem, the equations are averaged over specified space and

time step, and then the meteorological variables are split up into a mean value (the grid

scale value) and its deviation (the subgrid scale value). Furthermore, some assumptions

are made to simplify the equations (Doms and Schättler, 2002):

1. all molecular fluxes are replaced by turbulent fluxes formally written in the same

manner. Components of the turbulent stress tensor follow from a parametrization of

turbulence.

2. the specific heat of moist air is replaced by that of dry air,

3. the diabatic terms Qh and Qm are neglected,

4. temperature changes due to buoyant heat and moisture fluxes are neglected.
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2.1. Model equations

These assumptions are typically justified with the fact that the atmosphere air can be

described as a very diluted mixture with respect to the water constituents. Moreover, in

order to enhance the numerical accuracy, the thermodynamic variables temperature T,

pressure p and density ρ can be formally expressed as the sum of a height dependent

base state as reference value (indicated with subscript 0) and a space and time dependent

deviation (indicated by a prime):

T= T0(z)+T′ ,

p= p0(z)+p′ ,

ρ = ρ0(z)+ρ
′ .

Fig. 2.2.: Geographical longitude (blue) and latitude (red) in the unrotated grid. The dashed line
indicates the equator in the rotated grid with pole coordinates 32.5◦S and 10.0◦E in the unrotated
system. The rotated 0◦ meridian corresponds to the 10◦E geographical meridian (Doms and
Schättler, 2002).
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2. Description of the COSMO-model

To take the (nearly) spherical nature of the earth into account, the usual way would

be to transform the model equations into geographical coordinates. However, regard-

ing practical applications on a large model domain, such spherical coordinates cause

numerical problems arising from the convergence of the meridians and the resulting pole

singularities. A suitable way to minimize these problems is to introduce rotated spherical

coordinates (λ ,ϕ,z), where λ is geographical rotated longitude, ϕ is geographical rotated

latitude, z is geographical height above mean sea level. It is done by shifting the North

Pole of the new system in such a way that the intersection of the equator and the prime

meridian of the new system passes through the centre of the model domain and thus the

convergence of the meridians can be minimized (Fig. 2.2). Transformation equations can

be found in Doms and Schättler (2002).

In spherical coordinates, the vertical coordinate z is curvilinear but orthogonal. When

surface terrain is considered, it becomes very complicated to formulate the lower boundary

conditions and quite expensive to find the numerical solution of the basic equations. An

elegant way to alleviate this problem is the transformation of z to a terrain-following

coordinate system, where the lowest surface of constant vertical coordinate becomes

conformal to the terrain height. The new vertical coordinate ζ is a time-independent

function of λ , ϕ and z. This is different from the pressure based coordinate system of

most hydrostatic models, where the surfaces of constant vertical coordinate move in space

with changing surface pressure. Fig. 2.3 views a sketch of terrain-following coordinate

system over orography.

In order to keep the numerical formulation of the model equations independent from

the choice on ζ , the coordinate transformation will be done in two steps. The first step

involves a terrain-following transformation using a user-specified coordinate ζ̃ . In the

second step, ζ̃ is mapped to the computational coordinate ζ by a monotonic function m

in the form ζ̃ = m(ζ ). Since m can be any monotonic function, we define this function to

map (by its inverse) the coordinate ζ̃ to the index space with top-down increasing indices

and an equidistant grid spacing of ∆ζ = 1. Fig. 2.4 illustrates this two-step transformation.

In fact, there are three options for the terrain-following ζ̃ in the COSMO-model. The first

one is a reference-pressure based coordinate, the second one is a Gal-Chen height-based

coordinate (Gal-chen and Somerville, 1975) and the third one is the height-based SLEVE

(Smooth Level VErtical) coordinate according to Schär et al. (2002).
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2.1. Model equations

Fig. 2.3.: Sketch of a terrain following coordinate system (Doms and Schättler, 2002)

Fig. 2.4.: Mapping of an irregular curvilinear grid with a terrain following coordinate ζ̃ onto a
rectangular equidistant grid ζ labeled by integers (Doms and Schättler, 2002)

Introducing these modifications into Eqs. (2.1-2.5), we obtain the final version of model

equations including seven prognostic equations for horizontal wind velocity, vertical

wind velocity, perturbation pressure, temperature, water vapor, liquid and solid forms of

water and one diagnostic equation for total density of air (Doms and Schättler, 2002):
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2. Description of the COSMO-model

• Horizontal wind velocity components

∂u
∂ t

=−
{

1
RE cosϕ

∂Eh

∂λ
− vVa

}
− ζ̇

∂u
∂ζ
− 1

ρRE cosϕ

(
∂p′

∂λ
− 1√

γ
− 1√

γ

∂p0

∂λ

∂p′

∂ζ

)
+Mu , (2.7)

∂v
∂ t

=−
{

1
RE

∂Eh

∂ϕ
−uVa

}
− ζ̇

∂v
∂ζ
− 1

ρRE

(
∂p′

∂ϕ
− 1√

γ
− 1√

γ

∂p0

∂ϕ

∂p′

∂ζ

)
+Mv ,

(2.8)

• Vertical wind velocity

∂w
∂ t

=−
{

1
RE cosϕ

(
u

∂w
∂λ

+ vcosϕ
∂w
∂ϕ

)}
− ζ̇

∂w
∂ζ
− g√

γ

p0

ρ

∂p′

∂ζ
+Mw

+g
ρ0

ρ

{
T−T0

T
− T0p

′

Tp0
+

(
Rv

Rd
−1
)

qv−ql−q f
}

, (2.9)

• Perturbation pressure

∂p′

∂ t
=−

{
1

RE cosϕ

(
u

∂p′

∂λ
+ vcosϕ

∂p′

∂ϕ

)}
− ζ̇

∂p′

∂ζ
+gρ0w− cp

cv
pD , (2.10)

• Temperature

∂T

∂ t
=−

{
1

RE cosϕ

(
u

∂T

∂λ
+ vcosϕ

∂T

∂ϕ

)}
− ζ̇

∂T

∂ζ
− 1

ρcd
pD+QT , (2.11)

• Water vapor

∂qv

∂ t
=−

{
1

RE cosϕ

(
u

∂qv

∂λ
+ vcosϕ

∂qv

∂ϕ

)}
− ζ̇

∂qv

∂ζ
−
(

Sl +S f
)
+Mqv ,

(2.12)

• Liquid and solid forms of water

∂ql, f

∂ t
=−

{
1

RE cosϕ

(
u

∂ql, f

∂λ
+ vcosϕ

∂ql, f

∂ϕ

)}
− ζ̇

∂ql, f

∂ζ
− g√

γ

ρ0

ρ

∂Pl, f

∂ζ
+Sl, f +Mql, f , (2.13)
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• Total density of air (cf. Eq. (2.5)

ρ = p

{
Rd

(
1+
(

Rv

Rd
−1
)

qv−ql−q f
)
T

}−1

, (2.14)

where g is the gravity acceleration, D is divergence of the wind field, Eh =
√

u2 + v2

is kinetic energy of horizontal motion,
√

γ is variation of reference pressure with ζ ,

Va is the vertical component of the absolute vorticity, Pl, f are precipitation fluxes, the

terms Mψ denote contribution from subgrid scale processes as, e.g., turbulence and

convection. QT summarizes the diabatic heating rate due to this processes. The various

cloud microphysical sources and sinks due to phase changes are denoted by Sl and S f .

The calculation of all these terms related to subgrid-scale processes is done by physical

parametrization schemes. Notice that the pressure equation (2.2) has been replaced by an

equation for pressure deviation p′. Also note that Eh and Va enable an elegant formulation

of horizontal advection, Coriolis force and an Earth’s curvature term together. However,

the numerical discretization is only done using the original u and v.

2.2. Discretized form of the model equations

For the numerical solution of the continuous model equations listed in the previous

section, spatial and temporal discretization of the equations must be done. The spatial

discretization is realized by model grid structure and for the temporal discretization a

Runge-Kutta scheme is currently used.

2.2.1. Model grid structure

Eqs. (2.8-2.13) have been written in a terrain-following coordinate system using a gener-

alized vertical coordinate ζ . This general form of the transformation is employed to map

the irregular curvilinear grid associated with the terrain-following system ζ̃ in physical

space onto a regular computational grid, which is set up by constant increments:

∆λ : grid-spacing in λ -direction,

∆ϕ : grid-spacing in ϕ-direction,

∆ζ : grid-spacing in ζ -direction.
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2. Description of the COSMO-model

The computational (λ ,ϕ,ζ )-space is then represented by a finite number of grid points

with integer values (i, j,k), where i corresponds to the λ -direction, j to the ϕ-direction

and k to the ζ -direction. The position of the grid points in the computational space is

defined by

λi = λ0 +(i−1)∆λ , i = 1, . . . ,Nλ , (2.15)

ϕ j = ϕ0 +( j−1)∆ϕ , j = 1, . . . ,Nϕ , (2.16)

ζk = k , k = 1, . . . ,Nζ , (2.17)

where Nλ , Nϕ and Nζ denote the number of grid points in λ , ϕ and ζ -directions, re-

spectively. Thus, λ0 and ϕ0 are the southwestern corner of the model domain in the

rotated spherical coordinates (λ ,ϕ). Every grid point (i, j,k) represents the centre of

an elementary rectangular grid volume with side lengths ∆λ , ∆ϕ and ∆ζ . Horizontally,

the grid-box faces are located halfway between the grid points in the corresponding

directions, i.e., at λi± 1/2, ϕ j± 1/2 and ζk± 1/2. Vertically, the grid-box faces are

usually referred to as the half levels. These interfacial levels separate the model layers

from each other. The model layers labeled by integers k are also referred to as main levels.

The top boundary of the model domain is defined to be the half level (ζ = 1/2) above the

uppermost model layer (ζ = 1) and the ζ -coordinate surface becomes conformal to the

orography at the lower boundary. The half level (ζ = Nζ +1/2) below the first model

layer above the ground (ζ = Nζ ) defines the lower boundary of the model.

The scalar model variables (temperature, pressure and humidity variables) are defined

at the centre of a grid box (main level) while the wind components u, v and w are defined

on the corresponding box faces (half level in the vertical) (Fig. 2.5). This grid structure is

called staggered Arakawa-C/Lorenz grid and is advantageous for the discretization of the

flow equations.

2.2.2. Time integration scheme

Three different time integration schemes have been implemented within the COSMO-

model: the leapfrog-scheme (Klemp and Wilhelmson, 1978) and the semi-implicit solver

(Thomas et al., 2000) and the third order Runge-Kutta method (RK3) of Wicker and

Skamarock (2002). All these schemes use time splitting techniques, which separate the
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2.3. Initial and boundary conditions

Fig. 2.5.: A grid box volume showing the Arakawa-C/Lorenz staggering of the dependent model
variables (Doms and Schättler, 2002)

prognostic equations in terms of fast processes related to acoustic wave modes and terms

in conjunction with comparatively slowly varying modes of motion (e.g., advection), but

in different manners (Doms and Schättler, 2002). As RK3 is numerically quite stable and

efficient, it has been operationally run at DWD since April 2007.

2.3. Initial and boundary conditions

In a limited area model as COSMO, only the lower boundary is physical due to the Earth’s

surface. The top and lateral boundaries are usually artificial, and have to be specified.

It is important to use open or inflow-outflow lateral boundary conditions to allow the

atmosphere in the model interior domain to interact with the external environment, when it

comes to the simulation of real data cases or NWP purposes (Davies, 1976). Alternatively,

we can use open and periodic boundary conditions for specific scientific applications (i.e.,

idealized simulations).

For operational applications and real data simulations, the initial conditions for the

COSMO-model can be specified by forecasts interpolated from various global models,
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2. Description of the COSMO-model

e.g., the GME model of DWD or the global IFS model from ECMWF. Alternatively,

the analysis results of data assimilation in the COSMO-model can be used for initial

conditions. For the purpose of idealized case studies, user-specified artificial initial data

can also be chosen.

The approaches to establish the lateral boundary conditions are almost the same as for

the initial conditions.

For NWP purposes, information on the variables at the lateral boundaries and their time

evolution is obtained by interpolation from larger models. The use of a model at a coarser

resolution for driving a high-resolution limited area model causes numerical problems,

since the time evolution of the model variables is based on a set of equations differing

from those of the driving model. The problems are related to a non-unique information

transfer between the models at the boundaries, due to differences in the spatial resolution

and model equations. These numerical noises can propagate from the lateral boundaries

to the interior of the model domain. To fix this problem, a relaxation zone close to the

boundaries is used, in which the variables of the high- resolution model are gradually

modified to blend them with the driving model variables, and the influence of the driving

model decreases exponentially with increasing distance to the domain boundary (Davies,

1976).

For idealized runs, the periodic boundary condition assumes indefinite repetition of the

solution of the model equations outside the computational domain, so that the solution

at a certain distance to the west (north) of the computational domain western (northern)

boundary is equal to that at the same distance to the west (north) of the eastern (southern)

boundary.

The top boundary of the model domain is defined as the top half level with constant

computational coordinate ζ = 1/2 with fixed height above mean sea level and a rigid lid,

i.e., ζ̇ = 0. For the horizontal wind velocity, the temperature and the water substances,

the free-slip condition is assumed, i.e., no mass transfer across the upper boundary.

Additionally, a so-called Rayleigh damping scheme may be applied to a number

of model layers just below the upper boundary to absorb upward propagating wave

disturbances and to suppress gravity wave reflection at the top boundary resulting from

the rigid lid upper boundary condition. The prevention of wave energy reflection at the

upper boundary is vital for a correct simulation of orographically induced flows.
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2.4. Physical parametrization

2.4. Physical parametrization

Atmospheric processes span horizontal scales from molecular to planetary, and they vary

in time scales from less than seconds to longer than annual scales. Because of the limited

spatial and temporal resolutions of atmospherical models, an important part of these

physical processes is not accounted for by the explicit solution in the model grid of the

basic equations. On one hand, this concerns all molecular processes as radiation, cloud

microphysics and laminar transport in the immediate vicinity of solid boundaries. On

the other hand, there are processes as turbulence and convection. All processes that are

not explicitly simulated by the model bu considered to be important for the model results

have to be treated in a special manner called parametrization. This section summarizes

shortly the parametrization schemes used in the COSMO-model more details can be

found in Doms and Schättler (2002).

Subgrid-scale turbulence: a prognostic equation for TKE (turbulent kinetic energy),

which is a level 2.5 closure scheme (Raschendorfer, 2001), is used. A parametrization

of the pressure transport term is considered in the TKE-equation, which accounts for

TKE-production by subgrid thermal circulations. The whole scheme is formulated with

conservative thermodynamic variables together with a statistical cloud scheme in order

to consider effects from subgrid-scale condensation along the lines of Sommeria and

Deardorff (1977).

Surface layer parametrization: the surface layer scheme extends the TKE-equation

to the constant flux layer and introduces an additional laminar layer just above the surface.

This makes it possible to discriminate between values of model variables at the rigid

surface (e.g., radiative surface temperatures) and values at the roughness height (lower

boundary of the turbulent atmosphere).

Grid-scale clouds and precipitation: the standard COSMO-model uses the so-called

one-moment scheme for cloud physics, i.e., only the bulk masses of five or six different

hydrometeor classes (water vapor, cloud water, cloud ice, snow and optionally graupel)

are predicted at each grid point, by assuming a prescribed size distribution of the particles

(cloud water: no assumption necessary in the simple parametrization framework; cloud

ice: monodispers; rain: Gamma-distribution; snow: implicit shape based on Field et al.
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2. Description of the COSMO-model

(2007); graupel: exponential distribution). It considers explicitly processes of cloud and

ice nucleation, diffusional growth of water and ice phase, drop to drop, drop to ice, and

ice to ice collision, ice multiplication, break up of raindrops, freezing and melting. A

more advanced approach, a two-moment scheme, extends the description with hail and

additional prognostic variables, the hydrometeor number densities (Seifert and Beheng,

2006; Seifert et al., 2006; Blahak, 2008b; Noppel et al., 2010). This allows a better

parametrization of the size distribution function. But owing to their enormous computa-

tional complexity, it is currently not used for operational applications but for research.

Note that without explicit statement all model runs are performed with the so-called

one-moment graupel scheme (Reinhardt and Seifert, 2006) in this thesis.

Fractional cloud cover: in the parametrization schemes for grid-scale clouds and

precipitation, the condensation rate for cloud water is based on saturation equilibrium

with respect to water. Therefore, a grid element is either fully filled with clouds at

water saturation where qc > 0 (relative humidity = 100%) or it is cloud free at water

subsaturation where qc = 0 (relative humidity < 100%), so the area fraction of a grid

element covered with grid-scale clouds is either 1 or 0. However, with respect to the

calculation of radiative transfer and weather interpretation in postprocessing routines, it

is meaningful to define a fractional cloud cover for those grid boxes where the relative

humidity is less than 100% and no grid-scale cloud water exists. The calculation of the

fractional cloud cover in each model layer is determined by an empirical function of

relative humidity, height of the model layer, convective activity and stability (Sommeria

and Deardorff, 1977).

Moist convection: either the mass-flux convection scheme with equilibrium closure

based on moisture convergence (Tiedtke, 1989) or the mass-flux convection scheme with

non-equilibrium CAPE-type closure (Kain and Fritsch, 1993) can be used. In addition to

the closure, they differ from each other mainly in the triggering criteria for convection

and the processes influencing detrainment and entrainment (Smoydzin, 2004).

Radiation: it is parameterized according to a so-called two-stream scheme of Ritter

and Geleyn (1992) which considers three short wave (solar) and five long wave (thermal)

spectral intervals. Clouds, aerosol, water vapor and other gaseous tracers are treated
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2.4. Physical parametrization

as optically active constituents of the atmosphere, which modify the radiative fluxes

by absorption, emission and scattering. As an extension to the original scheme, a new

treatment of the optical properties of ice particles has been introduced which allows a

direct cloud-radiative feedback with the predicted ice and water content.

Soil model: A simple two-layer soil model (Jacobsen and Heise, 1982) employing the

extended force-restore method is applied; snow and interception storage are included.

Optionally, a new multilayer version of the model based on the direct numerical solution

of the heat conduction equation can be used.

Terrain and surface data: for data like orography, land-sea mask, soil type and

vegetation cover (the so-called “external” data), the model employs standard data sets pro-

vided by various sources (e.g., orography from the Global Land One-km Base Elevation

(GLOBE), harmonized world soil database form the Food and Agriculture Organization

of the United Nations (FAO), etc.). There is a software package at DWD, which is

able to aggregate/interpolate/convert these data sets to the required external datasets

for the COSMO-model (see webpage http://www.cosmo-model.org/content/model/

modules/externalParams/default.htm). Data sets are available for different horizontal

resolutions and pre-defined regions covering Europe. Other data sets can be created by

DWD on request.
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As mentioned in Section 2.4, moist convection has to be parameterized in NWP models

including the COSMO-model. The inherent limitations of this subgrid parameterization

usually lead to the low confidence of QPFs (Fritsch and Carbone, 2004). As pointed out

in Ducrocq et al. (2000) and Trier and Manning (2004), improvements in QPFs can be

achieved by both explicit treatment of moist convection and advanced parametrization

of microphyiscal processes. These studies also expressed the improvement possibility

by assimilating high-resolution observations such as weather radar data. As noticed,

the DWD radar network provides a huge amount of data in high spatial and temporal

resolutions, covering the entire COSMO-DE domain, which has encouraged the use of

radar data to enhance the quality of operational analyses and forecasts.

However, a viable radar data assimilation scheme requires a tool that establishes a link

between the model data and radar data and allow for a direct comparison between them.

For this purpose, a model-to-observation method, the so-called “forward operator” has

been developed which transforms the model outputs into radar observations and performs

comparisons in terms of observed quantities. This transformation succeeds by simulating

the main processes relevant to radar measurements. In the first step, radar observables are

computed from predicted bulk water quantities. In the second step, the beam propagation

is simulated under consideration of physical processes influencing radar measurements

like attenuation, beam bending and broadening. Note that simulations have to follow

the model assumptions as closely as possible for the sake of consistency. One important

criterion of the operator design is modularity, which means that the operator should be

comprised of several building modules and each module describes a particular physical

process in radar measurements and offers several options associated with different ac-

curacy and complexity in simulations. These options can be flexibly switched on/off in

accordance with the user’s needs: the radar forward operator can be used as a model

evaluation tool and also as an observation operator for (operational) assimilation systems.

The former one demands relative high accuracy rather than efficiency of simulations
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3. Radar forward operator

although for the latter one special emphsis must be given to simulation time, especially

for operational applications. Since the development of the radar forward operator for

operational data assimilation is the main objective of this thesis, it is proposed here that

sensitivity experiments be performed systematically for each module of the operator (see

this chapter and more in Chapter 5) and based on the results of experiments we are able

to recommend how to configure the operator for the purpose of data assimilation. More-

over, the radar forward operator should be flexible enough to be able to simulate radars

that operate at different frequencies and scan strategies in either research or operational

modes.

Owing to the limited time given for this thesis, the polarization parameters are not

considered yet, but integration of those parameters should mostly be straight-forward

and we intend to implement a code for one-layered spheroidal particles in near future

according to Pfeifer et al. (2008). Indeed, this will probably drastically increase the

computational expense, so it is necessary to simplify the computations, e.g., by means

of lookup tables, which cover the relevant range of the basic parameters and depend on

assumptions about canting angle distributions and axis ratios of the spheroids as function

of size.

This chapter gives at first fundamentals of weather radars and then Sections 3.6-3.8 are

devoted to a comprehensive description of the radar forward operator in a module-wise

way, where sensitivity experiments for beam bending and broadening are done and their

outcomes are discussed. For brevity in the remainder of the work, the term “operator”

refers to the radar forward operator without explicit statement.

3.1. Basic radar terms

Most weather Doppler radars are pulsed radars, which emit microwave energy from a

transmitter into the atmosphere in a rapid succession of short (i.e., from tens of nanosecs

to tens of microsecs) pulses (see Fig. 3.1). During the time between two transmitted

pulses, the radar switches to receive mode. When these pulses impinge on objects in the

atmosphere such as raindrops, hail stones, snowflakes, cloud droplets, birds, insects, dust

particles, vegetation and even the ground, part of the energy bounces back towards the

radar. A receiver on the radar then collects the reflected energy and stores the data for

visualization (see Fig. 3.2). The PPI (Plan Position Indicator, see Figs. 3.2a and 3.2b) is
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Fig. 3.1.: Schematic representation of the radar measurements: The radar antenna transmits an
electromagnetic pulse that travels with light speed c through the atmosphere until it encounters
scatters, in the atmosphere mostly hydrometeors. A part of energy (σbI) will be then backscattered
to the antenna (short arrows). In addition, some energy will be lost on its way due to attenuation
(`). τ is the pulse duration and cτ is the pulse length.

the most common type of radar display, which exhibits radar data horizontally using a

map projection. In PPI mode, the radar performs a 360-degree sweep with the antenna

at a specific elevation. Other radar images include MAXCAPPI (Maximum Constant

Altitude Plan Position Indicator: vertical maxima projected on the horizontal plan and

maxima from each level horizontally projected from south to north and from west to east,

see Fig. 3.2c), SRI (Surface Rain Intensity, see Fig. 3.2d), etc..

With each pulse, a radar resolution volume, the so-called the pulse volume, positioned

by its center ~r0 = (r0,α0,ε0), is illuminated with the following illumination function:

I(~r) =Cr
f 4(φ ,θ)

r2 |W (r0− r)|2 , (3.1)

where I is the emitted energy intensity, r0 is the radial distance (also called range) between

the antenna and the center of the pulse volume, r is the radial distance from antenna to

an arbitrary position within the pulse volume, α0 and ε0 are azimuth and elevation of

the antenna, respectively. The coefficient Cr is the so-called radar constant and depends
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3. Radar forward operator

(a) PPI for Doppler velocity (b) PPI for reflectivity

(c) MAXCAPPI (d) SRI

Fig. 3.2.: Examples of radar displays: observations of C-Band Doppler radar at KIT Campus
North on 29 January 2013
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3.1. Basic radar terms

Fig. 3.3.: A single radar beam, described in the radar system (r0,α0,ε0) and beam system
(r0,φ ,θ). Pulse volume is represented by thin ellipses. The general radar system coordinates
(r,α,ε) are determined relative to the coordinates (r0,α0,ε0) (Blahak, 2008a).

on radar system parameters including power transmitted Pt , antenna gain G0 and radar

wavelength λ .

The geometric dependency of quantities determining I is expressed in terms of the

so-called “beam system”~r = (r,φ ,θ), where φ and θ are horizontal and vertical angles

relative to the ray in the beam center, respectively. This is different from the “radar

system”~r = (r,α,ε). The contrast of both systems is illustrated in Fig. 3.3 for a single

radar beam.

The term of 1/r2 in Eq. (3.1) indicates that the energy intensity I decreases with dis-

tance by 1/r2 as for spherical waves. Consequently, the targets at long ranges are poorly

illuminated and their echoes might be too faint to be detected, so that light precipitation

becomes undetectable at long ranges. The range r is determined by measuring the delay

∆t between transmission of a pulse and its echo (see Fig. 3.4), that is, r = c∆t/2, where

the factor 1/2 accounts for the two-way time delay.

The pulse duration τ is the time over which a pulse lasts (see Fig. 3.4). τ can be

multiplied by the light speed to determine the pulse length (= cτ). The Pulse Repetition

Frequency (PRF) is the number of pulses that are transmitted per second. The reciprocal

of PRF is called the Pulse Repetition Time (PRT), which is the time interval between

the start of two consecutive pulses. When multiple pulses are transmitted, there is the

possibility of a range ambiguity. To determines the range r unambiguously requires that
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3. Radar forward operator

Fig. 3.4.: Train of transmitted and received pulses (Mahafza, 2000)

the time interval between pulses PRT must be larger than the time for a single pulse to

propagate to range r and back, that is PRT≥ 2r/c, and the unambiguous range is rmax:

rmax =
c ·PRT

2
=

c
2PRF

. (3.2)

The radar pulse volume is spacious and keeps broadening as the pulse propagates

away from the radar antenna. The function f 2(φ ,θ) is the beam weighting function

describing the weight at which local reflectivity and attenuation contribute to the echo

power in a given direction (φ ,θ). The pattern of f 2(φ ,θ) typically generates conical or

pencial-shaped beams, as shown in Fig. 3.5. It consists of a large main lobe (or main

beam) that exhibits the greatest field strength and several smaller lobes surrounding

the main lobe, with subsidiary power maxima called side lobes, caused by interference

effects. Although side lobes extend outward only a short distance and contain very low

power, they can detect strong non-meteorological targets in proximity of the radar, so that

strong nearby ground echoes can arise and cause confusion in interpreting close targets.

The smaller lobes in directions nearly opposite to the main lobe are called back lobes.

The direction of maximum power is the beam axis and the planes φ = 0◦ and θ = 0◦

are the principal planes of antenna pattern. Another important parameter is the angular

width of the main lobe, also called beamwidth, which is usually defined as the angle

between the two directions in a principal plane where the antenna power is one-half, or

3-dB less than its maximum value. The area within these 3-dB points contains nearly

80 percent of all power. Beamwidth varies directly with wavelength and inversely with

34



3.1. Basic radar terms

Fig. 3.5.: Antenna radiation pattern: the radial distance from the center represents signal strength.

antenna size. Use of the half-power or 3-dB points to define the beamwidth derive

from the so-called “Rayleigh criterion”, according to which two distant points separated

by an angle equal to the half-power beamwidth can be resolved. This criterion is not

directly applicable to radar because it involves two-way propagation of the microwaves,

but the 3-dB beamwidth provides a convenient basis for evaluating and comparing the

performance of radar antennas, so it is almost universally employed. Beamwidths are

dimensionless and are measured in radians, although for convenience the values are often

converted to degrees. The symbols φ3 and θ3 are used to represent the beamwidths in

the horizontal (azimuth) and vertical (elevation) principal planes, respectively (φ3 and θ3

typically have small values (≈ 1◦)). For meteorological applications, f 2(φ ,θ) is usually

expressed as a Gaussian function (Probert-Jones, 1962):

f 2(φ ,θ) = exp
[
−4ln2

(
φ 2

φ 2
3
+

θ 2

θ 2
3

)]
, (3.3)

by neglecting the echoes from side lobes because side lobes can be different on different

radar systems and a general parametrization formula for the effective beam pattern would
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3. Radar forward operator

be complicated and would not show significant impacts for most practical applications.

For symmetric antennas, φ3 and θ3 are equal, so Eq. (3.3) becomes:

f 2(θz) = exp
[
−4ln2

(
θ 2

z

θ 2
3

)]
, (3.4)

with θ 2
z = φ 2 +θ 2.

We have so far neglected that output values in radar data sets are usually averages

over many consecutive pulses to achieve statistical signal stability while the antenna

rotates. As shown in Blahak (2008a), this leads to a somewhat broader effective beam

weighting function, denoted by fe. Provided that the radar is scanning horizontally

at a constant elevation ε0, which depends on the common practice in setting up radar

schedulers scanning azimuthally in a continuous mode with a discrete change in elevation

after finishing a 360◦ rotation, that is (Blahak, 2008a),

f 2
e (α,ε) =

exp

{
−4ln2

[(
(α−α∗)cosε

α3,e f f ,0 +(cosε0−1)∆α[1− exp(−1.5∆α/θ3)]

)2

+

(
ε− ε0

θ3

)2
]}

.

(3.5)

Note that in order to describe the angular averaging correctly in terms of azimuth,

the formulation has been transformed from the beam system to the radar system, i.e,

~r = (r,α∗,ε), where α∗ is the center of the averaging interval. ∆α is the averaging

interval of the consecutive pulses, and α3,e f f ,0 is the effective 3-dB beamwidth at 0◦

elevation, which depends only on the radar specific ratio ∆α/θ3 and can be calculated by

interpolation from Table 1 of Blahak (2008a).

A key parameter often used to judge the quality of radar observations is the spatial

resolution, defined as the minimum separation between two targets of equal reflectivity

that permits them to be distinguished individually in a processed radar image. The spatial

resolution at any point in a radar image is determined by computing the resolution in two

dimensions: the range and the azimuthal resolutions. The range resolution is the ability

of radar to differentiate two targets that are close together in range. The range resolution

is limited by the pulse length, the types and sizes of the targets, and the efficiency of the

receiver and the indicator, but the pulse length is the primary factor. A well-designed
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Fig. 3.6.: Sketch of volume scan strategy showing the polar coordinate system (Ruffieux and
Illingworth, 2008)

radar system, with all other factors at maximum efficiency, is able to discriminate between

separate echoes only if the difference in their delays is larger than the pulse duration

τ , so the range resolution ∆r is equal to cτ/2. The azimuthal resolution is the ability

of radar to resolve between two targets in the azimuthal direction. Two targets can be

separated in the azimuthal direction only if the distance between them is larger than one

beamwidth, so the beamwidth is taken as the measure of azimuthal resolution. Since

radars have a certain spatial resolution, the radar displays usually look gridded and blocky

(see Fig. 3.2), and each individual block or box of data is called a pixel, bin or gate.

Radars from DWD’s network have range resolution of 1000 m and azimuthal resolution

of 1◦. The antenna moves constantly in the azimuthal direction from 0◦ to 359◦ and each

pulse is sent in a different azimuthal direction, separated by 1◦. When the radar finishes

scanning in 360 degrees at one elevation, it tilts up to the next elevation and does the same

sweep again. The radar repeats this until it has scanned at all elevations (see Fig. 3.6). As

the beam broadening (see Section 3.6) reduces the reliability of radar measurements with

distance, only measurements within the range of 124 km (= 124×1000 m) from each

radar site are taken into account. As mentioned in Chapter 1, there are different scanning

types, i.e., Doppler- and intensity volume scans and precipitation scan. For the purpose

of data assimilation, the Doppler volume scan is of interest, therefore the relevant one in

this thesis. Currently, one complete Doppler volume scan takes about 5 minutes, so the

radars have temporal resolution of 5 minutes.
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In Eq. (3.1), W is the range weighting function. To simply notation, we assume that all

scatterers located on the same ray path contribute equally to the received power and the

range weighting function W can be written as a simple step function:

W (r0− r) =

1, if r ∈ [r0−∆r/2,r0 +∆r/2];

0, otherwise.
(3.6)

Considering the fact that an output value of the radar results from averaging over several

bins in range, Eq. (3.6) also represents a sound approximation. Moreover, for our typical

applications the horizontal resolution of the COSMO-model is about one order larger

than the pulse length, so that a realistic range weighting would not have significant effects

anyway.

It should be remembered that the microwave energy emitted by radar is, in fact, a

wave, so it has all the characteristics of waves such as wavelength, defined as the distance

between two points of corresponding phase in consecutive cycles and denoted with λ . In

the microwave portion of the electromagnetic spectrum, wavelengths vary between 1 mm

and 1 m (see Fig. 3.7). According to the wavelength, Doppler radar can be divided into

several band categories, which are L, S, C, X, Ku, K and Ka (see Tab. 3.1). The DWD

radar network consists of C-band radars.

Band Wavelength [cm] Frequency [GHz] Usage
L 15-30 1-2 clear air turbulence studies
S 8-15 2-4 near and far range weather observation
C 4-8 4-8 short range weather observation
X 2.5-4 8-12 cloud development studies
Ku 1.7-2.5 12-18 satellite communications
K 1.2-1.7 18-27 detecting clouds
Ka 0.8-1.1 27-40 airport surveilance

Tab. 3.1.: Overview on the different bands of Doppler radars

The typical observations of a conventional Doppler radar are reflectivity and Doppler

velocity. Their measurement principles are introduced in the following sections.
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3.2. Reflectivity factor

Fig. 3.7.: The electromagnetic spectrum: the microwave region of the spectrum is towards the
left, where wavelengths are longer and frequencies are lower.

3.2. Reflectivity factor

As electromagnetic radiation travels in the atmosphere, it interacts with air molecules,

dust particles, water vapor, rain, ice particles, insects and etc.. These interactions make

the radiation undergo attenuation in the form of scattering and absorption. The amount,

by which a “target” can scatter or absorb radiation, is typically described through an

apparent area, called cross section σ .

3.2.1. Cross section

When a target is illuminated by a wave having an incident power density Si, it will

scatter/absorb a part of the power. An observer located at a specific position (φ ,θ ) will

receive radiation scattered by the target with a power density Sr. Under the assumption

that the target is an isotropic scatterer, σ can be directly calculated by

σ(r,φ ,θ) = 4πr2 Sr(φ ,θ)

Si
, (3.7)

where φ and θ are referenced to a polar axis connecting the target and the transmitter

with the target at the origin, r is the distance between the target and the observer. In

general, the scattering cross section depends on the angles φ and θ , which means that

scattering is not really isotropic. Also note that the value of σ does not correspond to

39



3. Radar forward operator

the geometric cross section of the target. Sometimes, σ is also called the differential

cross section to distinguish it from the total cross section Q, which is obtained by the

integration of σ over the entire solid angle1. For instance, the total scattering cross section

Qs multiplied by the power density Si is equivalent to total amount of energy removed

from the electromagnetic wave due to scatter in all directions. A certain amount of energy

is absorbed and heats the target. The amount of energy removed from the electromagnetic

wave through this process is equal to the total absorption cross section Qa multiplied by

Si. The cumulative effect of scattering and absorption is described by the attenuation

cross section Qt . For the radar technique, the value of σ(φ ,θ) in the direction from

which the wave originates is of great interest, this value defines the backscattering cross

section σb.

On the basis of application of Maxwell’s equations to the scattering of a planar wave

by a homogeneous sphere in a nonabsorbing medium, Mie (1908) formulated a complete

scattering/absorption theory in terms of an infinite series of electric and magnetic multi-

poles. The attenuation, total scattering, total absorption and backscattering cross sections

can be expressed as

Qt =
λ 2

2π
(−Re)

[
∞

∑
n=1

(2n+1)(an +bn)

]
, (3.8)

Qs =
λ 2

2π

∞

∑
n=1

(2n+1)(|an|2 + |bn|2) , (3.9)

Qa = Qt−Qs , (3.10)

σb =
λ 2

4π

∣∣∣∣∣ ∞

∑
n=1

(−1)n(2n+1)(an−bn)

∣∣∣∣∣
2

, (3.11)

respectively, where an and bn are the so-called Bessel functions, which represent the

magnetic and electric multipoles of order n and depend on the radio electric size γ =

πD/λ and the complex refractive index m.

1In some literatures, Q will normalized by 4π , in that case Q will be actually an averaged cross section.
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For relatively small drop-diameter/wavelength ratios (i.e., D≤ λ/16), the multipole

moments can be neglected and only the lowest order in the series solution, namely the

dipolterm is considered, which is equivalent to setting all an and bn to zero except a1,

a1 =
2i
3

(
m2−1
m2 +2

)
γ

3 , (3.12)

which yields

Qs =
2
3

π2

λ 4 |K|
2 D6 , (3.13)

Qa =
π2

λ
Im(−K)D3 , (3.14)

σb =
π5

λ 4 |K|
2 D6 , (3.15)

where K =

∣∣∣∣m2−1
m2 +2

∣∣∣∣2 is the dielectric factor of the particles. Eqs. (3.13)-(3.15) are the

Rayleigh approximation, according to which σb is proportional to the reciprocal of the

fourth power of the wavelength and to the sixth power of the particle’s diameter.

3.2.2. Unattenuated reflectivity

The summation of all backscattering cross sections per unit volume is defined as the radar

reflectivity and represented by the symbol η :

η = ∑
i∈S

∑
j∈Ni

σbi j , (3.16)

where S contains all hydrometeor types in volume and Ni the number of hydrometeors of

type i, or in continuous form:

η = ∑
i∈S

∫
∞

0
σbi(D)Ni(D)dD , (3.17)

where Ni [mm−1m−3] is the particle size distribution (PSD) and Ni(D)dD represents

the mean number of hydrometeors with equivalent spherical diameters between D and

D+dD [mm] present per unit volume.
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At standard wavelengths of the weather radars, the conditions for Rayleigh scattering

in terms of clouds and precipitation (except hail) are usually fulfilled, so we have

η = ∑
i∈S

π5

λ 4 |Ki|2
∫

∞

0
N (D)D6dD . (3.18)

In practice, the phase and composition of hydrometeors inside the volume is in general

unknown, it is useful to characterize η with equivalent reflectivity ηe expressed as:

ηe =
π5

λ 4 |Kw|2
∫

∞

0
N (D)D6dD . (3.19)

ηe is the reflectivity which would result from backscattering of spherical liquid hydrome-

teors satisfying Rayleigh approximation. |Kw|2 = 0.93 is the dielectric factor for water,

so ηe is actually a water-equivalent value of η .

However, η varies strongly with wavelength, as indicated by the factor λ−4 in Eq. (3.18),

which makes η not suitable for describing precipitation targets when weather radars

of different wavelengths are involved. So it is common in practice, under Rayleigh

approximation, to define a new variable called radar reflectivity factor Z :

Z :=
∫

∞

0
N (D)D6dD , (3.20)

which depends exclusively on the number of scattering elements and their sizes. In other

words, the reflectivity factor Z is a typical feature of the target. Obviously, η and Z are

related by

Z =
λ 4

π5|K|2 η . (3.21)

It is customary to use [m3] as the unit for volume and to measure particle diameters

in millimeters, so Z has conventional units of [mm6/m3]. Because numerical values

of Z may span several orders of magnitude in practice, it is convenient for numerical

calculation to use a logarithmic scale. The logarithmic radar reflectivity is defined

as defined as 10log10

[
Z

1mm6/m3

]
and is expressed in units of dBZ (Battan, 1973).

For instance, when Z = 1mm6/m3 the reflectivity factor level is 0 dBZ and when
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Z = 105 mm6/m3 it is 50 dBZ. It is worth noting that the difference of two logarithmic

reflectivities is not in logarithmic units but in linear units of dB:

dBZ− dBZ−→ dB . (3.22)

For example, a 55 dBZ storm has decreased 10 dB to become a 45 dBZ storm, or say, the

intensity difference between a 55 dBZ storm and a 45 dBZ storm is 10 dB.

In fact, in radar meteorology, the useful variable is the equivalent reflectivity factor Ze,

defined in context of ηe:

Ze :=
λ 4

π5|Kw|2
ηe . (3.23)

This reason will become clear in Subsection 3.2.4.

3.2.3. Attenuation

It can be shown that Qs < Qa for the Rayleigh approximation, so one would use Qa for

attenuation estimation at wavelengths λ ≥ 10 cm, at which the Rayleigh condition D≤
λ/16 is fulfilled for all raindrops. However, we must note that the Rayleigh approximation

is just the leading term in the series solution formulated by Mie but the other terms of the

series contributes significantly to absorption (even at λ = 10 cm although D≤ λ/16 for

all raindrops). Consequently, the Rayleigh approximation for attenuation is in error for

moderate to heavy rains and we must employ the Mie solution for Qt .

The attenuation for a given path in the atmosphere is described by the Beer-Lambert

law. At a particular range r, the attenuation factor of the radar beam is expressed by

`(r) = exp

 r∫
0

Λ(r′)dr′

 (3.24)

is the one-way loss factor due to attenuation, where

Λ(r) := ∑
i∈S

∫
∞

0
Qti(D,r)N (D,r)dD (3.25)

is attenuation coefficient.
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3. Radar forward operator

The final form of the attenuated reflectivity for spherical particles at a particular distance

r and wavelength λ is given by

Ze =
ηeλ 4

π5|Kw|2
`−2(r) , (3.26)

where the power −2 considers the two-way attenuation.

Loosely speaking, attenuation increases as radar wavelength decreases, for instance,

radars operated with λ = 5cm suffer 100 times larger power loss than radars with

λ = 10cm, therefore attenuation could have considerable influences on observations

from the C-Band radar network of DWD. For instance, Scarchilli et al. (1993) stated that

specific attenuation could attain 0.5dB/km for C-band radars. As known, the attenuation

of the radar signal arises from absorption and scattering by atmospheric gases and

hydrometeors, but in fact the attenuation by gases is often a small constant and already

corrected in most radar signal processors, thus it is neglected in this work.

3.2.4. Radar equation

The radar equation provides the fundamental relationship between the received power and

the characteristics of the target, situated at position~r0 = (r0,α0,ε0), as a function of the

technical characteristics of the radar and the atmospheric conditions on the propagation

path.

As shown in Doviak and Zrnic (1993), under assumptions that:

1. the particles occupy the entire volume of the pulse,

2. the hydrometeor particles are homogeneous dielectric spheres with diameters small

compared to the radar wavelength,

3. all the particles have the same dielectric factor |K|2,

4. the main lobe of the antenna beam pattern is expressed by a Gaussian function f ,

5. the incident and back-scattered waves are linearly polarized,

6. radar miscalibration and wetted radome are negligible,
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3.2. Reflectivity factor

the radar equation can be written in terms of the radar reflectivity (Blahak, 2004):

Pr(~r0) =

Cr

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)`−2(r,φ ,θ)
f 4(φ ,θ)

r4 |W (r0− r)|2r2 cosθdθdφdr , (3.27)

where Pr is the received power at the antenna. As shown in Eq. (3.27), η is integrated

over pulse volume (dV = r2 cosθdθdφdr), weighted by the antenna pattern f 2(θ ,φ) and

the range weighting function W .

By substituting Eq. (3.6) in Eq. (3.27) we obtain

Pr(~r0) =Cr

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)`−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr . (3.28)

Note again that the simple boxcar-function for the range weighting is a good approxima-

tion if several range bins are averaged in range by the radar processor to gain a single

output value.

Applying the mean value theorem to Eq. (3.28) yields:

Pr(~r0) =Cr

[
η

`2

]
(~r0)

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr , (3.29)

where

[
η

`2

]
(~r0) =

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

η(r,φ ,θ)`−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr

. (3.30)
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3. Radar forward operator

Since attenuation by hydrometeors is not related to the beam weighting function, we can

set `2 = 1 and obtain

Pr(~r0) =Crη(~r0)

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr , (3.31)

or equivalently,

η(~r0) =
Pr(~r0)

Cr

1
r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr

. (3.32)

To relate the received power to the physical properties of the medium observed, η is

substituted by the factor Z using Eq. (3.21), which results in

Z(~r0) =
λ 4

π5|K|2
Pr(~r0)

Cr

1
r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr

. (3.33)

However, in day-to-day radar operations there are many occasions where one or more

of these assumed conditions are violated. For instance, Eq. (3.28) does not hold if the

raindrops and ice particles illuminated by the radar beam are not in the Rayleigh regime.

If conditions 2 and 3 are not satisfied2, Z is replaced by Ze, which yields

Pr(~r0) =

Cr
π5|Kw|2

λ 4

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

Ze(r,φ ,θ)`−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr . (3.34)

Let now Ze be the “true” effective radar reflectivity field, Z(R)
e an instantaneous value

derived by the radar processor from an instantaneous power measurement P(R)
r . As the

radar constant Cr is generally not exactly known and may change with time, we replace it

2Considering the violation of the other conditions are beyond the scope of my work.
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3.2. Reflectivity factor

in Eq. (3.33) by a reference radar constant C0, which is used in radar software. By using

Eq. (3.34) and substituting Z with Z(R)
e and Pr with P(R)

r , Eq. (3.33) can be written as

Z(R)
e (~r0) =

λ 4

π5|Kw|2
P(R)

r (~r0)

Cr

1
r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr

(3.35)

=

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

Ze(r,φ ,θ)`−2(r,φ ,θ)
f 4(φ ,θ)

r2 cosθdθdφdr

r0+∆r/2∫
r0−∆r/2

π∫
−π

π/2∫
−π/2

f 4(φ ,θ)

r2 cosθdθdφdr

. (3.36)

Eqs. (3.35-3.36) establish the relationship between the single measured Z(R)
e and received

power P(R)
r . Eq. (3.35) is applied in most of the radar software while Eq. (3.36) is for

our simulation of interest. However, Pr can not be estimated just by a single radar pulse.

Marshall and Hitschfeld (1953) showed that owing to the random distribution of the

scatterers relative to the pulse wave phase, the squared amplitude of the electron magnetic

field derived from a single P(R)
r is statistically distributed in the vicinity of Pr and only

its ensemble average 〈P(R)
r 〉 is equal to Pr. The common technique to achieve 〈P(R)

r 〉
with statistical stability is averaging over many consecutive pulses during the antenna

rotation operating with a certain angular velocity. As mentioned in Section 3.6, this leads

to a somewhat broader effective beam weighting function fe as expressed in Eq. 3.5.

Substituting f with fe in Eq. (3.35) yields

〈Z(R)
e 〉(~r0) =

Cr

C0

r0+∆r/2∫
r0−∆r/2

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r,α,ε)`−2(r,α,ε)
f 4
e (α,ε)

r2 cosεdεdαdr

r0+∆r/2∫
r0−∆r/2

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)

r2 cosεdεdαdr

,

(3.37)

which takes azimuthal scanning into account.

On the basis of Eq. (3.37), it is often assumed that the distance from the radar antenna

to the target is large compared to the length of pulse volume (i.e., r0� ∆r/2) and that Ze
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3. Radar forward operator

and ` do not vary much within ∆r, the integrand 1/r2 ≈ 1/r2
0 can thus be pulled out of

the integral, which results in:

〈Z(R)
e 〉(~r0) =

Cr

C0

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r0,α,ε)`−2(r,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.38)

Since the factor Cr/C0 is generally unknown, it is set to 1 in the remainder of this thesis

with caution that it may pose a serious source of bias (cf. Section 3.4).

For the purpose of brevity, Ze is often called reflectivity factor or simply reflectivity.

To avoid terminology ambiguity, the term reflectivity will hereafter always refer to the

effective reflectivity factor Ze.

3.3. Doppler velocity

A Doppler radar observes not just reflectivity but also mean Doppler velocity within

the resolution volume (function of the mean component of scatterers’ three-dimensional

motion in the radial direction toward or away from the radar), since each scatter has its

own speed and direction, depending on its size, shape and motion of the surrounding air.

The measurement of Doppler velocity is based on the phenomenon called the Doppler

effect. When a pulse of radiation interacts with a target, it induces molecular vibrations

of the target’s electric and magnetic fields. If the target is moving toward the transmitter

in the radial direction at velocity vr (positive being away from the radar), its vibrational

frequency gets higher by vr/λ (Doviak and Zrnic, 1993). The vibrating molecules

themselves create electromagnetic fields, which in turn radiate outward from the target.

The frequency of scattered radiation is then shifted by an amount of ∆f=−2vr/λ . The
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3.3. Doppler velocity

factor of 2 is due to a two-step increase in the frequency, first in the target’s electric

vibrational frequency and second in the frequency of its radiation field in the radial

direction.

The maximum velocity vr,max that a Doppler radar can detect unambiguously is given

by the velocity, which just produces a phase shift of ±π . This velocity is called Nyquist

velocity, given by (Battan, 1973)

|vr,max|= PRF λ/4 . (3.39)

Notice that the maximum unambiguous range rmax and maximum unambiguous velocity

vr,max both depend on PRF but in opposite ways, which leads to the fundamental equation:

|vr,max · rmax|= cλ/8 . (3.40)

This is known as "Doppler dilemma", a trade-off has to be made between vr,max and

rmax. For a typical C-band weather radar with rmax = 150km, vr,max is about only 12m/s.

When an environmental wind exceeds vr,max, the radar interprets it as a weaker wind of

the opposite sign. The true environmental wind is offset by factor of 2 · vr,max until it falls

within the Nyquist interval. This is called velocity folding/aliasing. For example, if vr,max

is 25m/s and the environmental wind speed is −30m/s, then it is folded and the radar

interprets it as 20m/s. Nowadays, advanced techniques like dual-PRF (Dazhang et al.,

1984) and correction by using dealiasing algorithms (Haase and Landelius, 2004) can be

used to mitigate the ambiguity problem.

Doppler velocity is also an observed volumetric quantity. Unlike the pulse volume

averaged reflectivity, this is the average of point velocities weighted by the reflectivity

and antenna pattern in the pulse volume. The relationship between the point velocities,

reflectivity fields, antenna pattern and the power weighted moment is given in Doviak

and Zrnic (1993). Here we refine the original formulation by taking the fall velocity of

hydrometeors and attenuation into account and the averaged Doppler velocity is given by
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3. Radar forward operator
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3.4. Sources of errors

where~v =


u

v

w

 is the 3D wind vector, ~e3 =


0

0

1

 is the unit vector upwards perpen-

dicular to the earth surface and ~er =


cosθ sinφ

cosθ cosφ

sinθ

 is the unit vector on the radial ray

path direction.

In analogy with reflectivity, by neglecting the integral over r and applying the effective

beam weighting function fe, we obtain

〈v(R)r 〉(~r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(~v(r0,α,ε) ·~er)
η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

−

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(~e3 ·~er)wt(r0,α,ε)
η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

. (3.42)

Eq. (3.42) is the benchmark formulation for Doppler velocity in this work.

3.4. Sources of errors

Ideally, we would like to measure with radars the exact local values (i.e. point mea-

surement) of unattenuated Ze and dealiased vr in the atmosphere, which is by all means

impossible in reality. The accuracy of weather radar measurements varies considerably

with radar range, radar types, storm characteristics, geographical location and data pro-

cessing techniques (Wilson and Brandes, 1979; Dalezios and Kouwen, 1982). Various

sources of errors which have been discussed by several authors (Austin, 1987; Joss and

Waldvogel, 1990; Wilson and Brandes, 1979; Zawadzki, 1973) are:

1. Non-meteorological echoes (e.g., group clutter and variable clutter);

2. Side lobe echoes;

3. Multiple scattering;
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3. Radar forward operator

4. Second trip echo: a radar assumes that any returned echo is from the most recent

pulse that it has transmitted. If the first pulse reaches clouds farther than rmax,

before its echoes return, a second pulse has been emitted. When the echoes from

the first pulse return, the radar think they are from the second pulse and accordingly

places them closer to radar than where they actually are;

5. Aliasing;

6. Beam shielding by natural obstacles (such as mountains and trees) or by man-made

obstacles (such as buildings and power poles). At ranges beyond, reflectivities will

be undervalued and Doppler velocities will be estimated from a higher altitude than

expected;

7. Deviation of atmospheric conditions from assumption of 4/3 Earth radius model

(see Section 3.5), which can easily make an error of 100 m in height estimate at far

range. For a vertical wind shear of 4 m/s per km, a height bias of 100 is sufficient

to produce a 0.4 m/s wind bias;

8. Non-uniform beam filling;

9. Attenuation of radar signals due to heavy rainfall along the beam and the effects of

water on the radome;

10. Instrumental noise;

11. Statistical fluctuations of the reflectivity due to the random phase position of the

instantaneously received signal, even in case of averaging over several pulses;

12. Radar miscalibration due to unknown drifts in radar constant Cr;

13. Inaccuracies in position specification of azimuth, elevation or radial distance.

On the other hand, a success of data assimilation system generally requires:

(1) Observations are free of bias,

(2) Oberservation error variances and correlations must be properly specified and easy to

use,
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3.4. Sources of errors

(3) The operator should simulate observations as accurately as possible.

With respect to radar data, data assimilation is even more challenging because radar

data have very high spatial and temporal resolutions than the other observations (see

Chapter 1) and there is very little that can invalidate radar data if they are wrong or wrongly

assimilated. Consequently, they must be particularly carefully treated in assimilation.

Regarding item (1), a strict quality control of radar data being available at real-time is

mandatory. In DWD, the quality control consists of two steps: pre- and postprocesses

(Hengstebeck et al., 2010). The preprocessed data are also called basic data. In the

preprocessing procedure that is done at the radar site itself (within the radar device’s

signal processor) a first quality control is performed by setting filters and thresholds

(e.g., Doppler Filter for removing stationary clutter (Seltmann, 2000)). The basic data

from the radar network gathered by an automated file distribution system in real-time

at the DWD central office in Offenbach and are ready for the post-processing quality

control, by which the remaining errors (e.g., sources of errors 1-5 in the list above) are

specified and identified by flags in a quality product. The quality products are made

for all radar basic data and archived together with the data themselves in a database

system using the BUFR format, which is a binary universal form of representation of

meteorological data (Dragosavac, 2008). Item (2) is crucial for the quality of analysis

because error variances affect to what extent the forecast fields will be corrected to

match observations, and error correlations provide how the observed information will be

smoothed in the model space if there is a mismatch between the model resolution and the

density of observations. Observation error variances are mainly specified according to the

knowledge of instrumental characteristics, which can be estimated by using collocated

observations. Observation error correlations are difficult to estimate, so most models

of covariances used in practice often assume them to be zero, i.e., one believes that

distinct measurements are affected by physically independent errors. This might be

reasonable for pairs of observations carried out by distinct instruments but is likely not

valid for sets of observations performed by the same platform, like radiosonde, satellite

or radar measurements. Neglection of observation error correlations will overrate the

weight given to the observations and can create problems in the numerics of the analysis.

Usually, considerable error correlations occur when observations are close to each other,

so it makes sense to try to minimize them by thinning dense data (see Section 6.8).
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3. Radar forward operator

Concerning item (3), this statement is the main goal of this work. A radar operator uses

model variables to simulate expected values of radar measurements. If a data assimilation

system can precisely mimic what a radar would observe under given known atmospheric

conditions, then it can ingest the true radar data to tune the model states until simulated

observations converge towards the true ones. Vice versa, if the simulated observations are

biased, wrong information will be assimilated. To minimize the bias, i.e., the difference

between observations and simulated observations, we aim to develop an accurate operator

that can reproduce radar observations as well as possible by taking each physical process

in radar measurements into account, including the sources of errors 6-9.

In the next sections, we will give a detailed description about how the individual

physical processes, such as beam bending and broadening, and radar observables (i.e.,

reflectivity and Doppler velocity) are simulated within the operator, followed by the

corresponding sensitive experiments.

3.5. Beam bending

A radar beam which is propagated through the atmosphere encounters variations of

refractive index along its trajectory, which causes the beam to become curved. The total

angular refraction of the beam between two points is commonly called “bending”.

It is helpful to briefly recall the physical basis for computation of atmospheric refraction

at first. More thorough treatments on the subject may be found, e.g., in Bean and Dutton

(1966) as well as Doviak and Zrnic (1993).

For describing the ray path, the classical geometric optics is a commonly used approxi-

mation. This approximation is applicable, if, within one wavelength of radiation,

• the refractive index n changes only very little, and

• the mutual distances between “neighboring” rays change also only very little.

Under these conditions, a single ray path is determined by Fermat’s principle, which

states that the travel time t between two points A and B be minimal. Travel time depends

on the propagation speed, which is given by c′ = c/n, where c is the speed of light in

vacuum and n is the refractive index of the medium (to be precise: its real part).
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3.5. Beam bending

Fermat’s principle reads

t =
B∫

A

n

c
dr !

= min , (3.43)

where dr is an infinitesimal arc element. This is a classical problem of functional analysis.

For the atmospheric ray propagation, it is assumed that the earth is spherical with radius

RE (defining the mean sea level MSL). The refractive index n, in general, varies in all

spatial directions, but in the atmosphere, vertical variations are usually much larger than

horizontal variations. Therefore, it is assumed hereafter that n only depends on height h

over the Earth’s surface, which allows us to define the ray path by the Euler-Lagrange-

equation of the system, which reads, after transforming the infinitesimal line element dr

to the arc distance element ds at MSL height h = 0 (Hartree et al., 1946)

d2h
ds2 −

(
dh
ds

)2(1
n

dn
dh

+
2

RE +h

)
−
(

RE +h
RE

)2 (1
n

dn
dh

+
1

RE +h

)
= 0 . (3.44)

One can show that this second order non-linear ordinary differential equation (ODE) is

"almost" equivalent to the integral conserved quantity

n(h)(RE +h) cosε = const , (3.45)

where ε is the local elevation and is given by

tanε =
RE

RE +h
dh
ds

. (3.46)

By "almost" we mean that integration is mathematically not an equivalent transformation

and additional (non-physical) solutions can be created by integration. Here, the is

manifested by a sign ambiguity of ε in Eq. (3.45), because cosε = cos(−ε). We will

come to this problem later in Subsection 3.5.3.

Eq. (3.45) is the well-known Snell’s law for a continuous spherically stratified medium,

which states that the constant on the r.h.s is conserved along a ray path. This conserved

quantity has a similar significance as, e.g., the mechanical energy for the equation of

motion.

A useful simplified approximation of Eq. (3.44) may be obtained by assuming:
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3. Radar forward operator

• RE +h ≈ RE

• dh
ds
� 1 (rays at low elevations)

• n ≈ 1

so that Eq. (3.44) becomes

d2h
ds2 =

1
RE

+
dn
dh

. (3.47)

Based on Eq. (3.47), Doviak and Zrnic (1993) showed that the curvature of the ray C0 is

C0 =−
dn
dh

. (3.48)

Since dh/ds≈ ε for small ε , the term d2h/ds2 describes the change of the local elevation

with s. Hence, it is clear from Eq. (3.47) that if dn/dh =−1/RE , then dh/ds is constant

and equal to zero if ε = 0. That is, the ray spreads parallel to the Earth’s surface and

the curvature of the ray path is 1/RE , but its curvature relative to the earth is zero. With

Eq. (3.48) we can conclude that the ray’s curvature CE relative to the earth is

CE =− 1
RE
− dn

dh
. (3.49)

3.5.1. Refractive index

The variation of n is closely related to the vertical variation of temperature T , water vapor

partial pressure e and total pressure p. As n is slightly larger than unity (e.g., 1.0003), it

is much more convenient to define the so-called refractivity N, given by

N= (n−1)×106 . (3.50)

For instance, if n is 1.0003, the corresponding value of N is 300. Bean and Dutton (1966)

showed that N can be empirically given by

N= c1
p
T
+ c2

e
T
+ c3

e
T 2 , (3.51)

where c1 = 77.6 KhPa−1, c2 =−6.0 KhPa−1, c3 = 3.75×105 K2 hPa−1.
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3.5. Beam bending

Fig. 3.8.: Common classification of atmospheric refraction conditions (in analogy to Turton et al.
(1988))

Normally, the refractivity N decreases with height in the atmosphere, which leads to a

downward bending of radar beams. Under some circumstances, N may increase with the

height, i.e., dN/dh > 0, and the beam bends away from the Earth’s surface. As mentioned

above, a horizontal ray (dh/ds = 0) remains horizontal (i.e., has the same curvature as

the earth), if dn/dh =−1/RE resp. dN/dh =−106/RE , and a non-horizontal ray would

preserve its local elevation, e.g., if dh/ds > 0, a quasi-helical motion around the earth

would result. With RE ≈ 6371 km, this is dN/dh =−157km−1. If the derivative of N is

smaller than that, the curvature of the ray becomes larger than that of the earth, and the

ray will, after reaching a maximum height, be bent down and trapped between this height

and the Earth’s surface. This process is called trapping, and the layer of the atmosphere

within which the beam is bent back downwards is called trapping layer. If there is a region

below the trapping layer with a larger derivative of N, the mode of beam propagation is

similar to that of a waveguide, and this configuration is called a duct.

For the lowest 1 km of the ICAO (International Civil Aviation Organization) standard

atmosphere, Doviak and Zrnic (1993) give a value of dN/dh =−40km−1, and we will

refer to this as “normal” conditions in the following, as they represent some “average”

climatological conditions near the ground.

If dN/dh lies between 0 and -40km−1, the beam will be bent towards the Earth’s

surface with a curvature less than that of the normal conditions, and we refer to it as
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sub-refraction (see Fig. 3.8). Super-refraction occurs when dN/dh ranges from -40 to

-157 km−1. In this situation the beam is bend down to the surface at a rate less than the

Earth’s curvature but more than normal.

When considering atmospheric ducts, instead of N the so-called modified refractivity

M is usually preferred, defined as

M = N +
h

RE×10−6 ≈ N + h 157km−1 . (3.52)

Then dM/dh = dN/dh+157km−1 and for constant M (dM/dh = 0) the curvature of the

propagation of a nearly horizontal beam is that of the Earth’s surface, and dM/dh < 0

for trapping conditions. Fig. 3.8 shows the various categories of refraction in terms of

dN/dh and dM/dh.

According to the profile of M, three basic forms of a duct with corresponding duct

depths are shown in Fig. 3.9. The case in Fig. 3.9(a) illustrates the structure associated

with a simple surface duct. Here the duct extends from the local minimum to the surface,

and the trapping layer, where dM/dh < 0, stretches throughout the duct. Fig. 3.9(b)

is referred to as the surface S-shaped duct, which reaches down to the surface, while

the trapping layer doesn’t, since dM/dh > 0 near the surface. In these two cases, the

duct depth is the height difference between the ground and the top of the duct where

the minimum in modified refractivity profile is achieved. In Fig. 3.9(c), the common

conditions for an elevated duct are given, where the value of M at the surface is less than

that at the top of the duct, and so the duct can not reach down to the surface. Its depth

extends from the local minimum to the height at which the M value equals that at the top

of the duct.

As mentioned above, a duct is the result of strong vertical changes in the refractive

index of the atmosphere between air masses of different temperatures and humidities,

especially at low levels of the atmosphere. A duct can occur on a very large scale when a

large mass of cold air is overrun by warm air, leading to a strong temperature inversion. A

duct can also occur when a strong cap of warm and dry air exists in the lower troposphere

above very moist air. On one hand, a duct causes the electromagnetic energy to be able

to propagate over further distances, allowing long-range radio communication; on the

other hand, in weather radar applications, ducts usually lead to coverage fades, increased
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3.5. Beam bending

(a) Simple surface duct

(b) Surface S-shaped duct

(c) Elevated duct

1Fig. 3.9.: Left column: Typical modified refractivity M profiles. The depth of the ducts and the
trapping layers are illustrated. Right column: Corresponding typical radar beam propagation
paths in these ducting conditions (in analogy to Turton et al. (1988)).
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ground clutter, increased anomalous propagation and range-height errors. One part of the

radar simulation process is the computation of beam propagation within the atmosphere

simulated by an NWP model in an appropriate way. It is known that low elevations are

often vulnerable to anomalous propagation and orographic beam blockage, which can

seriously affect the radar’s ability to detect and quantify precipitation at ground level.

Important issues here are to minimize the influences of these effects in the observation-

simulation-comparison. In the following sections, we briefly describe and analyze a

simple well-known approximate technique and two more sophisticated (new) methods.

3.5.2. 4/3 Earth radius Model

For convenience of computation, one likes to consider the ray path as a straight line. This

can be accomplished by multiplying Eq. (3.49) with -1, resulting in

Re f f =−
1
CE

=
1

1
RE

+
dn
dh

=
1

1+RE
dn
dh︸ ︷︷ ︸

=:Ke f f

·RE = Ke f f ·RE . (3.53)

Here, Re f f denotes the Earth’s curvature relative to a straight ray and Ke f f is the effective

Earth radius factor depending on dn/dh. From Eq. (3.53) we can see that if dn/dh is

constant, then the earth has an effective radius of constant Re f f .

In the standard atmosphere, where the refractive index decreases linearly with the

height in the mean by dn/dh = −40× 10−6 km−1 in the lowest 1 km or so (i.e., -40

N-unitskm−1 or 117 M-unitskm−1), then it yields

Ke f f =
1

1+RE
dn
dh

≈ 4
3

. (3.54)

This is a common model to approximate ray paths, which assumes that the effective

Earth radius is 1/3 larger than the real one, so Re f f = 4/3RE . This model allows for a

straightforward analytical estimation of each pulse volume height h and surface distance

s relative to the radar site at a height of h = 0 (MSL) by (cf. Fig. 3.10):
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h
s

Re f f

ε0

r

Radar

P

h0

∆φ

Fig. 3.10.: P is the position of ray at range r; Re f f = 4/3RE ; h0 is the height of radar above
MSL and ε0 is the initial elevation of ray at radar antenna. Due to the geometric relationship,
it holds (h+Re f f )

2 = (Re f f + h0)
2 + r2− 2(Re f f + h0)r cos(90◦+ ε0) and Re f f ∆φ = s, where

∆φ =
r sin(90◦+ ε0)

Re f f +h
due to the Law of Sines.

h = h(Re f f ,ε0) =
√

(Re f f +h0)2 + r2 + 2(Re f f +h0)r sinε0−Re f f , (3.55)

s = s(Re f f ,ε0) = Re f f arcsin
(

r cosε0

Re f f + h

)
. (3.56)

This model is referred to as the “4/3 Earth radius model” and abbreviated in the follow-

ing by 43ERM. As shown in Doviak and Zrnic (1993), for weather radar applications

43ERM can be used for all elevations, if h is confined to the first 10-20 km and if n

has a slope of −1/(4RE) in the first kilometer of the atmosphere. But the slope of n is

usually not constant. If n decreases much more rapidly than in the standard atmosphere,

the beam will likely be bent downwards, and then the height of pulse volumes tends

to be overestimated by 43ERM. These errors can be quite significant for elevations

smaller than ∼ 1◦. More sophisticated methods can be found in Caumont (2006), Gao

et al. (2006), Chen et al. (2009) and Siebren (2003), however, their performances and

limitations, especially under the challenging ducting conditions for low elevations, have
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been rigorously reviewed to date. Therefore, two robust methods are introduced in the

following.

3.5.3. Method based on the total reflection

Under realistic atmospheric conditions, e.g., n-profile based on a radiosonde measure-

ment, some authors computed the ray propagation iteratively by discretizing Snell’s law

Eq. (3.45) in the along-beam direction r in steps of some fixed increment ∆r.

In this sense, a method used in Caumont (2006) has been revised, adding a simple

criterion for total reflection.

Let l = 1, . . . , L be the numeration index of steps. Then the height hl and the MSL

reduced surface distance sl at some location are iteratively calculated from the values at

l−1 (height above MSL hl−1, local elevation εl−1) under the assumption of straight rays

within ∆r

hl =
√

(RE +hl−1)2 +∆r2 +2(RE +hl−1)∆r sinεl−1−RE , (3.57)

sl = sl−1 +∆sl = sl−1 +RE∆φl = sl−1 +RE arcsin
(

cosεl−1 ∆r
RE +hl

)
. (3.58)

Fig. 3.11 shows a sketch of these quantities.

Given the new hl , the new εl can be directly derived from the discretized Eq. (3.45),

εl = ±arccos
(
(RE +hl−1)

(RE +hl)

nl−1

nl
cosεl−1

)
︸ ︷︷ ︸

:=F

. (3.59)

where εl is the local elevation of the ray at range l∆r.

Two problems arise here:

(1) arccos is not defined in the case of F > 1;

(2) the sign of εl is ambiguous (±) because arccos is not a unique mapping for the

co-domain [−π

2 ,
π

2 ].
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∆r

hl−1

∆sl

ǫl−1

∆φl

RE

hl

RE

Fig. 3.11.: Sketch of a straight ray path segment ∆r and corresponding MSL reduced arc segment
∆sl−1 for the TORE method.

Concerning (1), this could physically happen if nl is "sufficiently" smaller than nl−1 at

some location l . In analogy to total reflection at a discrete n-jump, we here assume that

the ray be reflected back internally, so

εl = −

εl−1 +
∆r cosεl−1

RE +hl−1︸ ︷︷ ︸
=:∆ε

 . (3.60)

∆ε is a correction term which accounts for the effect of the Earth’s curvature on the local

elevation along a ∆r-segment. A graphical derivation of ∆ε can be found in Fig. 3.12.

If F ≤ 1, it is reasonable to assume for starters that the sign of ε does not change from

one step to the next, so we have instead of Eq. (3.59)

εl =

sign(εl−1)arccos(F) , if F ≤ 1;

−(εl−1 +∆ε) ,otherwise .
(3.61)

At first glance, the criterion F ≤ 1 or F > 1 in the iteration of Eqs. (3.57) and (3.61)

could also work for the case of negative elevations, where the sign changes from - to
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εl

εl

90◦− εl
εl−1

90◦+ εl−1

∆φ

RE +hl

RE +hl

∆r
∆s

Fig. 3.12.: Derivation of ∆ε: on one hand, because (RE + hl−1)∆φ = ∆s, it holds ∆φ =
∆s

RE +hl−1
=

∆r cosεl−1

RE +hl−1
. On the other hand, it holds (90◦− εl)+ (90◦+ εl−1)+∆φ = 180◦.

Together, it yields ∆ε = εl− εl−1 = ∆φ =
∆φ cosεl−1

RE +hl−1
.

+ somewhere along the ray under “normal” propagation conditions due to the Earth’s

curvature. In this case, it holds hl < hl−1 in F , so that F > 1 would be theoretically

possible. But we found by extensive testing that the asymptotic behavior of F as a

whole is such that it usually remains ≤ 1 in the iteration when εl−1 approaches 0 from

the negative side (except for cases where the n-gradient is very weak), and no sign

change occurs. An example can be found in the later Experiment 4 in Section 3.5.5.

Unfortunately, this asymptotic behaviour seems to be independent of the choice of ∆r. To

circumvent this problem, an extra ad hoc criterion is adopted, which uses the increment

between εl−1 and εl−3 to linearly extrapolate and predict εl. A sign change is assumed

if εl−1 < 0 and εl−1 +(εl−1− εl−3)> 0. The reason we choose the increment between

εl−1 and εl−3 instead of the increment between εl−1 and εl−2 is that the later one is often

too small to prompt the sign change, again because of the asymptotic behavior of the

iteration when εl−1 approaches 0 from the negative side. This ad hoc criterion works

effectively as shown in the Experiment 4 in Section 3.5.5.
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n0Earth

∆r

∆r

ε0

ε1
εl−1

εl

n1 nl−1 nl

h0

Fig. 3.13.: Illustration of the iterative polygon pieces of length ∆r and successive local elevations
εl and refractive indices nl for the TORE method.

Therefore, Eq. (3.61) is modified to

εl =


−sign(εl−1)arccosF , if F ≤ 1∧ (εl−1 < 0∧ εl−1 +(εl−1− εl−3))> 0 ;

−(εl−1 +∆ε) , if F > 1 ;

sign(εl−1)arccosF ,otherwise .

(3.62)

Because of the newly considered total reflection assumption, this modified method is

called TORE (acronym for TOtal REflection) and can be summarized as follows (see

Fig. 3.13):

Step 1: Calculate height hl and MSL-reduced surface distance sl using Eqs. (3.57-3.59),

starting from hl−1 and sl−1 with local elevation εl−1,

Step 2: Estimate nl = n(hl) using radiosonde or NWP data,

Step 3: Calculate εl using Eq. (3.62). Note that nl−1 is known from Step 2 of the previous

iteration.
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Steps 1 - 3 are repeated from l = 1 to l = L. In the first iteration, the values at l−1

are antenna elevation ε0, height h0 at the radar antenna, refractive index n0 = n(ho) and

s0 = 0.

Note that, despite extensive testing, we cannot exclude that the above ad hoc criterion

might fail in rare instances, because it is not rigorously mathematically well-founded.

Note also, that the above sign ambiguity is a general problem of Snell’s law (as stated

earlier), and that all methods based on it have to deal with the problem in one way or

another.

3.5.4. Method using Second-order Ordinary Differential Equation

Although TORE considers explicitly the actual refractive index, an ad hoc criterion is

required to determine the sign change of local elevations. In this section, we have found

a novel method, called SODE (abbreviation for Second-order Ordinary Differential Equa-

tion), which offers a straightforward analytical/numerical solution for ray propagation

and considers the sign change automatically.

As can be seen from Eq. (3.44), the ray propagation can be formulated as an initial

value problem of an ODE. Principally this would be possible by employing Eq. (3.44)

directly, but it has the drawback of being formulated relative to the independent coordinate

s. For many practical applications, e.g., as part of a radar forward operator, a formulation

relative to the along-beam range r would be preferential, because it is then possible to

discretize the solution by using a constant ∆r which is directly related to the radar range.

To derive such an alternative ODE, we start from Snell’s law Eq. (3.45) but now assume

h as a function of r, i.e.,

n(h(r)) [RE +h(r)]cosε = const . (3.63)

From differential geometry (cf. Fig. 3.14) one obtains for infinitely small dh and dr

sinε =
dh
dr

(3.64)

cosε =

√
1−
(

dh
dr

)2

, (3.65)
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dh

dr

ds

hs

RE

ε

Fig. 3.14.: Sketch of RE , h, s and their differentials for the derivation of Eqs. (3.68) and (3.69)

therefore

n(h(r)) [RE +h(r)]

√
1−
(

dh
dr

)2

= const . (3.66)

As indicated, h is assumed to be a function of the range r, so the refractive index n

depends implicitly on r. One differentiates Eq. (3.66) with respect to r and obtains

dn
dh

dh
dr

(RE +h)

√
1−
(

dh
dr

)2

+n
dh
dr

√
1−
(

dh
dr

)2

+n(RE +h)
−2

dh
dr

d2h
dr2

2

√
1−
(

dh
dr

)2
= 0 ,

(3.67)

after multiplication by
√

1− (dh/dr)2/[n(RE +h)dh/dr] and simplification, one obtains

the second-order nonlinear ODE

d2h
dr2 +

(
dh
dr

)2(1
n

dn
dh

+
1

RE +h

)
−
(

1
n

dn
dh

+
1

RE +h

)
= 0 (3.68)
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and, by substituting dh/dr = u, the equivalent set of two coupled first-order equations

are arrived at

dh
dr

= u ,

du
dr

=−u2
(

1
n

dn
dh

+
1

RE +h

)
+

(
1
n

dn
dh

+
1

RE +h

)
.

(3.69)

Eqs. (3.68-3.69) are physically equivalent to Eq. (3.44), but are formulated with indepen-

dent coordinate r instead of s. A mathematical difference is that Eq. (3.44) does not allow

for exact vertical propagation, because in that case dh/ds→∞. The new Eqs. (3.68-3.69)

do not have this limitation.

The equation system (3.69) can be treated as an initial value problem with initial values

u(r = 0) =
dh
dr

∣∣∣∣
r=0

= sinε0 , (3.70)

h(r = 0) = h0 . (3.71)

In analogy to TORE, Eq. (3.69) is discretized and solved in steps of ∆r. The iteration

step from location l−1 to l is done as follows:

Step 1: Estimate 1/nl−1 and dn/dh|l−1 at the height hl−1 using radiosonde soundings or

NWP data,

Step 2: Solve Eq. (3.69) with initial values ul−1 and hl−1 to obtain ul and hl

Step 3: As in Eq. (3.59), calculate MSL-reduced surface distance sl from

sl = sl−1 +RE arcsin
(

cosεl−1 ∆r
RE +hl

)
,

with

εl−1 = arcsin(ul−1) . (3.72)

Steps 1 - 3 are repeated from l = 1 to l = L. Note that the initial value problem posed in

Step 2 is currently solved using the 4th order explicit Runge-Kutta method (RK4, see

Appendix B.2), but any other numerical standard method for solving ODEs would be
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suitable as well. For the first iteration l = 1, the initial values in Step 2 are given by

Eqs. (3.70-3.71), and the refractive index and its slope has to be estimated at h0, resulting

in 1/n0 and dn/dh|0.

Other authors have also applied differential equation solvers for the ray propagation

problem (Hartree et al., 1946; Siebren, 2003), but the formulation of the above ODE in

terms of r is believed to be new and especially suitable for radar forward operators.

3.5.5. Sensitivity experiments

So far we have presented three methods to calculate radar beam propagation in a stratified

atmosphere. In what follows, we compare all these methods by evaluating them for

specific atmospheric conditions. This is done with a series of sensitivity experiments

in a framework, where certain horizontally homogeneous vertical profiles of T , p and

e are prescribed (cf. Neuper (2010)). The first three experiments are based on the

idealized ducting profiles introduced in Fig. 3.9. A fourth experiment is based on standard

atmosphere data, and a fifth applies measured radiosonde data from a ducting case.

For all experiments we choose a maximal surface cover range of 300km and a range

resolution ∆r of 500m. In the first three experiments we investigate simulations of beam

propagation for two initial elevations ε0 = 0.1◦ and ε0 = 1.1◦, and in the fourth one

for ε0 = −0.3◦. In order to stimulate different kinds of ducts, the radar antenna is set

accordingly to different heights in the experiments.

Experiment 1: idealized surface duct

In this experimental setup we simulate a surface duct. Accordingly, we have chosen the

profiles of M and N with respect to h as given in Figs. 3.15(a) and 3.15(b), respectively.

The radar antenna is set at a height of 200 m. Fig. 3.15(a) shows a large negative slope of

-100 M-unitskm−1 of M for the first 350 m and thereafter a slope of 117 M-unitskm−1.

The simulation results are shown in Figs. 3.15(c) and 3.15(d). Fig. 3.15(c) represents

the variations of beam heights h with distance s computed by the three methods, while

Fig. 3.15(d) shows the absolute height differences of TORE and SODE, respectively,

compared to 43ERM. One can see that for ε0 = 1.1◦, the beam heights calculated by

all three methods are generally close to each other (as shown in Fig. 3.15(d)) and are
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less than 600 m at maximum range; for ε0 = 0.1◦, the resulting rays according to TORE

and SODE are refracted downward to the Earth’s surface because of the strong negative

dM/dh, while 43ERM produces a curve which is straightening up. No surface reflection

was taken into account in these calculations, and therefore the rays of TORE and SODE

end when reaching the ground. The discrepancies compared to 43ERM grow already

to about 1600 m at a distance of 140 km. This observation is therefore in accordance

with the statement from Doviak and Zrnic (1993) that for the higher elevations the radar

beams are less sensitive to the refractivity gradient, while for low elevations (< 1◦) under

ducting conditions 43ERM is prone to (strongly) overestimating the beam heights.

Experiment 2: idealized surface S-shaped duct

Now we apply all these methods to an idealized surface S-shaped duct, characterized

by the profiles of M and N, shown in Figs. 3.16(a) and 3.16(b). The antenna’s height is

chosen to 40 m. The profile of M begins with a slope of 117 M-unitskm−1 for the lowest

100 m, then alters to -100 M-unitskm−1 until 400 m and thereafter goes back to 117

M-unitskm−1. As can be seen in Figs. 3.16(c) and 3.16(d), for ε0 = 1.1◦ the differences of

three methods are insignificant (about 1 km at maximal distance), in contrast to ε0 = 0.1◦,

where the rays calculated by SODE and TORE are both propagated in a wave-like mode,

trapped within the ducting layer (see Fig. 3.16(c)), and the height differences compared

to 43ERM reach 1600 m at a distance of 150 km (see Fig. 3.16(d)). The reason for slight

discrepancies between SODE and TORE for ε0 = 0.1◦ in Fig. 3.16(c) will be addressed

in Experiment 5.

Experiment 3: idealized elevated duct

A further situation modelled is an idealized elevated duct. The corresponding profiles

of M and N are illustrated in Figs. 3.17(a) and 3.17(b). The antenna height is 300 m. The

profile of M starts with slope 117 M-unitskm−1 for the first 250 m, then changes to −100

M-unitskm−1 until 400 m and at last returns to 117 M-unitskm−1. The general features

of the results, illustrated in Figs. 3.17(c) and 3.17(d), are mainly the same as those in

Experiment 2 except that the duct here is lifted in the air and does not touch the ground.
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(d) Height differences in reference to 43ERM:
43ERM - TORE: beam heights computed by
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1

Fig. 3.15.: Experiment 1: simple surface duct. (a) and (b): profiles of M and N with height in m;
(c): beam heights in m for different initial elevations and simulation methods as indicated as a
function of surface distance in m×105. The antenna height is assumed to be 200 m; (d): height
differences compared to 43ERM as a function of surface distance in m×105.
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Fig. 3.16.: Experiment 2: same as Fig. 3.15 but for a surface S-shaped duct
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Fig. 3.17.: Experiment 3: same as Fig. 3.15 but for an elevated duct
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Experiment 4: standard conditions

The current experiment is based on data for standard conditions. As shown in

Fig. 3.18(a) (or 3.18(b)), now a constant slope of dM/dh = 117 M-unitskm−1 throughout

the atmosphere is considered. The antenna height is set to 200 m. But now the elevation

is set to a negative value, ε0 =−0.3◦. In order to demonstrate the effects of the ad hoc

approach Eq. 3.61) for TORE, two experiments are performed here, one using Eq. (3.61),

denoted with E4(1) and the other one simplily εl = sign(εl−1) · arccos(F), denoted with

E4(2). In E4(1), the results of all three methods are basically identical (see Figs. 3.18(c)

and 3.18(e)). All prompt the beams to descend at the beginning in virtue of the negative

initial elevation and to slope upwards after a distance of about 50 km due to the Earth’s

curvature. This shows that, for “normal” conditions, 43ERM is a satisfactory approxi-

mation in comparison with the solution of SODE, which is considered as an accurate

reference solution.

But in E4(2), TORE is not able to overcome the slight negative elevations (near to 0◦

as shown in Fig. 3.18(e)) and thus flattens out afterwards, which is due to the fact that,

under standard conditions, the beam parts with negative local elevation are propagated

from smaller to larger n. Thus, the conditions for “total reflection” are not met and the

negative local elevations fail to become positive, because Eq. (3.62) preserves the sign

of the elevation from one TORE iteration step to the next. This special artifact shows

the necessity of Eq. 3.61) as a criterion for a sign change of ε in “non-total-reflection”

conditions (i.e., the elevation at some distance has to change its sign from negative to

positive just because of the Earth’s curvature).

Experiment 5 using measured radiosonde data

In this experiment, a case based on real atmospheric conditions is investigated, which

exhibits a strong temperature inversion and moisture profile near the ground observed at

Stuttgart-Schnarrenberg (WMO-ID 10739) in Germany at 00 UTC on 4th September 2004

(see Fig. 3.19). The corresponding profiles of M and N given in Figs. 3.20(a) and 3.20(b)

are derived from the radiosonde data available from the University of Wyoming3, where
3Although a radiosonde measures on a spatial scale much larger than the radar wavelength, the data are readily available and are

a good source of atmospheric information on temperature and humidity structure. It is assumed that the radiosonde data will
at least yield a not too noisy representation of the n-profile in ducting conditions.
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(e) E4(1): variations of local elevation as func-
tion of surface distance for elevation −0.3◦:
+ 43ERM; SODE; ◦ TORE
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Fig. 3.18.: Experiment 4: standard conditions. (c) and (d): beam heights in m calculated by TORE,
using Eq. (3.61) or simplily εl = sign(εl−1) · arccos(F), respectively, indicated as a function of
surface distance in m×105; (e) and (f): same as (c) and (d) but for the local elevation in degree.
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Fig. 3.19.: Sounding from Stuttgart-Schnarrenberg at 00:00 UTC on 4th September 2004

a vertical interpolation of original T , dew point Td and p-data to additional levels (linear

oversampling every 10 m vertical) is performed and from these oversampled data, n

is computed. The refractive index nl at some arbitrary level l is derived by linear

interpolation from upper and lower neighboring oversampling points at locations l> and

l<. The refractivity slope is approximated by a simple differential quotient

dn
dh

∣∣∣∣
l
=

nl>−nl<
hl>−hl<

. (3.73)

The linear oversampling of the original radiosonde data minimizes interpolation artifacts

for n and its vertical slope. It is justified because in radiosonde data, T and Td often

exhibit a near-linear dependence on height inbetween the data points which are stored in

radiosonde data sets, and p varies smoothly with height.

If, however, some noise in the derived n-profiles should lead to noisy gradients, some

smoothing could be obtained by applying more sophisticated methods for interpolation

and slope calculation. The authors found the so-called Savitzky-Golay-Filter (Press

et al. (1993)) very useful, i.e., fitting of a low-order polynomial to a wider stencil of
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3.5. Beam bending

neighboring oversampling points (e.g., 5th order polynomial, 12 surrounding points) and

computing n and its slope from this polynomial instead of interpolating from the original

data.

The setup of maximal surface distance, range resolution and initial elevations remain

the same as previously and the radar antenna height is set to 40 m.

The corresponding M-profile in Fig. 3.20(a) shows a duct between 17 m and 144 m

above the surface (i.e., duct depth = 127 m) and a trapping layer extending from 71 m

to 144 m. Therefore, it can be expected to observe an elevated duct between 17 m and

144 m in ray paths with low elevations. Fig. 3.20(c) illustrates the comparison of beam

heights computed by the three methods. As expected, all three methods provide nearly

the same results for ε0 = 1.1◦; for ε0 = 0.1◦, 43ERM, not “knowing” about the actual

ducting conditions, generates a lifting curve, while TORE and SODE are consistent with

the expected ducting conditions, and both are able to deliver reasonable waveguide-like

results, with however slightly different shapes (Figs. 3.20(c) and 3.20(d)). Fig. 3.20(e)

shows the corresponding local elevations.

It is worth noting that the discrepancies between SODE and TORE, as shown in

Fig. 3.20(c), arise from numerical reasons, which can be eliminated by refining the range

resolution ∆r. For instance, if we replace ∆r = 500 m with ∆r = 200m, the discrepancies

almost disappear as illustrated in Figs. 3.21(c) and 3.21(e).
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Fig. 3.20.: Experiment with real radiosonde data. (c): beam heights in m for different initial
elevations and simulation methods as indicated as a function of surface distance in m×105. The
antenna height is assumed to be 40 m; (d): height differences compared to 43ERM as a function
of surface distance in m×105; (e): same as (c) but for the local elevation in degree.
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Fig. 3.21.: As Fig 3.20 but with a finer range resolution of ∆r = 200 m

Idealized case study with the COSMO-model

SODE, as the reference method, gives us an incentive to take a further insight into

viability of SODE under anormal conditions within the COSMO-model. Therefore, we

test SODE again with the same thermodynamic profile given in Fig. 3.19 but now in

framework of the COSMO-model. Here, special care must be given to the vertical grid

resolution. Thus, two idealized COSMO-model runs are done with exp_galchen = 2.6

and exp_galchen = 3.6. Both grids have 64 vertical levels that are unequally spaced

as shown in Tab. 3.2. Those values are interpolated, in accordance with the value of

exp_galchen, from the initial thermodynamic profile to the model levels, and serve as

initial data for model runs. We can see that the larger exp_galchen is, the denser the

lower vertical levels are. Lateral boundaries are periodic. A radar station with an effective

range of 124 km and an altitude of 100 m is assumed, thereby two elevations ε0 = 0.1◦

and 0.5◦ are investigated.
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3. Radar forward operator

exp_galchen = 2.6 exp_galchen = 3.6

Vertical index Height [m] Temperature
[K]

Height [m] Temperature
[K]

64 37.693 292.273 4.247 291.523
63 130.821 294.568 19.108 292.084
62 251.433 294.692 45.840 292.450
61 389.199 293.751 83.223 293.454
60 540.569 292.572 130.689 294.782
59 703.551 291.089 187.889 294.880
...

...
...

...
...

1 21717.759 218.345 21611.143 218.183

Tab. 3.2.: Interpolated vertical profiles of temperature on the first grid points of each model
level: the vertical index begins from the top of the model. The heights result from the formula

(Gal-chen and Somerville, 1975): z = z∗
(

2
π

arccos
(

k−1
ke−1

))exp_galchen

, where z∗ is the height

of the model top level and ke is the total number of model main levels.
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Fig. 3.22.: The idealized case study with the COSMO-model: beam heights in m, calculated
by SODE for different initial elevations and exp_galchen, as indicated as a function of surface
distance in m×104. The antenna height is assumed to be 100 m

The results of experiments are demonstrated in Fig. 3.22. With exp_galchen = 3.6,

a wave-shaped ray path for ε0 = 0.1◦ is produced, having nearly the same wave length
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3.5. Beam bending

(about 100 km) as in Fig. 3.20(b), in constrat to exp_galchen = 2.6 that leads to a

monotone ascending ray path. The reason is that the latter one generates a coarse grid

spacing which smooths out the gradient of refractive index in the lower atmosphere and

renders the curvature (towards the Earth’s surface) of the ray path less due to Eq. (3.47).

For ε0 = 0.5◦, the slope is already large enough so that the beam penetrates the ducting

layer despite of finer resolution exp_galchen = 3.6.

3.5.6. Summary and Discussion

In this section, we assessed the performance of three radar beam tracing methods, 43ERM

(well-known and based on atmospheric standard conditions), TORE (partly known from

literature and based on actual vertical profiles of refractive index n) and SODE (new

method, based on actual profiles of n and introduced in Subsection 3.5.4 by several

sensitivity experiments. Both TORE and SODE methods employ actual n data and

are rigorously based on Geometrical Optics and its fundamental Fermat’s principle.

Whereas SODE involves the solution of an initial value problem of an ordinary differential

equation, TORE is based on the conservation of an integral quantity of this differential

equation along the ray path, known as Snell’s law for continuously stratified media. It is

documented that 43ERM may expose errors under ducting situations and TORE has to

employ an ad hoc approach to allow for the sign switch under standard conditions.

Because 43ERM does not take into account the true environmental conditions at a

specific time, it tends to overestimate the beam heights in the case of superrefraction

or ducting, especially for low elevations (ε0 . 1.0◦). However, for conditions which

are near-normal in the lowest 1000 m or so of the atmosphere or for higher antenna

elevations, it generally works well, as also noted in earlier studies (e.g., Doviak and Zrnic

(1993)) and is a commonly-used method among radar specialists today. Such conditions

are prevailing for the vast majority of cases, because most radar data are taken from

elevations > 1◦, and superrefraction or ducting conditions occur only occasionally.

When it comes, however, to superrefraction or ducting conditions connected with low

elevations, TORE is able to grasp the ducting effect on propagation, where the ad hoc

approach plays a key role, without which the beam gets “stuck” at a local elevation ε . 0◦

and propagates purely horizontally further out under more or less standard conditions.
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3. Radar forward operator

Nevertheless, this ad hoc approach is based on very simple linear extrapolation, and its

stability and robustness in practice need to be further examined.

Instead, reflections occur naturally with SODE, which means that no special measures

are necessary to correctly treat reflection points, and it can also provides reasonable and

robust results in all presented tests. Moreover, SODE is more convenient in implementa-

tion of the radar forward operator due to its r dependency instead of s. Regarding these

facts, we consider SODE as a reference method.

It can be said that if consideration of the actual atmospheric conditions is important,

the SODE method is more reliable than TORE from the current view, because there are

no ad hoc criteria involved in SODE. However, prerequisite for a successful detailed

beam propagation computation is a very good knowledge of the 3D atmospheric state,

i.e., n and its vertical slope, which may vary also horizontally (this last point is not taken

into account in the present paper). With today’s aerological network (sparse number of

stations and sparse observation times), this is certainly not the case in general, and the

results can only be as good as the input data. However, if one day better, i.e., spatially

and temporally more dense, observations should be available, then SODE can play out

its advantages. We also see that the vertical resolution is important for the accuracy

of beam propagation simulation. In this sense, the vertical resolution in (operational)

NWP models today might be not be sufficiently high, but for the furture it is foreseeable

that much efforts will go into higher model resolution (at least in research), so that then,

SODE could be the method of choice.

3.6. Beam broadening and shielding

3.6.1. Beam broadening

For a radar of DWD with azimuthal resolution of 1◦, the areal size of one bin ranges from

around 0.05km2 very close to the radar site to around 3.75km2 near the end of the radar

effective range, that is a size difference of factor 75. Thus, radar observations are of lower

resolution at farther distance, which causes differences in appearance of radar returns

close to and far from the radar site. The wider the beam is, the greater the likelihood of

sampling a mixture of precipitation types becomes, especially in the vertical considering

that ice particles melt and change their shape and composition as they fall. Therefore, it
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3.6. Beam broadening and shielding

is more realistic to account for beam broadening than evaluate reflectivity solely along

the beam axis when using radar data as well as developing the operator.

This is done in our operator, e.g., in Eq. (3.38), by pulse-volume averaging over

azimuthal and elevational directions. Numerically, integration is approximated by a sum

of values at finite integration points within the integration interval, which means that we

have to simulate/evaluate not just the ray path of the beam axis but also those of some

auxiliary axes. In our operator the two dimensional Gauss-Legendre quadrature (see

Appendix B.1) is implemented, with selectable numbers nh and nv of integration points

in azimuthal and elevational directions (see Fig. 3.23). For each integration we have to

first estimate the integration intervals ∆α and ∆ε . Note that ∆α expands by factor c′ due

to the angular averaging, which is given by Blahak (2008a)

c′ =
α3,e f f ,0 +(cosε0−1)∆α[1− exp(−1.5∆α/θ3)]

θ3
. (3.74)

Additionally, we scale up ∆α and ∆ε by factor c′′ (≈ 1.29) to contain 90% power.

Therefore, the actual integration intervals in the operator are ∆α = [α0− c′c′′φ3/2,α0 +

c′c′′φ3/2] and ∆ε = [ε0− c′′θ3/2,ε0 + c′′θ3/2].

Next, select the number of integration points and calculate their positions. For in-

stance, for an arbitrary tuple (α0,ε0) the integration points are
{

α ih
0 : ih = 1, · · · ,nh

}
and

{
ε iv

0 , iv = 1, · · · ,nv
}

. Each combination of (α ih
0 ,ε iv

0 ) represents an auxiliary axis to

be simulated and the pulse-volume averaging of a certain bin is done by summing up

the values (with corresponding Gauss-Legendre weights) on these auxiliary axes within

that bin, so that - instead of simulating just one beam axis - we now have to deal with

(nh× nv− 1) auxiliary axes to treat one single beam. Note that since the integration

points are symmetrically distributed around the centre of the integration interval, odd

numbers are suggested to make sure that the beam axis is among the integration points.

3.6.2. Beam shielding

When radars scan in an environment with natural or man-made obstacles, the beams of

lowest elevation run very likely into surrounding obstacles. If merely the beam axis is

used to represent the beam in simulation, once it hits the obstacle, the beam is totally

blocked. But in the reality, a portion of the beam may be still able to travel above the
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3. Radar forward operator

Fig. 3.23.: Sketch of areal integration (plane surrounded by the solid line) with auxiliary interpo-
lation point for the Gauss-Legendre quadrature. The horizontal and vertical axes are integration
intervals ∆α and ∆ε , respectively, with auxiliary interpolation points, denoted with ? and •.

Fig. 3.24.: Beam shielding: the lower portion of the beam strikes the mountain and hence the grey
area can not be seen by the radar. The dotted line represents, for instance, an auxiliary ray which
is blocked by the mountain and is no taken into account in pulse volume averaging.
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top (or side) of the obstacle, so that the radar can still detect the precipitation behind

it (or near it). With pulse-volume averaging this shielding effect can be effectively

approximated. Once an auxiliary ray gets blocked somewhere on the way, it and only it

will be blocked (see Fig. 3.24). In light of different behaviors of measurements, different

averaging strategies are applied to reflectivity and Doppler velocity. For the former one

we average over the whole bin, setting the reflectivity in blocked part equal to 0mm6/m3

with full weight, while for the latter one we discard the blocked part and just average

over the unblocked area. This treatment is consistent with the real behaviour of radar

measurements.

3.6.3. Sensitivity experiments

Now we are interested in determining the sufficient number of integration points. Loosely

speaking4, the more integration points are, the more accurate are the integrals. But more

points potentially bring about more computational time and memory usage. A good

choice could be very circumstantial, it depends primarily on the model resolution. For

instance, it is advisable to do more averaging when the model resolution is higher than

that of radars. Second, it depends on the variability of model states, e.g., larger wind

shear needs more averaging for Doppler velocity. On the subject of beam shielding, it is

also related to physical properties of obstacles (e.g., height and position relative to radar).

Next, we intend to find an appropriate number of integration points for the given model

resolution, thermodynamic profiles and orographic obstacle by a series of experiments

in an idealized framework. The first experiment E1×1 is done without averaging (the

first number in subscript refers to nh and the second one to nv) and in each subsequent

experiment we increase the number of integration points by two (note: first in nv and

then in nh). The model setup is same for all experiments: the model grid comprises of

201× 100× 64 grid points, with horizontal grid spacing of (0.025◦, 0.025◦) (approx.

2.8 km). The vertical coordinate is the Gal-Chen coordinate with exp_galchen = 2.6,

which generates a moderately increasing grid distance with height (see Tab. 3.2). The

thermodynamic profiles are specified analytically and periodic conditions are used at the

lateral boundaries. A three dimensional Gaussian-shaped mountain centered at model

4To be precise, an n-point Gaussian quadrature rule yields already an exact result for polynomials of
degree 2n−1, which means the accuracy of an numerical integration can be limitedly enhanced by
increasing integration points.
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grid point (i, j) = (72,72) is set with height of 1000 m and radii of (75000,20000) m,

extending to the northeast corner of the observed area.

A convective system is triggered by three ellipsoidal warm air bubbles centered at

(i, j) = (22.5,45.5), (i, j) = (26.5,50.5) and (i, j) = (25.5,55.5), with the same height

of 1400 m and three dimensional radii of (16000,16000,1600) m (i.e., the bubbles spread

out to the surface), within environmental conditions similar to those given by Weisman

and Klemp (1982). The maximum potential temperature deviation amounts to 3 K.

Because the bubbles are warmer than the surrounding air, they are buoyant and rise

freely. As they ascend, they cools at the dry adiabatic rate and the dew point falls, but

not as rapidly. So the temperature of bubbles and dew points approach each other and

relative humidity of bubbles increases. As the bubbles have cooled down to the dew point,

condensation begins, and clouds form. The condensing water releases latent heat energy,

which promotes the air lift. During this process, large quantities of water emerge which

can cause showers or even thunderstorms.

After about three hours, a large squallline type system has developed and reached

mountain area. Fig. 3.25 illustrates the simulated PPI scans at elevation 0.5◦ for E1×1,

E1×3 and E5×9. As shown in Figs. 3.25a and 3.25b, the radar beams are hindered by

the mountain in the northeast part and there are no data behind it. In E1×3, applying

pulse-volume averaging, the elevation of the upper auxiliary axis is already large enough

to make it penetrate the top of mountain and consequently enlarge the areal cover of

reflectivity and Doppler velocity (see Figs. 3.25c and 3.25d, note that Doppler velocities

exist even where no reflectivity is present. This is because weighting by reflectivity was

not used here, and we will come back to this points later on in the the next chapter).

Meanwhile, we can see value cliffs of reflectivity and Doppler velocity on the edge of the

mountain, but by employing more and more integration points, this discontinuity can be

gradually smoothed away (see Figs. 3.25e and 3.25f).

To gain a deeper insight into effects of increasing integration points, we calculated

differences of every two successive experiments and denote them as Eih×(iv+2)−Eih×iv

or E(ih+2)×iv− Eih×iv (the substration is binwise). The results are shown in Fig. 3.26

for reflectivity and Fig. 3.27 for Doppler velocity. The bins, where at least one of the

experiments does not have numerical values (i.e., bins are either blocked due to the
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orography or outside the model domain), are marked in black color5. In Fig. 3.26a, we

confirm the occurence of total beam blockage in E1×1 in black area. The dark red area

arises from comparing small reflectivities of small values (≤ -5 dBZ) with no reflectivity,

represented by -99.99 dBZ. From Fig. 3.26b to Fig. 3.26d we can see the impacts of

vertical averaging, which continually decrease as integration points increase due to the

edge effect. As expected, the horizontal averaging does not exhibit strong impacts because

of the relative coarse horizontal resolution. The dark red spots in Fig. 3.26e basically

outline the border from reflectivities of small values (≤ -5 dBZ) to no reflectivity, and

emerge clearly due to the same reason just described above. These are, however, already

greatly reduced in E5×9, as shown in Fig. 3.26f. For Doppler velocity (see Fig. 3.27),

the differences also tendentially fade out with increasing integration points. Meanwhile,

a clear stripe structure can be seen which becomes finer as more integration points are

employed. The reason is illustrated in Fig. 3.28, where we compare integration schemes

with three and five points, for instance. At position P1 the lower outermost point of

5-point integration scheme is under the orography (i.e., the corresponding auxiliary axis

is blocked), so its value will not contribute to the integration according to the averaging

strategy for Doppler velocity and the other four points build the integration. By doing this,

we neglect the point with the smallest value since the wind speed rises with the height,

which results in a faster Doppler velocity than the 3-point integration scheme using all

three points in this case. Wenn the radar scan moves horizontally closer to mountain, say

at position P2, the lower outermost point of 3-point integration scheme encounters the

orography as well, analogously, this enhances the value of integral, but to a even higher

extent and results in a faster Doppler velocity than 5-point integration at this position.

This alternating value relationship brings about the stripe structure. If we compare two

integration schemes with even more integration points, this kind of alternation will occur

more frequently and we will see more stripes with smaller widths. Figs. 3.27e-3.27f

show that the horizontal averaging is negligible here, which is attributable to the model

resolution and homogeneous wind profile.

5In this thesis, we distinguish places where no reflectivity exists and where beams are blocked or outside
the model domain. The first one is assigned to value of -99.99 dBZ, while the latter one is given a
nonnumerical value.
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(a) E1×1 (b) E1×1

(c) E1×3 (d) E1×3

(e) E5×9 (f) E5×9

Fig. 3.25.: Sensitivity results at an elevation of 0.5◦ (PPI mode), based on different numbers of
integration points. Left column: radar reflectivity in dBZ (see color bar); Right column: Doppler
velocity in m/s (see color bar)88
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(a) E1×3−E1×1 (b) E1×5−E1×3

(c) E1×7−E1×5 (d) E1×9−E1×7

(e) E3×9−E1×9 (f) E5×9−E3×9

Fig. 3.26.: Reflectivity differences in dB (see color bar) of sensitivity results at an elevation of
0.5◦ (PPI mode)
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3. Radar forward operator

(a) E1×3−E1×1 (b) E1×5−E1×3

(c) E1×7−E1×5 (d) E1×9−E1×7

(e) E3×9−E1×9 (f) E5×9−E3×9

Fig. 3.27.: As Fig. 3.26 but for differences of Doppler velocity in m/s (see color bar)
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Fig. 3.28.: Vertical section of an azimuthal scan: The straight line represent the integration interval
(or beamwidth); 3-point integration scheme: B; 5-point integration scheme: •.

3.6.4. Summary

To conclude, the choice of (nh,nv) = (5,9) already provides hardly improvable results

with respect to pulse-volume averaging. Concerning the computational efforts, we can

not arbitrarily increase the number of integration points. One must be aware that a strong

convective scenario is handled here, representing large inhomogeneity of reflectivity and

Doppler velocity. In case of a stratiform rain, probably less integration points can be

considered. Therefore, in the sensitive experiments below, the choice of (nh,nv) = (5,9)

is adopted to guarantee good averaging results.

3.7. Simulation of attenuated reflectivity

The simulation of attenuated reflectivity corresponds to the hydrometeor and the thermo-

dynamic values including rain water-, graupel/hail- and snow content, air density and

air temperature on model grids and follow the so-called graupel scheme (Reinhardt and

Seifert, 2006) that considers mass densities {qc, qi, qr, qs, qg} of cloud water, cloud ice,

rain, snow and graupel as prognostic variables in case of the one moment scheme and

hail as an additional type of precipitation particle in case of two-moment scheme (Seifert
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and Beheng, 2006). The simulation code used here is provided by Blahak (2007), which

computes the reflectivity Ze and attenuation coefficient Λ on model grid points, based on

the full Mie-scattering scheme and temperature dependent refractive index of the particles.

Alternatively, Ze can be calculated by the Rayleigh approximation together with simple

formulas for the refractive index (Oguchi, 1983). Special care is given to the description

of melting particles. As well-known, the shape of particles are usually different from

sphere and the refractive index of the particle material (mixture of ice, water and air) is

considerably sensitive to the type and structure of the mixture and the bulk density. Since

no absolutly correct theorectical description of the refractive index of such complex mix-

tures exists, there are many different formulas available. For that, Blahak (2007) chooses

three popular Effective Medium Approximations (EMA) (Maxwell-Garnett, Wiener and

Bruggmann) but considers only spherical particles, where a concentric two-layer-sphere

particle model is implemented for e.g., snowflakes as well as melting hail- and graupel

particles. Normally, the Mie solution results in lower reflectivities than the Rayleigh

approximation for the large particles (except rain drop), but when it comes to the melting

particles, the Mie-scattering scheme usually produces higher reflectivities because of the

special effective refractive index generated by EMA engenders stronger echoes than the

Ogachi’s formula. In this connection, more can be seen in Chapter 5.

As noticed in Eq. (3.19), PSDs of the different hydrometeors are required for computa-

tion of ηe (or Ze). Within the operator, PSDs are derived from the prognostic specific mass

fractions qx in a model-consistent way, i.e., using the same assumptions for PSDs (e.g.,

generalized gamma distribution) and the mass-size- and fallspeed-size-relations (power

laws) as the COSMO-model does, and then σb can be integrated over PSDs and summed

up over all species to get Ze. We take here graupel as example for a brief derivation of a

PSD and for the other hydrometeors we refer to Doms and Schättler (2002).

An expontenial size distribution is assumed for graupel:

N g(D) = N g
0 (D)exp(−λ

gD) , (3.75)

where N g
0 (D) = 4× 106 m−4 (Rutlege and Hobbs, 1984). The properties aof single

graupel particles in the form of power laws are based on Heymsfield and Kajikawa

(1986) for their lump graupel (ρg ≈ 0.2 g/cm3) and it is assumed that mg = ag
mD3.1 with
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3.7. Simulation of attenuated reflectivity

ag
m = 169.6 for the masse-size relation and for the terminal fall velocity: wg

T (D)=wg
0D0.89

with wg
0 = 442.0 (all in the corresponding SI units).

Because it holds for the graupel mass density

qg =
∫

∞

0
mg(D)N g(D)dD , (3.76)

we replace N g(D) in Eq. (3.76) with the right-hand side of Eq. (3.75) and express λ g

with known quantities

λ
g = f g(N g

0 ,qg) , (3.77)

and applying Eq. (3.77) in Eq. (3.75), we can obtain N g.

The extension of the original code to include attenuation coefficient Λ has been done by

Jerger und Blahak (Jerger et al., 2012). Meanwhile, lookup-tables have been established

for each specie of hydrometeor to avoid the excessive time consumption of the Mie

solution. The values vary with water content, temperature (due to the refractive index)

and average water content in the ice-water-air mixture. Particularly, each combination of

different models for particles with different melting degree (single-/two-shell configu-

rations combined with either internally accumulated melt water or absorption of water

in the porous structure of ice) needs to be handled separately. The Mie solution can

then be comfortably estimated by interpolation of values in look-up tables. These three

approaches (Mie-scattering scheme, lookup tables and Rayleigh approximation) form the

modular options for simulation of reflectivity in the operator.

Within the operator, Ze and Λ are first computed on the COSMO-model grid points

and then linearly interpolated to the polar radar grid to subsequently perform Eq. (3.38),

which serves as a benchmark to calculate Ze in this work. For the sake of computational

efficiency, we often assume that the beam broadening effect is insignificant and hence

pulse-volume averaging can be switched off, which means that reflectivity is just evaluated

at the centre of each bin, Eq. (3.38) becomes

〈Z(R)
e 〉(~r0) = Ze(~r0)`

−2(~r0) , (3.78)
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and the assumption that attenuation is negligible yields

〈Z(R)
e 〉(~r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

Ze(r0,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.79)

3.8. Simulation of Doppler velocity

In this work, we aim to devise a comprehensive and flexible simulator of Doppler velocity

which accounts for the reflectivity weighting for wind velocity and fall velocity of

hydrometeors as well as effects like beam bending and broadening.

The 3D-wind vector is projected on the slanted direction of the radar beam and the

model counterpart of the measured Doppler velocity is given by Lindskog et al. (2004)

vr = (usinα + vcosα)cosε +(w−wt)sinε , (3.80)

where α is the radar antenna azimuth and ε is local elevation. ε can be estimated by the

online methods for beam propagation introduced in Section 3.5 (i.e., TORE snd SODE).

u, v and w are the zonal, meridional and vertical components of the wind vector from

the model, respectively. The meteorological convention for winds is that u component is

positive for a west to east flow (west wind), the v component is positive for a south to

north flow (south wind) and w is positive for a upward flow. wt is the average terminal

fall speed of hydrometeors, which is defined by:

wt =


η−1

(
ρ0

ρ

)0.5 ∫
∞

0 σb(D)wt(D)N (D)dD, if weighting by reflectivity;(
ρ0

ρ

)0.5 ∫ ∞

0 wt(D)N (D)dD∫
∞

0 N (D)dD
, otherwise,

(3.81)

where ρ is the air density, ρ0 is the reference (mostly surface air) density and wt(D) is

the terminal fall velocity as function of diameter D. Within the COSMO-model, wt is

computed by the formula wt(D) = aDb, where a and b are different for each hydrometeor

class. The consideration of terminal fall velocity is important, especially for assimilation

of high-elevation radar data. Currently, we use some constant value for wt (e.g., 5 m/s)
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because the implementation of wt with full model-consistent coupling to N (D), σb(D)

and wt(D) could not be accomplished during the course of this work but it will be done

in the near future.

If one applies 43ERM to approximate the radar beam, Eq. (3.80) becomes (Järvinen

et al., 2009)

vr = (usinα + vcosα)cos(ε +δε)+(w−wt)sin(ε +δε) , (3.82)

where

δε = arctan

 r cosε

r sinε +
4
3

RE +h0

 (3.83)

takes approximately the curvature of the earth into account.

Taking into account beam broadening, Eq. (3.42) is applied in (almost) full detail (no

range weighting). By neglecting the effect of beam broadening, Eq. (3.42) can be reduced

to:

〈v(R)r 〉(~r0) =~v(~r0) ·~er− (~e3 ·~er)wt(~r0) . (3.84)

Under the assumption that the hydrometeor fall speed is negligible, Eq. (3.42) can be

rewritten as:

〈v(R)r 〉(~r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(~v(r0,α,ε) ·~er)
η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

η(r0,α,ε)

`2(r0,α,ε)
f 4
e (α,ε)cosεdεdα

. (3.85)
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Another simplification can be achieved if we neglect the weighting by (attenuated)

reflectivity:

〈v(R)r 〉(~r0) =

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(~v(r0,α,ε) ·~er) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

−

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

(~e3 ·~er)wt(r0,α,ε) f 4
e (α,ε)cosεdεdα

α∗+π∫
α∗−π

ε0+π/2∫
ε0−π/2

f 4
e (α,ε)cosεdεdα

. (3.86)

At this point we would like to summarize all available simplifications. With respect to

beam bending, we can choose among the simple offline method 43ERM and sophisticated

online methods TORE and SODE. In terms of beam broadening, we can take this effect

into account by integration or neglect it. The computation of reflectivity can be done

either by Mie solution or by Rayleigh approximation, with or without consideration of

attenuation. We can also decide to apply weighting by reflectivity or not in computation

of Doppler velocity. Those simplifications can save computational efforts but might lead

to accuracy loss in simulations, and their significances will be evaluated in Chapter 5.

Before that, we will first give a brief overview of the operator from the implementation

point of view in the next section.
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With respect to the program design, applicability and efficiency of the operator code

on vector-parallel supercomputers is a major concern. Currently, DWD operates two

independent NEC SX-9 clusters, one for the operational weather forecast, the other one

for research and development. In this section, we explain the computer implementation of

the operator for the NEC SX-9 clusters of DWD. Because the operator is implemented in

the framework of the COSMO-model, it shares the same programming language, namely

FORTRAN 90 or 95. Recall that another goal of the code design stated in the last chapter

is to have a flexible modular operator that offers different options for each module. The

control flags introduced in Tab. 4.1 are used in implementation to switch on/off modules

or to select specific options, and they can be specified via a Fortran 90 namelist file.

Logical flag (default = .true.) Function
lout_geom Output of heights h and elevations ε of radar bins
loutradwind Output of Doppler velocity vr
loutdbz Output of reflectivity Ze
l f all Taking fallspeed wt into account
lweightdbz Taking weighting by reflectivity into account
lextdbz Taking attenuation into account
lsmooth Taking pulse averaging into account
lonline Simulation of beam propagation with SODE
l f irst_cmp Indication of the first call of the operator in a model run

Tab. 4.1.: Function of the control flags in algorithms

4.1. Vectorization

Each cluster of DWD has 14 nodes with 4096GB/s shared memory bandwidth per

node and 2× 128GB/s bidirectional internode bandwidth. There is 512GB physical

97



4. Programming aspects of the radar forward operator

memory per node, the complete system having 7TB physical memory. Each node has

16 processors. The NEC SX-9 processors run at 3.2 GHz, with eight-way replicated

vector pipes, each having two multiply units and two addition units; this results in a

peak node performance of 102.4GFlops/s (= 102,4 billion operations per second) and

102.4GFlops×14 = 22.93TFlops/s peak system performance. For non-vectorized code,

there is a scalar processor that runs at half the speed of the vector unit, i.e., 1.6 GHz.

This gives a hint that vectorization1 of code architecture can accelerate the model runs

and save enormous computational time, which is especially of great importance for the

operational use. Vectorization entails changes in the order of operations within a loop,

so vectorization is only possible if this change of order does not affect the calculation

results, which means no data dependency between loop iterations exists.

The NEC SX-9 processors are able to vectorize the innermost loop, so we should make

the innermost loop as long as possible in the operator implementation. Naively, we can

deal with all radar bins of a radar station in three loops over naz (number of azimuths),

nra (number of range) and nel (number of elevations), thereby the length of the innermost

loop can just be maximum among them. However, under the assumption of a static radar

grid geometry (i.e, using 43ERM), each radar bin is independent from the others and

hence we can build one single vectorizable loop over nrp = naz ·nra ·nel of all bins. The

formulas:

irp = iaz+(ira−1) ·naz+(iel−1) ·naz ·nra , (4.1)

iaz = MOD(np−1,naz)+1 , (4.2)

ira = MOD(np−1/naz,nra)+1 , (4.3)

iel = (np−1)/(naz ·nra)+1 , (4.4)

allow for a unique bidirectional mapping between irp and (ira, iaz, iel), where irp is the

numeration index of the single loop and ira, iaz and iel are indices of range, azimuths

and elevations, respectively. In this way, we maximize the length of the innermost loop

and from the loop index irp we can easily estimate azimuth, range and elevation of a

1In Computer science the process of converting an algorithm from a scalar implementation, which does
an operation on one pair of operands at a time, to a vector process where a single instruction can refer
to a vector (series of adjacent values) is called vectorization (Piper, 2012).
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specific bin. Meanwhile, it also reduce the communication overhead, since only one

communication step is required instead of three. In case of the dynamical radar grid

geometry (i.e., using TORE or SODE), however, this kind of vectorization is not totally

feasible due to the dependency on the radial direction. Therefore, the code is vectorized

over naz ·nel as it is later discussed.

4.2. Parallelized code

The idea of parallelization is to distribute the computation efforts to each processor, with

an appropriate load balancing, which refers to the practice of distributing work among

processors as equally as possible so that all processors are kept busy all of the time. Load

balancing is important for decent performance of parallel programs. For example, if

all processors are subject to a barrier synchronization point, the slowest processor will

determine the overall performance, so load balancing can be considered as a minimization

of the processor’s idle time. The COSMO-model exploits static coarse-grained parallelism

through the use of MPI (Message Passing Interface) tasking (Vetter et al., 1999). The

entire COSMO-model domain is split horizontally in a number of regular rectangles

with equal base area, so that each processor computes the time integration of the model

equations only for such a subdomain and all processors have comparable work to do. In

each time step, the exchange of data values across domain borders is required for the

finite-difference calculation of horizontal gradients at the domain boundaries, therefore,

communication between neighboring processors has to be executed. However, since the

communication can be very time-consuming for current supercomputer architectures, we

attempt to minimize communication steps as much as possible.

Depending on methods of simulating radar beam propagation, two kinds of paralleliza-

tion strategies are viable. In case of the time-constant 43ERM, we have to calculate the
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geographic latitudes, lontitudes and heights (ϕg,λg,h) of the radar bins, using (Blahak,

2004):

ϕg = arcsin
(

sinϕg0 cos
(

s
Re f f +h0

)
+ cosϕg0 sin

(
s

Re f f +h0

)
cosα

)
, (4.5)

λg =



λg0 + arccos

cos
(

s
Re f f +h0

)
− sinϕg0 sinϕg

cosϕg0 cosϕg

 ; if sinα ≤ π,

λg0− arccos

cos
(

s
Re f f +h0

)
− sinϕg0 sinϕg

cosϕg0 cosϕg

 , if sinα > π

(4.6)

and Eqs. (3.55-3.56), where (ϕg0,λg0) is the horizontal position of the radar, and then

transform them to the rotated coordinates (ϕ,λ ,h) (cf. Section 2.1). These calculations

have to be done only once at the beginning of a model run because of offline characteristic

of 43ERM. The parallelization is realized in the framework of the static domain decompo-

sition of the COSMO-model. Each processor computes first geometric coordinates of all

possible bins for each radar and then determines the observable bins in its own domain.

Algorithm 1 calc_geometry_43ERM
1: for each radar station do
2: for irp := 1 to nrp do
3: Calculate (ϕ,λ ,h) of the bin
4: Estimate index imp, indicating the model grid box, in which the bin is located
5: Calculate 3D weight ~w3 and determine if the bin is observable
6: Estimate ε and h and save index irp if the bin is observable
7: end for
8: Estimate the total number nobs of observable bins
9: end for

In Alg. 1, the index imp is used to remember the model grid (i, j,k) and works in a

similar way as irp in terms of vectorization (cf. Eqs. (4.1-4.4)). In Step 3, ~w3 reflects the

distances to the upper southwest corner of impth model grid box (cf. Fig. 2.5): the farther
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the distance is, the smaller value ~w3 gains. A failure value2 is assigned to ~w3 if the bin is

outside the processor domain or unobservable. So for each observable bin we save irp,

imp and ~w3 for subsequent calculations, from which we can extract the knowledge of

radar polar coordinates of each observable bin, the model grid box containing it and its

ratio to model values.

The processor now can calculate fall speed (Alg. 2), Doppler velocity (Alg. 3) and

reflectivity (Alg. 4) on those bins and save them in respective vectors. In Algs. 2 and 4,

one computes first wt , Ze or Λ on model grids and then interpolate them trilinearly

onto radar grids, according to irp, imp and ~w3. Step 3 in Alg. 3 is done by trilinear

interpolation as well.

Algorithm 2 calc_mod_fallspeed(time)
1: Calculate fallspeeds wt on all model grid points within the processor domain
2: for each radar station do
3: for iobs := 1 to nobs do
4: Calculate wt and save
5: end for
6: end for

Algorithm 3 calc_mod_radialwind(time)
1: for each radar station do
2: for iobs := 1 to nobs do
3: Calculate wind vector (u,v,w)
4: if l f all then
5: Calculate vr and save, using Eq. (3.82) with wt calculated from Alg. 2
6: else
7: Calculate vr and save, using Eq. (3.82) with wt = 0.0
8: end if
9: end for

10: end for

2For all quantities in the operator their failure values are set to be -999.99.
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Algorithm 4 calc_mod_reflectivity(time)
1: Calculate reflectivities Ze on all model grid points within the processor domain
2: if lextdbz then
3: Estimate attenuations Λ on all model grid points within the processor domain
4: end if
5: for each radar station do
6: for iobs := 1 to nobs do
7: Calculate Ze and save
8: if lextdbz then
9: Calculate Λ and save

10: end if
11: end for
12: end for

The last remaining work is to output the data of each radar station in separate files

(Alg. 5), thereby the data of h, ε , vr, Ze and possibly Λ of a single radar station are

collected to a single processor. Since the output files are supposed to be written in radar

polar coordinates for the further processing, the indices irp have to be collected as well to

provide ranges, azimuths and elevations of radar bins. If taking attenuation into account,

Λ (cf. Eq. (3.25)) are summed up along single ray paths to obtain attenuation factor `

(cf. Eq. (3.24)) and attenuated reflectivity Ze at a particular range. The output files are

in two formats: ASCII and NETCDF3. The ASCII files allow us to plot the results with

graphical visualization packages (in this work, Matlab has been used for this purpose).

The NETCDF files follow the feedback file definition of DWD, given by Rhodin (2012),

and serve as inputs for the data assimilation step. Notice that if there are considerably

less radar stations than processors, Alg. 5 can be very imbalanced, but it does restrict the

expensive communication to a minimum.

In terms of this parallelization strategy, the bins of a specific radar might be distributed

asynchronously over different neighboring processor domains: the bins are much denser

distributed for regions close to the radar than for remote regions and the number of bins

per processor domain depends on the radar position. This could cause some unavoidable

load imbalance.

3NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-oriented scientific
data. It is initially developed by the Unidata program at the University Corporation for Atmospheric
Research (UCAR) and is widely used in climatology, meteorology and oceanography applications
(e.g., weather forecasting, climate change).
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Algorithm 5 output_radar
1: for each radar station do
2: Determine the processor x to process data
3: if lout_geom then
4: Gather h and ε onto processor x
5: end if
6: if loutradwind then
7: Gather vr onto processor x
8: end if
9: if loutdbz or lweightdbz then

10: Gather Ze onto processor x
11: if lextdbz then
12: Gather Λ onto processor x
13: end if
14: end if
15: Gather irp onto processor x
16: for iobs := 1 to nobs do
17: Estimate range, azimuth and elevation from irp
18: end for
19: if lout_geom then
20: for iobs := 1 to nobs do
21: According to results of Step 17, re-sort h and ε into hrpolar and epolar
22: end for
23: Write out hrpolar and epolar in two binary files, respectively
24: end if
25: if loutradwind then
26: for iobs := 1 to nobs do
27: Re-sort vr into vrpolar
28: end for
29: Write out vrpolar in a binary file
30: end if
31: if loutdbz then
32: for iobs := 1 to nobs do
33: Re-sort Ze into zrpolar
34: end for
35: if lextdbz then
36: for iobs := 1 to nobs do
37: Re-sort Λ and calculate ` and save it in zepolar
38: end for
39: Correct zrpolar with zeploar
40: Write out zepolar in binary file
41: end if
42: Write out zrpolar in binary file
43: end if
44: end for
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p0

p2

p1

p0

0◦

119◦

119◦

0◦

Fig. 4.1.: Sketch of establishing the auxiliary grid structure: The Model domain is divided into
three processor domains (p0, p1, p2). Blue dashed lines outline the auxiliary grid structure,
whose grids are depicted in blue points. Associated with the model levels, the structure has dense
terrain-following levels in the lower atmosphere and sparse flat levels in the upper atmosphere.
Azimuthal slices are equally distributed to three processors, e.g., p0 acquires 120 slices from 0◦ to
119◦.

If SODE is used to simulate the beam propagation, geometric coordinates of radar

bins must be computed every time step due to temporal variability of refractivity. Since

SODE computes iteratively the heights of radar bins along each ray path from the radar

site radially outwards, costly and very imbalanced communication steps are expected

when ray paths pass through the processor borders because processors have to wait for

the results of the others. To avoid this and to ease the organization of communication, an

auxiliary grid structure is proposed which consists of azimuthal slices centered around

the radar stations (see Fig. 4.1). Each grid point is identified by three elements (α,s,h),

where α refers to azimuths of radar scanning and s equidistant arc length along the

surface reduced to MSL. The subspace (s,h) represents vertical “slices” at constant

azimuths. The auxiliary structure has the same number of vertical levels as the model

and h is obtained by horizontal interpolation from heights of four surrounding model

grid points. Let nal be the dimension in s and nhl the dimension in h, then there are
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4.2. Parallelized code

ngp = naz ·nal ·nhl auxiliary grid points in total. As the first step, each processor has to

determine the valid points, i.e., in its own domain, using Alg. 6.

Algorithm 6 calc_geometry_grid
1: for each radar station do
2: for igrd := 1 to ngp do
3: Calculate (ϕ,λ ) of the auxiliary grid point
4: Estimate index imp, indicating the model grid box, in which the point is

located
5: Calculate 2D weight ~w2
6: Calculate h for each point by bilinear interpolation, using ~w2
7: Save index igrd if the point is valid
8: end for
9: Estimate the total number ngrd of valid points

10: end for

In Alg. 6, Step 3 includes Eqs. (4.5-4.6) and transformation to rotated coordinates. It is

worth mentioning that just two dimensional horizontal weights ~w2 need to be calculated

here and a failure value is assigned if the point is outside the processor domain. The

index igrd is used to save indices of (α,s,h) of each auxiliary grid point and works in a

similar way as irp.

After geometric coordinates of all valid auxiliary grid points have been computed on a

certain processor, the fall speed, Doppler velocity, reflectivity and refractivity can be hori-

zontally interpolated onto those points. In Algs. 7-10, the estimations of quantities on the

auxiliary grid points are done by the bilinear interpolation from the corresponding model

values, based on ~w2 and imp. To solve Eq. (3.68), two quantities n and
dh
dn

are desired,

but in order to lighten the communication load, a resultant quantity
1

n_grd
· n_low−n_up
h_low−h_up

in Step 9 is introduced to approximate
1
n
· dn

dh
.

After the necessary data have been interpolated to the auxiliary slices, it is time to

distribute data among processors and to let each processor do its portion in parallel. In the

implementation, the so-called block distribution (Vetter et al., 1999) is applied, where the

slices are divided into nprocs parts (nprocs is the number of processors) and the slices
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4. Programming aspects of the radar forward operator

Algorithm 7 calc_grd_uvw(time)
1: for each radar station do
2: for igrd := 1 to ngrd do
3: Calculate (u,v,w)
4: end for
5: end for

Algorithm 8 calc_grd_fallspeed(time)
1: Calculate wt on native model grid points within the processor domain
2: for each radar station do
3: for igrd := 1 to ngrd do
4: Estimate wt_grd
5: end for
6: end for

Algorithm 9 calc_grd_reflectivity(time)
1: Calculate Ze on native model grid points within the processor domain
2: if lextdbz then
3: Calculate Λ on native model grid points within the processor domain
4: end if
5: for each radar station do
6: for igrd := 1 to ngrd do
7: Estimate Ze_grd
8: if lextdbz then
9: Estimate Λ_grd

10: end if
11: end for
12: end for

Algorithm 10 calc_grd_rfridx(time)
1: for each radar station do
2: for igrd := 1 to ngrd do
3: Estimate T, e and p

4: Estimate n_grd using Eq.(3.51)
5: Estimate n_low on the lower model level in an analogous manner
6: Estimate n_up on the upper model level in an analogous manner
7: Estimate h_low on the lower level
8: Estimate h_up on the upper level

9: Update n_grd using Eq. n_grd =
1

n_grd
· n_low−n_up

h_low−h_up
10: end for
11: end for
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4.2. Parallelized code

in each part is consecutive in terms of the azimuthal index from n1 = 0 to n2 = 359.

For instance (see Fig. 4.1), if three processors are employed to process the 360 slices,

processor 0 does slices 0-119, processor 1 slices 120-239, processor 2 slices 240-359.

If the total number of slices is not divisible by the number of processors, for example

nprocs = 16, that is 360 = 16×22+8, we should adjust the way in distributing slices.

The idea adopted here is that processors 0, . . . ,8−1 = 7 are assigned 22+1 = 23 slices

each and the other processors are assigned 22 slices. The following Alg. 11 depicts how

the ranges of slices for all processors are determined.

Algorithm 11 para_range(n1,n2,nprocs,nbl_az, istart, iend)

1: iwork1 = (n2−n1+1)/nprocs
2: iwork2 = MOD(n2−n1+1,nprocs)
3: for i := 0 to nprocs−1 do
4: istart(irank) = irank · iwork1+n1+MIN(irank, iwork2)
5: iend(irank) = istart(irank)+ iwork1−1
6: if iwork2 > irank then
7: iend(irank) = iend(irank)+1
8: end if
9: iend(irank) = iend(irank)+2 ·nbl_az

10: end for

Once the range of slices for each processor is estimated, data can be distributed

accordingly by Alg. 12.

Algorithm 12 distribute_onlineinfos(x)
1: Estimate the range of slices for each processor using Alg. 11
2: Distribute specific data x to each processor according to results of Step 1

After distribution of all the necessary data, the radar grid geometry, especially the radar

bin heights can be computed independently on each processor (Alg. 13). Notice that the

previous loop over nrp is here bisected into two loops: one over range index nra, another

one over nae, which is joint index over azimuths and elevations. This is done because
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4. Programming aspects of the radar forward operator

of the dependency arising from iterative computations in radial direction, which makes

vectorization in the dimension of range impossible. In Alg. 13, a flag ensures that the

blocked rays are no longer processed once they encounter obstacles. Step 6 is based on

Eqs. (3.59) and (3.72); ~w2 gives the appropriate weight for bilinear interpolation within

the ig f th auxiliary grid field and the failure value is assigned if a bin is unobservable;

Step 10 is done by bilinear interpolation from the auxiliary grid, with ~w2, igrd and ig f

provided.

Algorithm 13 calc_geometry_sode(time)
1: for each radar station do
2: for ira := 1 to nra do
3: for iae := 1 to nae do
4: if f lag(ira, iae) == 1 then

5: Solve Eq. (3.68) to obtain
dh
dr

(ira,iae) and h(ira,iae)

6: Calculate el(ira, iae) and s(ira, iae)
7: Estimate index ig f of the auxiliary grid field, in which bin is located
8: Calculate 2D weight ~w2 and determine if the bin is observable
9: Calculate n(ira, iae) if the bin is observable and set f lag(ira, iae) = 1

10: end if
11: end for
12: end for
13: Estimate the total number nobs of observable bins
14: end for

Then, we can evaluate the fall speed of hydrometeors and radar quantities on observable

bins by Algs. 14-16, where the operations are basically bilinear interpolation from the

auxiliary grid.

Algorithm 14 calc_mod_fallspeed_sode(time)
1: for each radar station do
2: for iobs := 1 to nobs do
3: Calculate wt
4: end for
5: end for
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4.2. Parallelized code

Algorithm 15 calc_mod_radialwind_sode(time)
1: for each radar station do
2: for iobs := 1 to nobs do
3: Calculate (u,v,w)
4: if lfall then
5: Calculate vr using Eq. (3.82) with wt calculated from Alg. 14
6: else
7: Calculate vr using Eq. (3.82) with wt = 0.0
8: end if
9: end for

10: end for

Algorithm 16 calc_mod_reflectivity_sode(time)
1: for each radar station do
2: for iobs := 1 to nobs do
3: Calculate Ze
4: if lextdbz then
5: Calculate Λ

6: end if
7: end for
8: end for

Finally, the collection of the whole radar station data sets on single output processors

and computation of attenuation factors are performed in the same output subroutine as for

the time-constant 43ERM (Alg. 5). Obviously, compared to 43ERM, additional commu-

nication steps are necessary which are costly but lead to a better balanced computation of

beam propagation because each processor has more or less the same number of azimuthal

slices to deal with. A main improvement could be, if it would be possible to organize the

output of the data to radar station files in a somewhat different way, so that each processor

(not only 1 processor per station) could be involved here. However, no good solution has

been found until now.
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4. Programming aspects of the radar forward operator

4.3. Organization of the radar forward operator

At last, we summarize the whole program design in Alg. 17. The outermost loop is time-

stepping, the operator conducts simulations and writes out results in interval timesteps.

As mentioned before, Algs. 1 and 6 are time-invariant and have to be executed only once

at the first time step, but Alg. 13 must be done every time as refractivity changes with

time.

For the sake of simplicity, only the non-averaging implementation is introduced above.

In case of accounting for pulse averaging, the additional auxiliary rays have to be defined

for the numerical quadrature (see Section 3.6) and then essentially the same calculations

are executed on those rays as for the non-averaging case. A few more differences occur

in the output subroutine, where the with averaging coherent integration steps are carried

out and observable bins are just determined.

This chapter can also serve as a manuscript for a rudimentary impression of the

technical realization of the operator. Of course, there are some other programming details

not described here. For example, the subroutine output_obs_dwd, which reads the radar

observations from data base of DWD and write observed and simulated values to the

above-mentioned NETCDF feedback file, optionally with data thinning (see Section 6.8).
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4.3. Organization of the radar forward operator

Algorithm 17 organize_radar
1: for time = starttime : timestep : endtime do
2: if lonline then
3: if l f irst_cmp then
4: Call calc_geometry_grid
5: for each radar station do
6: Call distribute_onlineinfos(hl_grd)
7: Call distribute_onlineinfos(nk_grd)
8: end for
9: lfirst_cmp = .false.

10: end if
11: if loutradwind or loutdbz then
12: Call calc_grd_rfridx(time)
13: if loutradwind then
14: Call calc_grd_winduvw(time)
15: end if
16: if loutdbz then
17: Call calc_grd_reflectivity(time)
18: end if
19: for each radar station do
20: if loutradwind then
21: Call distribute_onlineinfos(u_grd)
22: Call distribute_onlineinfos(v_grd)
23: Call distribute_onlineinfos(w_grd)
24: end if
25: if loutdbz then
26: Call distribute_onlineinfos(z_radar_grd)
27: if lextdbz then
28: Call distribute_onlineinfos(z_ext_grd)
29: end if
30: end if
31: Call distribute_onlineinfos(rfridx_grd)
32: end for
33: Call calc_geometry_sode(time)
34: if loutradwind then
35: Call calc_mod_radialwind_sode(time)
36: end if
37: if loutdbz then
38: Call calc_mod_reflectivity_sode(time)
39: end if
40: Call output_radar
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Algorithm 17 organize_radar (continued)
41: else . 43ERM used
42: if l f irst_cmp then
43: if loutradwind or loutdbz then
44: Call calc_geometry
45: end if
46: l f irst_cmp = . f alse.
47: end if
48: if loutradwind or loutdbz then
49: if loutradwind then
50: Call calc_mod_radialwind(time)
51: end if
52: if loutdbz then
53: Call calc_mod_reflectivity(time)
54: end if
55: Call output_radar
56: end if
57: end if
58: end if
59: end for
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In order to specify appropriate configurations for the purpose of operational data assimila-

tion, a series of sensitivity experiments are conducted in a module-wise way, i.e., we begin

with the experiment E0 associated with the simplest (or probably fastest) formulations

for each module and upgrade one particular module in each successive experiment (see

Tab. 5.1). We attempt to find an optimal configuration in the sense of balance between

physical accuracy and computational expense by comparing the results of experiments

with observations, because it provides us the opportunity to verify which formulation

leads to significant errors and which does not, or in the other words, whether a more com-

prehensive formulation is necessary. With a clear physical understanding, we would like

to do the least possible amount of adjustment in the operator to improve the comparisons.

All experiments are run on 16 processors (on a single node) of the NEC SX-9 cluster

at DWD. The horizontal resolution of the COSMO-model is set to be (0.025◦, 0.025◦)

and vertical grid spacing ranges from 20 m at the bottom to 1000 m on the top in 51

levels. The one-moment microphysics schemes are used and the initial and boundary

conditions are provided by the COSMO-EU model. For comparison, observations come

from the radar network of DWD. Recall that these radars have 18 elevations, 1◦ azimuthal

resolution, 1 km range resolution and 124km effective range. To avoid the overlapping

data issue caused by taking measurements from multiple radars, a single radar is involved

in each case study.

As for quantitative comparisons between observations by radar and model simulations,

the Contoured Frequency with Altitude Diagrams (CFADs, Yuter and Houze (1995)) are

used, which summarize the vertical structure of the radar echoes through the frequency

distribution of three-dimensional gridded reflectivity data and provide insight into the

microphysical processes and structure of precipitating cloud systems. Yuter and Houze

(1995) analyzed the transition of convective to stratiform precipitation in CFADs and

pointed out that radar volume scans taken in stratiform event showed narrow reflectivity

distributions at all altitudes, while convection accompanied with broader distributions,
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5. Sensitivity experiments

Experiment Pulse volume Beam Scattering Attenuation Reflectivity
averaging bending Schemes weighting

E0 No 43ERM Rayleigh No No
E1 No SODE Rayleigh No No
E2 Yes SODE Rayleigh No Yes
E3 Yes SODE Mie No Yes
E4 Yes SODE Mie Yes Yes

Tab. 5.1.: Configuraions of the sensitivity experiments

especially in early stages. Therefore, in view of different meteorological situations, a

stratiform precipitation case on 19 January 2012 and a convection case on 30 June 2012

are explored below.

5.1. The 19 January 2012 stratiform precipitation event

Stratiform precipitation is usually caused by large-scale, dynamic ascent of stably strati-

fied, saturated air and is characterized by relatively small vertical air motion and large

horizontal homogeneity of precipitation fields. It may extend for hundreds of kilometer

but produce in general low rain rates that rarely exceed 10 mm/h. Precipitation typically

first forms at high levels in the atmosphere. In this region, the temperature is normally

below the freezing point of water. The precipitation forms initially as a succession of

very small ice particles. Owing to weak upward air motions, ice particles of all types

drift downward. During the sedimentation phase, they collect each other to form large

snowflakes. As the snowflakes fall, they muss pass through the melting (or 0◦) level where

the temperature rises above the freezing point. At this stage the snowflakes will start to

melt. The initial melting will be on the exterior of the snowflake where a water coating

develops. Water is about 9 times more reflective than ice at microwave wavelengths, so

these large wet snowflakes exhibit a high reflectivity. The highly reflective melting snow

appear to the weather radars as more intense than it actually is. As the melting snow

continues to fall and melt until it finally becomes rain drops that are smaller and fall faster,

so both the size of the drops and their concentration are reduced, reducing the reflectivity.

All of these processes lead to the formation of a narrow area of high reflectivity near the

melting level, called the "bright band", which is considered a major source of error in

precipitation estimation. However, in a stratiform system the formation of heavily rimed
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10868  Muenchen−Oberschlssheim

Fig. 5.1.: Sounding from Munich-Oberschleissheim at 00:00 UTC on 19 January, 2012

ice species like graupel/hail is quite unlikely, so that less complicated microphysical

processes are involved, which provides ideal conditions for the preliminary evaluation of

microphysical parametrization schemes in snow and rain as well as the representation of

the bright band in the operator/model. Commonly, the model is expected to agree with a

stratiform precipitation event to a high extent.

5.1.1. Description of weather conditions, model data and observations

On 19 January, two low pressure systems “Fabienne I and II” moved from North sea to

Baltic. To the south of the pressure centers, large-scale warm, cold and occluded fronts

took place alternately in Central Europe, which caused widespread heavy rainfall. In

the early morning, west wind brought warm Atlantic air into southern Germany and

lifted rapidly the snow line up to about 1.8 km (see Fig. 5.1). Therefore, except the

highest altitudes of Black Forest and Bavarian Forest where snow or sleet could still

occur, heavy rain fell in most part of southern Germany, which caused several river floods

in the northern part of Bavaria.
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With respect to the study area, the radar station of Munich-Fuerholzen is chosen.

According to Tab. 5.1, five COSMO-model runs are done, starting at 00:00 UTC on 19

January 2012 when the stratiform system entered the study area until 06:00 UTC. The

initial and boundary conditions for model runs are interpolated from the COSMO-EU

model at 00:00 UTC on 19 January 2012. The observed and simulated reflectivities are

written in two output files, respectively, with a temporal resolution of 15 minutes.

5.1.2. Observed and simulated evolution of the precipitation

Firstly, we focus on examining the model representation of the precipitation in aspects of

the timing, intensity and spatial distribution of the reflectivity by means of comparison of

observed and simulated 2.5◦ PPI radar scans in 3-hour intervals. Later in this section, we

will also specify and analyze the differences among simulations.

Fig. 5.2 views the observed and simulated 2.5◦ PPI scans at 00:00 UTC. In the ob-

servations, the event just moves into the study area from the northwest and the highest

reflectivities reach 25 dBZ. Those features are fairly well captured in the simulations.

At 03:00 UTC (Fig. 5.3), the precipitation has arrived over the radar site and has been

spread out over a larger area and the maximum values of reflectivities (appr. 40 dBZ) is

found beneath the melting level, so it can be explained by the brightband effect. In the

simulations, the position and intensity of the event are well represented and the maximum

values of simulated reflectivities can also be seen below the melting level, however,

approximately 5dBZ less than observed.

At 6:00 UTC (Fig. 5.4), the precipitation persists over the radar site and the intensity

has grown further with more reflectivities exceeding 40dBZ, mainly distributed in the

melting layer, below which reflectivity tends to decreases with the height. In contrast, the

brightband structure is less clear in the simulations, the highest reflectivities attain just

35dBZ and simulated reflectivity remains roughly constant below the melting level.

It is also noteworthy to mention that an evident overestimation of simulated spatial

distribution in the higher atmosphere due to the presence of a huge amount of simulated

reflectivities with values ≤−5dBZ can be seen throughout the whole case study period.

This is because the threshold value for the simulated reflectivity (-90 dBZ) is set much

lower than that for radar measurements (about -31.5 dBZ).
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.2.: Radar reflectivity in dBZ (see color bar) at an elevation of 2.5◦ (PPI mode) on 19 Jan,
2012, 00:00 UTC: (a) observations; (b)-(f) different sensitivity results (see details in text)
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.3.: As Fig. 5.2 but for 03:00 UTC
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.4.: As Fig. 5.2 but for 06:00 UTC
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5.1.3. CFADS and effects of operator modules

To help further understand some of the behaviors seen in the previous figures, CFADs are

constructed for observed and simulated reflectivity (see Fig. 5.5). The different colors

represent the percentage of particular reflectivity values falling in a given class compared

to the total number of reflectivity values above a given threshold (≥−30dBZ) at a given

height. The class size selected for this diagram is 2dBZ. The contours are at interval of

2% per dBZ per 500 m.

In Fig. 5.5, CFADs for the observations and five simulations at 06:00 UTC are shown.

In a gross sense, Fig. 5.5a characterizes the typical stratiform precipitation as observed:

the highest probabilities follow a coherent pattern with the peak density continually

decreasing with the height from about 25 dBZ around the melting layer (roughly at 2 km

high) to -10 dBZ around 7 km and remaining constant afterwards. Below the melting

layer, peak probabilities decrease slightly, probably due to the evaporation, and then

remain constant down to the surface. Maximum reflectivities are slightly over 35 dBZ at

the surface, close to 40 dBZ around 2 km, and decay steadily upwards until about 7 km.

Although both in observation and simulations the frequency distributions of reflectivity

at upper levels are generally different from those at low levels, notable discrepancies

can be seen while all five simulations are quite similar to each other. In CFADs of

the simulations, reflectivity has a more rapid linear decrease above the melting level,

which leads to more than 10 dB underestimation of reflectivity on average around 7 km

compared with observations. The distributions below the melting level are much narrower

and show no evidence of decrease by evaporation. Near the surface, the maximum

simulated reflectivities are slightly lower than observed, which may be explained by the

remaining ground echos not removed by the clutter removal algorithm for the observed

reflectivity. However, 30 dBZ echoes occur at a frequency of more than 20% compared

to about 2% in observation. Since the raindrop collision/coalescence process plays a

relatively small role in shaping its size distribution due to the low rainfall rates (generally

less than 6 mm/h) in stratiform precipitation, the high concentrations of simulated large

raindrops near the surface mainly arise from melting large ice-phase particles, as indicated

by high frequency of reflectivities ranging from 10 to 20 dBZ between 2 and 3.5 km.

In addition to examining the behavior of simulations from the CFAD perspective, this

study also attempts to verify the performance of the individual configurations of the
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.5.: CFADs of radar reflectivity in % on 19 January, 2012, 06:00 UTC: (a) Observed; (b)-(f)
different sensitivity results (for details see text)
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operator. Here we take for instance the 2.5◦ PPI at 06:00 UTC on 19 January 2012

(Fig. 5.7), which shows some important differences. The effects of upgrades are depicted

in differences between two experiments, denoted as Ei+1−Ei (the subtraction is class-

wise). The classes, at which either the observed or the simulated data are not present

and thus the amount of differences can not be expressed, will be marked in color black.

As shown in Fig. 5.7a, visible differences occur at a distance of about 100 km where

height differences computed by 43ERM and SODE become considerable, say 100 m

(Fig. 5.6b). In Fig. 5.7b, the clearest differences (in dark red) appear at further distances,

resulting from comparisons of negative reflectivities, and the black area indicates a

larger areal coverage by means of pulse-volume averaging. However, differences in

radius of 30 km, that is, about 2 km in height, are more interesting. By virtue of the

height, the differences arise probably from the beam interception of the melting level

and consequently pulse-volume averaging over an inhomogeneous vertical profile of

reflectivity around the melting level. In Fig. 5.7c, it can be seen that the Mie-scattering

scheme produces higher reflectivities than the Rayleigh’s method regarding the melting

particles between heights of 30 and 70 km (cf. Section 3.7) but no notable differences

when it comes to light snow and large rain drops in the lower and upper atmosphere.

Finally, Fig. 5.7d shows that attenuation does not play an essential role in stratiform

precipitation.

Experiment Operator [s] Total model run [s] Ratio [%]
E0 72.10 348.24 20.70
E1 81.70 354.65 23.04
E2 117.36 387.70 30.27
E3 143.79 419.71 34.26
E4 150.59 426.59 35.30

Tab. 5.2.: Elapsed wall-clock time: (Ratio = Operator/Total model run × 100)%

As aforementioned, efficiency of the operator is also regarded as a crucial criterium for

performance. Tab. 5.2 lists the elapsed wall-clock times of total model run and operator

for each experiment. We should be aware that there are variable number of background

computations on SX-9 from time to time, which may delay the model runs. Typically,
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5.1. The 19 January 2012 stratiform precipitation event

(a) E0 (b) E1−E0

Fig. 5.6.: Left column: height in km (see color bar) calculated by 43ERM (from E0), at an
elevation of 2.5◦ (PPI mode) on 19 January, 2012, 06:00 UTC; Right column: height difference
in m (see color bar) between SODE (from E1) and 43ERM

operational routines of DWD with higher priority can drive away our runs on the waiting

queue. So the absolute time differences depicted in Tab. 5.2 do not mean definitely

how much one run is faster/slower than the others, however, it does show us that the

time expense tends to ascend with updating configurations, but not dramatically. The

operator occupies minimal 20.70% time of total model run in E0 and maximal 35.30% in

E4. The most significant increase occurs when pulse-volume averaging is switched on in

E2, followed by E3 that puts Mie-scattering scheme in action.

Tabs. 5.3-5.7 reveal the specific elapsed wall-clock time distribution of the operator in

each experiment. We consider the sum of time consumed by "Init./const. geom." (Algs. 1

and 6), "Grid point values" (calculation reflectivity, attenuation coefficient and fall speed

on model grid), "Online beam propag." (Alg. 13) and "Comp. on polar grid" (Algs. 3, 4, 7,

9, 10, 15 and 16) as work load and the others, i.e., "MPI Communications" (Alg. 12) and

"Output" (Alg. 5) as communication overhead. The modest time growth in E1 arises from

the online simulation of beam propagation and the associated communication efforts.

Due to intensive pulse-volume averaging, that is (nh,nv) = (5,9), E2 has obviously

much more ray paths to simulate in "Online beam propag." and additional integration

steps in "Output". The main increase in E3 stems from "Grid point values", where
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5. Sensitivity experiments

(a) E1−E0 (b) E2−E1

(c) E3−E2 (d) E4−E3

Fig. 5.7.: Reflectivity difference in dB (see color bar) of sensitivity results at an elevation of 2.5◦

(PPI mode) on 19 January, 2012, 06:00 UTC
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5.1. The 19 January 2012 stratiform precipitation event

considerable time has to be spent in establishing a lookup-table for the Mie-scattering

scheme. Fortunately, this work needs to be done just once, so it will become less

immaterial for model runs of long term. The slight increase in E4 results from the sum

operations of attenuation coefficients to attain total attenuation in "Output".

With respect to the topic of load balance, which is defined here as the average work load

among all processors divided by the maximum work load (the ideal case is a load balance

of one and the worst case is the reciprocal of the number of processes), the operator

exposes a proficient load balance, indeed, above 97% (see Tab. 5.8). The "lowest" load

balance in E0 can be explained by the inhomogeneous distribution of clouds in the model

domain, so that some processors have more to do than the others, and the load balance is

continuously ameliorated with configuration updating.
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5. Sensitivity experiments

Task Min Ave Max
Operator 69.67 72.10 74.07
Init./const. geom. 12.08 12.18 12.29
Grid point values 1.98 4.23 6.13
Online beam propag. 0.00 0.00 0.00
Comp. on polar grid 0.00 0.03 0.25
Work load 14.06 16.44 18.67
MPI Comm. 0.04 0.70 0.95
Output 54.79 54.84 55.55
Comm. overhead 54.81 55.54 56.50

Tab. 5.3.: Elapsed time distribution in E0

Task Min Ave Max
Operator 79.16 81.70 83.76
Init./const. geom. 12.66 12.78 12.90
Grid point values 1.98 4.38 6.34
Online beam propag. 0.57 0.58 0.59
Comp. on polar grid 0.06 0.09 0.17
Work load 15.27 17.83 20.00
MPI Comm. 5.64 6.33 6.60
Output 57.83 57.43 58.14
Comm. overhead 63.47 63.76 64.74

Tab. 5.4.: Elapsed time distribution in E1

Task Min Ave Max
Operator 114.94 117.36 119.40
Init./const. geom. 12.38 12.47 12.59
Grid point values 2.05 4.33 6.26
Online beam propag. 14.67 15.02 15.53
Comp. on polar grid 1.13 1.19 1.31
Work load 30.23 33.01 35.69
MPI Comm. 6.00 7.20 7.68
Output 76.95 77.03 77.72
Comm. overhead 82.95 84.23 85.40

Tab. 5.5.: Elapsed time distribution in E2

Task Min Ave Max
Operator 141.31 143.79 145.84
Init./const. geom. 12.22 12.33 12.44
Grid point values 24.06 26.17 28.04
Online beam propag. 14.77 15.21 15.60
Comp. on polar grid 1.13 1.19 1.30
Work load 52.18 54.90 57.38
MPI Comm. 6.30 7.38 8.03
Output 81.33 81.40 82.09
Comm. overhead 87.63 88.78 90.12

Tab. 5.6.: Elapsed time distribution in E3

Task Min Ave Max
Operator 148.14 150.59 152.57
Init./const. geom. 12.26 12.36 12.48
Grid point values 23.89 26.05 27.99
Online beam propag. 14.62 15.00 15.55
Comp. on polar grid 1.42 1.50 1.63
Work load 52.19 54.91 57.65
MPI Comm. 7.38 8.90 9.63
Output 86.58 86.66 87.49
Comm. overhead 93.96 95.56 97.12

Tab. 5.7.: Elapsed time distribution in E4

Experiment Load balance [%]
E0 72.10/74.07 = 97.34
E1 81.70/83.76 =97.54
E2 117.36/119.40 = 98.29
E3 143.79/145.84 = 98.59
E4 150.59/152.57 = 98.70

Tab. 5.8.: Load balance
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5.2. The 30 June - 01 July 2012 convective precipitation event

5.2. The 30 June - 01 July 2012 convective precipitation event

The dynamical characteristics of convective processes differ stronly from those of strat-

iform events, which results in distinction in microphysics and spatial distribution of

precipitation. In meteorology, convection refers primarily to heat transport by vertical

motions of the flow, being produced by differences in bouyancy arising from variations

in density. Vertical motions are about 1 to 10 m/s or more, which equals or exceeds

terminal fall velocities of ice particles (Houze, 1993), so that particles are rapidly carried

up and down inside the cloud by up- and downdrafts and grow by riming, which allows

the formation of larger ice species like graupel or hail. Because updrafts exist in a limited

region of the convective clouds, radar echoes associated with active convection form a

vertical region of maximum reflectivity, which contrasts with the horizontal orientation

of radar bright band seen within the melting layer of stratiform precipitation. The current

COSMO-model is supposed to be able to resolve convective systems, but to which extent

a convection can be outlined by the event and the model will be investigated in what

follows.

5.2.1. Description of weather conditions, model data and observations

Massive warm and humid air had accumulated in the south of Germany for several days

before 30 June 2012. At midnight, the temperature was exceptionally high in Bavaria (see

Fig. 5.8). Together with the high humidity, it provided the necessary energy for the severe

nighttime storm. As a low pressure system expanded reluctantly from Southwestern

Europe to Bavaria on the night of 30 June, strong thunderstorms were ultimately triggered,

accompanied with heavy rain, hail and stormy southwest winds. The hail was mostly

small-grained, but some of which reached diameter up to 4cm.

In this case, the simulations are initialized using the COSMO-EU model at 21:00

UTC, 30 Juni 2012 and run for 4 hours. In addition to reflectivity, Doppler velocity are

simulated and analysed as well. Observations are collected from the radar site Türkheim,

located at the Swabian Alb.
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Fig. 5.8.: Sounding from Munich-Oberschleissheim at 00:00 UTC on 01 July, which is about 90
km away from Türkheim.
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5.2. The 30 June - 01 July 2012 convective precipitation event

5.2.2. Observed and simulated evolution of the precipitation

In analogy to the stratiform case study, the evaluation of the representation will be based

on 2.5◦ PPI radar scans compared to five simulations each two hours starting 21:00 UTC

on 30 Juni 2012 until 01:00 UTC on 01 July 2012 when the convective system had

almost totally faded in the study area. Because of the complex microphysical processes in

convection, discrepancies in timing, organization and intensity of the event are expected.

Fig. 5.9 and 5.10 show the observed and simulated 2.5◦ PPI scans at 21:00 UTC on

30 June 2012 for reflectivity and Doppler velocity, respectively. In the observations

(Fig. 5.9a), the convective system propagates to the study area from the northwest with

the main squall line in the west (with N/S orientation) spreading from 150 km to 250

km in Y direction. The line has the highest reflectivities up to 55 dBZ in the south and

weakens gradually towards the north. From the north to the northeast, the observations

are dominated by reflectivities between 20 and 30 dBZ with some convective cells in

the vicinity of (230, 150) km. All the simulations (Figs. 5.9b-5.9f) are able to rebuild

the movement and shape of the event appropriately but the intensity is comparable apart

from observations. In the northern part, the number of reflectivities between 20 and 30

dBZ are mainly overestimated in simulations and the position of observed convective

cells around (230, 150) km seems to be shifted to the northwestern sector near the radar

site. The simulated reflectivities of value ≤−5 dBZ are mostly distributed in the higher

atmosphere, while the observed ones are concentrated in the lower levels. In terms of

Doppler velocity, all the simulations show a good agreement with the observations in

strength and direction. Since Doppler radars can only measure wind where reflectivity

is present, the observed wind shows an identical areal extent as reflectivity. Ignoring

this factor, E0 and E1 overestimate clearly the coverage of Doppler wind compared to

the observations, especially in the southern part, where no reflectivity is observed (see

Fig. 5.9a). Fig. 5.10d highlights the effects of taking weighting by reflectivity into

account, which adjusts the coverage close to the observed one. In Figs. 5.10e and 5.10f,

no distinction can be seen, though.

At 23:00 UTC, the squall line has arrived in Türkheim, the highest reflectivities of

which have strengthened slightly with maximal value up to 60 dBZ, as shown in Fig. 5.11a.

In the simulations, the system has also moved further to the east but apparently slower and

the highest reflectivities attain values just close to 55 dBZ. Related to the discrepancies
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.9.: Radar reflectivity in dBZ (see color bar) at an elevation of 2.5◦ (PPI mode) on 30 June,
2012, 21:00 UTC: (a) observations; (b)-(f) different sensitivity results (see details in text)
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.10.: Doppler veloctiy in m/s (see color bar) at an elevation of 2.5◦ (PPI mode) on 30 June,
2012, 21:00 UTC: (a) Observed; (b)-(f) different sensitivity results (for details see text)
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.11.: As Fig. 5.9 but for 23:00 UTC
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.12.: As Fig. 5.10 but for 23:00 UTC
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in reflectivity, the simulated Doppler velocities are also apart from the observations in

strength and distribution pattern, as shown in Figs. 5.12a and 5.12d.

At 01:00 UTC on 01 July 2012, the convection has passed Tuerkheim and the intensity

of the event has significantly declined with just a few cells exceeding 45 dBZ and

the squall line expends from the southwest to the northeast. The overall structure and

evolution of the event are well established in the simulations but the number of reflectivity

with value ≤ −5 dBZ is underestimated in the lower and overestimated in the higher

levels beside the observations. This disagreement is also visible for Doppler velocity

(Fig. 5.14d).

In order to compare the observed and the simulated evolution of the precipitation in a

more quantitative way, we now express the temporal evolution of the system at 15-minute

intervals as histograms based on different reflectivity classes given in Tab. 5.9.

Reflectivity class Interval [dBZ] Precipitation
1 (−∞,5) no
2 [5,15) very light
3 [15,25) light
4 [25,35) moderate
5 [35,45) heavy
6 [45,∞) very heavy

Tab. 5.9.: Different reflectivity classes

Fig. 5.15 is derived from the 2.5◦ PPI scans. As shown in Fig. 5.15a, a great amount

of reflectivities fall in Class 1 both in observations and simulations, and an evident

overestimation of simulated reflectivities can be seen throughout the entire study period.

For Class 2, 3 and 4, there are more observed reflectivities and the numbers peak at 23:30

UTC, closely one hour earlier than the simulations, which confirms the previous finding

that the evolution of model is likely slower. Fig. 5.16 is the histogram of all reflectivities,

and shows nearly the same characteristics as Fig. 5.15 does, which means that the 2.5◦

PPI scan is a suitable representative for the whole event. To verify the model’s delay,

we add Fig. 5.17, the simulated PPI scan of elevation 2.5◦ at 00:00 UTC on 01 July

2012 for E4, which shows that the reflectivity coverage and wind pattern in Figs. 5.17a

and 5.17b are much closer to Figs. 5.11a and 5.12a than Figs. 5.11f and 5.12f. This lag is
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5.2. The 30 June - 01 July 2012 convective precipitation event

(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.13.: As Fig. 5.9 but for 01 July, 2012, 01:00 UTC.
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.14.: As Fig. 5.10 but for 01 July, 2012, 01:00 UTC.
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5.2. The 30 June - 01 July 2012 convective precipitation event

also visible in Class 5 and 6 although the number of simulated reflectivities is generally

overestimated. The observations and simulations reach comparable numbers in all classed

except Class 1 for the first time at 01:00 UTC on 01 July when the convective system has

strongly decayed.

5.2.3. CFADS and effects of operator modules

Again for further analysis, reflectivity CFADs are constructed by classing the reflectivities

into 2-dBZ classes beginning at -30 dBZ at each height. The contours here are at interval

of 2% of data per dBZ per 1 km. Fig. 5.18 shows the observed and simulated CFADs for

23:00 UTC. In comparison to the stratiform case, the convective CFADs indicate much

broader distributions of reflectivity values in all levels, which agrees with the statement

of Yuter and Houze (1995). In the observed CFAD (Fig. 5.18a), above the melting level

(appr. 3 km high), the intensity decreases with increasing height and high concentration

of 20 dBZ reflectivities can be seen at 8 km height. Maximum reflectivities are around

55 dBZ at the surface, over 45 dBZ between 2 und 4 km height and drop off steadily

aloft. High reflectivities (≥ 40 dBZ) aloft suggest a predominance of graupel or hail, as

consequence of convective updrafts favoring growth of particles by riming. The melting

large ice-phase particles and the raindrop collision/coalescence process in convection

give rise to the large raindrops under the melting level. In comparison, the shapes of

observed and simulated distributions are considerably different, while all five simulations

are similar to each other (Fig. 5.18). As indicated in Fig. 5.18b, the simulated reflectivities

exhibit a even broader distribution and decrease faster with the increasing height than the

observed ones down till the melting level, and the concentration of 20 dBZ reflectivities

is not present. Below the melting level, most reflectivities accumulate at 40 dBZ, about

10 dBZ more than observations.

We give now a look at the effects of the individual configurations of the operator. Here

we focus on the 2.5◦ PPI scans at 23:00 UTC. The differences are depicted in Figs. 5.19

(for reflectivity) and 5.20 (for Doppler velocity). As indicated in Fig. 5.19a, the chosen

methods for simulating beam propagation have trivial distinctions in this case. The

differences in Figs. 5.19b and 5.19c arise from the reasons as in the stratiform case study.

The most crucial impacts are probably when the attenuation is accounted for Fig. 5.19d,

where the intensity of reflectivities weakens by more than 10 dB in the western and
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(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

Fig. 5.15.: Histograms of reflectivity in different classes (a-f) as function of time at 15-minute
intervals from 21 UTC on 30 June to 01 UTC on 01 July 2012 at an elevation of 2.5◦ (PPI mode):
observations in black line; sensitivity results in color lines. The class intervals are written on the
top of each subfigure. The X-axis is in units of hour, from 0 to 4 hours, representing from 21 UTC
to 01 UTC. The Y-axis is the number of reflectivity bins.
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(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

Fig. 5.16.: As Fig. 5.15 but for all elevations
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(a) Reflectivity (b) Doppler velocity

Fig. 5.17.: Sensitivity results of E4: (a) radar reflectivity in dBZ (see color bar) at an elevation of
2.5◦ (PPI mode) on 01 July, 2012, 00:00 UTC; (b) Doppler velocity in m/s

northern parts of the study area. For Doppler velocity, the most important improvement

is brought about by weighting Doppler velocity by reflectivity (Fig. 5.20b). Besides the

reduction of the spatial extent of wind to comparable surface of observations, the strength

of wind also drops in general because reflectivity declines with height in most cases. The

other upgrades reveal little importance.

5.3. Summary

To sum up this chapter, a good agreement between model and radar observations was

achieved in the case of the stratiform event, including the intensity and position of the

event and bright band. Regarding the convective event, the model is able to catch the

general evolution of the system but with some time delay. This might have contributed to

disagreements in intensity and position.

By reason of elevations, thermodynamical profiles and model set-up, SODE results in a

similar beam propagation as 43ERM. Pulse-volume averaging shows effects when radar

beams arrive at long distances or intercept the melting level. The Mie-scattering scheme

stimulates higher reflectivities than the Rayleigh method in case of large melting particles

due to the special treatment of the refractive index by EMA. Taking attenuation into
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(a) Obs (b) E0

(c) E1 (d) E2

(e) E3 (f) E4

Fig. 5.18.: As Fig. 5.5 but for 30 June, 2012, 23:00 UTC.
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(a) E1−E0 (b) E2−E1

(c) E3−E2 (d) E4−E3

Fig. 5.19.: Reflectivity difference in dB (see color bar) of sensitivity results at an elevation of 2.5◦

(PPI mode) on 30 June 2012, 23:00 UTC
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(a) E1−E0 (b) E2−E1

(c) E3−E2 (d) E4−E3

Fig. 5.20.: As Fig. 5.19 but for differences of Doppler velocity in m/s (see color bar)
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account has less significance in the stratiform event but has great impacts in convection.

Weighting Doppler velocity by reflectivity allows for adjustment of areal coverage of

Doppler velocity to the measured one.

With regard to the efficiency, the operator approaches a sufficient extent in all experi-

ments, thanks to sophisticated vectorization and parallelization. The largest increase of

computational time occurs when an intense pulse-volume averaging is applied. Another

considerable increase is provoked by using the full Mie-scattering scheme instead of the

Rayleigh approximation owing to estimation of numerous lookup tables. However, this

work has to be done just once at the beginning of the model run and its computational

significance will fade out as the model runs for a long period. Calculations of online

beam propagation (SODE) and attenuation contribute slightly to the computational time.

Concerning the goal of experiments, which is to acquire a good balance between

accuracy and efficiency of the operator, the question remains if such an intensive pulse-

volume averaging is tolerable for purpose of data assimilation.

144



6. Data assimilation with Kalman Filter and its variants

Since Rudolf Kalman’s first seminal paper on state estimation (Kalman, 1960), Kalman

filter has been widely used in virtually many technical or quantitative fields such as fault

detection, mathematical finance and global positioning, etc.. This recursive algorithm

determines state variables of a noisy (linear) dynamical system by minimizing the analysis

error of the current state in a root mean square sense as noisy measurements are taken and

as the system propagates in time. Each update provides the latest unbiased state estimate

together with a measure on the uncertainty of those estimates represented in form of a

covariance matrix.

In this chapter, we begin with the mathematical and statistical background of a Kalman

filter and then give an overview of derivation path to its variants. These information have

been condensed out of a wealth of literature sources, mostly notably from Kalman (1960),

Bouttier and Courtier (2002), Evensen (2003), Tippett et al. (2003), Wang et al. (2004)

and Hunt et al. (2007).

6.1. Traditional Kalman Filter

A traditional Kalman Filter (hereafter KF) is a sequential method, which means that the

model is integrated forward in time and before the next integration, the model state is

reinitialized whenever observations are available. KF aims at finding an optimal analysis

state xa ∈ Rn of the model, provided a forecast state x f ∈ Rn available at model grid

points and a set of observations yo ∈ Rp available at irregularly distributed points, where

p is the number of observations. Notice that a single vector of state x is formed by

ordering the model variables by grid points and by variables, so the length n of x is the

product of the number of grid points times the number of variables.
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Let xt
k ∈ Rn be the unknown true state of the system at time tk. We consider that the

evolution of xt
k is modeled by a discrete-time system:

xt
k+1 = M (xt

k)+ηk , (6.1)

where M : Rn −→ Rn is a nonlinear operator.

Eq. (6.1) defines thus the pseudo random model error by

ηk := xt
k+1−M (xt

k) , (6.2)

with zero mean1 and the corresponding error covariance matrix Qk := E
(
ηkηT

k

)
∈ Rn×n,

where E(·) represents the statistical expected value.

Similarly, we define the forecast error by

ε
f
k : = M (xt

k−1)+ηk−1︸ ︷︷ ︸
=xt

k

−M (xa
k−1)︸ ︷︷ ︸

=x f
k

(6.3)

= xt
k−x f

k , (6.4)

with the corresponding forecast error covariance matrix P f
k := E

(
ε

f
k ε

f T

k

)
∈ Rn×n.

On the other hand, the relation between the true state and the observational variables is

assumed to be described by the following expression:

yo
k = H (xt

k)+ ε
o
k , (6.5)

where H : Rn −→ Rp represents the observation forward operator that includes transfor-

mations from state variables into the observations and grid interpolations, and εo
k is the

observation error with the corresponding covariance matrix Rk := E
(

εo
kεoT

k

)
∈ Rp×p.

Unfortunately, Rk is very hard to estimate and can cause problems in the analysis and

quality control algorithms, therefore it makes sense in practice to try to minimize it by

improving the accuracy of the model and forward operators, by using a bias correction

scheme, by avoiding unnecessary observation preprocessing and by data thinning (Bout-

tier and Courtier, 2002). Several advanced techniques have been developed for estimating

1Although we assume that mean error is zero, in reality a model error has usually a bias needed to be
taken into account.
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Rk (Chapnik et al., 2004). However, at the early stage of this study, Rk is often assumed

to be diagonal for simplicity, which means the observations are not correlated. This

assumption applies also in this thesis.

Since we do not know exactly the true xt
k, we do not have full knowledge about

the errors of forecast and observations, either. To deal with it, KF generally assumes

a Gaussian forecast and observation error distribution, that is, p(ε f
k ) = N (0,P f

k ) and

p(εo
k) = N (0,Rk), where p is probability density function. In addition, we assume that

the observation and forecast errors are uncorrelated:

E
(

ε
o
kε

f T

k

)
= 0 . (6.6)

Furthermore, we define the analysis error by

ε
a
k = xa

k−xt
k , (6.7)

with the corresponding analysis error covariance matrix Pa
k := E

(
εa

kεaT

k

)
∈ Rn×n.

If we now assume that the dynamics and observations in Eqs. (6.1) and (6.5) are linear,

the operators M and H will be replaced by two matrices Mk ∈ Rn×n and Hk ∈ Rp×n,

respectively, and we obtain:

xt
k+1 = Mk(xt

k)+ηk, (6.8)

yo
k = Hk(xt

k)+ ε
o
k . (6.9)

For the “optimal” analysis, we aim to find the best estimates xa
k of the state xt

k using

measurements yo
k . We say that xa

k is optimal if the trace2 of the analysis error covariance

matrix Tr(εa
kεaT

k ) is minimized, and it is provided in the two following steps:

1. ) Forecast step:

x f
k = Mkxa

k−1 , (6.10)

P f
k = MkPa

k−1MT
k +Qk , (6.11)

2In linear algebra, the trace of an n× n matrix A is defined as the sum of the elements on the main
diagonal of A, i.e., Tr(A) = a11 +a22 + · · ·ann = ∑

n
i=1 aii, where aii represents the entry on the i−th

row and i-th column of A. The trace is invariant with respect to a change of basis.
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2. ) Analysis step:

Kk = P f
k HT

k

(
HkP f

k HT
k +Rk

)−1
, (6.12)

Pa
k = (I−KkHk)P f

k (I−KkHk)+KkRkKT
k = (I−KkHk)P f

k , (6.13)

xa
k = x f

k +Kk

(
yo

k−Hkx f
k

)
. (6.14)

where the matrix Kk is the optimal weight matrix, also called Kalman gain.

Kk is obtained by the forecast error covariance in the observation space P f
k HT

k multi-

plied by the inverse of the total error covariance (the sum of the forecast and observation

error covariances) and can be intuitively understood to describe the correlation between

state vector and observations. The relative magnitudes of matrices Rk and HkP f
k HT

k con-

trol a relation between the filter’s use of the forecast x f
k and the observations yo

k: when the

magnitude of Rk is small, meaning that the observations are accurate, the state estimate

depends mostly on the observations; when the state is known accurately, then HkP f
k HT

k is

small compared to Rk, and the filter mostly ignores the observations relying instead on

the forecast. In Eq. (6.12), Kk linearly regresses the innovation (difference between the

observation and the forecast in the observation space) onto state vector increments which

are added to the forecast to generate the analysis. The analysis error covariance is given

by the forecast error covariance multiplied by a matrix equal to the identity matrix minus

the Kalman gain, and the data assimilation scheme uses observations to reduce forecast

error covariance by the factor (I−KkHk).

KF is considered optimal when the following two assumptions are fulfilled:

1. Observation and forecast errors are Gauss-distributed and unbiased.

2. Observations are linearly related to the true model state (i.e., linear H ),

6.2. Extended Kalman Filter

Often in reality, M and H are nonlinear, so we have to consider approximate techniques

for the non-linearity. One of the most widely used methods for state estimation of

nonlinear system is the Extended Kalman Filter (EKF) that linearizes locally M and H

(Bouttier and Courtier, 2002). If M is nonlinear, Mk can be defined as the tangent linear
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6.3. Ensemble Kalman Filter

operator (Jacobian) of M in the vicinity of xa
k−1, that is Mk :=

∂M

∂x

∣∣∣∣
x=xa

k−1

. Similarly,

H can be linearized in the vicinity of x f
k , which means Hk :=

∂H

∂x

∣∣∣∣
x=x f

k

.

6.3. Ensemble Kalman Filter

However, updating the forecast error covariance by Eq. (6.11) becomes very costly

when dealing with complex data assimilation problems such as most meteorological and

oceanographical models, owing to the massive dimensions of M and Pa. In addition,

the strongly nonlinear dynamics in these problems are difficult to linearize and the

linearization generates instabilities which tend to make the filter diverge (Gauthier et al.,

1993). Hence, it is necessary either to include empirical correction terms in the filter, or

to use a more general stochastic forecast technique based on a Monte Carlo sampling

of the filtering law, known as the Ensemble Kalman Filter (EnKF) (Evensen, 2003).

EnKF represents the distribution of the system state using a collection of states, called an

ensemble, and replace the covariance matrix by the sample covariance computed from

this ensemble.

We start with an ensemble
{

xa(i)
k−1 : i = 1,2, . . . ,N

}
of model states at time tk−1. The

forecast step consists in evolving each ensemble member through the nonlinear dynamics

(including the model noise simulation) to obtain a forecast ensemble at time tk:

x f (i)
k = M

(
xa(i)

k−1

)
+η

i
k−1 . (6.15)

The empirical mean of the forecast ensemble is defined by

x f
k =

1
N

N

∑
i=1

x f (i)
k . (6.16)

The empirical forecast ensemble error covariance matrix is then deduced from the follow-

ing equation:

P f
k =

1
N−1

N

∑
i=1

(
x f (i)

k −x f
k

)(
x f (i)

k −x f
k

)T

=
1

N−1
X f

k X f T

k , (6.17)
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where

X f
k =

[
x f (1)

k −x f
k ,x

f (2)
k −x f

k , . . . ,x
f (N)
k −x f

k

]
(6.18)

is the n×N matrix of forecast ensemble perturbations. Note that wherever an overbar is

used in the context of a covariance estimate a factor of N−1 instead of N is implied in the

denominator, so that the estimate is unbiased. P f
k not just quantifies uncertainties of model

forecasts and weights applied to the model with respect to observations, it also provides

estimated correlations between variables of the model state for the propagation of the

weighted information form the observed variables to the correlated ones, especially the

unobserved ones. However, compared to Eq. (6.11), P f
k in Eq. (6.17) can only represent

the first term in Eq. (6.11) and hence is “blind” to model errors. A way to lighten this

problem will be introduced later in Subsection 6.6.2.

The output of the analysis step is the analysis ensemble
{

xa(i)
k : i = 1,2, . . . ,N

}
. The

analysis mean is considered as the best estimate for the system state, defined by

xa
k =

1
N

N

∑
i=1

xa(i)
k , (6.19)

with analysis ensemble error covariance matrix

Pa
k =

1
N−1

N

∑
i=1

(
xa(i)

k −xa
k

)(
xa(i)

k −xa
k

)T

=
1

N−1
Xa

kXaT

k , (6.20)

where

Xa
k =

[
xa(1)

k −xa
k,x

a(2)
k −xa

k, . . . ,x
a(N)
k −xa

k

]
(6.21)

is the n×N matrix of analysis ensemble perturbations.

The EnKF processes ensemble mean and each ensemble member using Eq. (6.14)

xa
k = x f

k +Kk

(
yo

k−Hkx f
k

)
, (6.22)

xa(i)
k = x f (i)

k +Kk

(
yo

k−Hkx f (i)
k

)
, (6.23)
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6.3. Ensemble Kalman Filter

where Kk is given by Eq. (6.12) and P f
k by Eq. (6.17). But it has been pointed out (Burgers

et al., 1998) that a straightforward application of Eq. (6.23) to each ensemble member

may cause an ensemble collapse, when the ensemble spread shrinks too rapidly. The

traditional way of handling this problem proposed by Houtekamer and Mitchell (1998)

and Burgers et al. (1998) is to update each ensemble member in a stochastic manner,

instead of using a single realization of the observations yo
k , treating the observations as

random variables by generating an ensemble of observations from a distribution with

mean equal to the first-guess observation yo
k and error covariance equal to Rk, that is

Rk = E
(

Yo
kYoT

k

)
, (6.24)

yields

xa(i)
k = x f (i)

k +Kk

(
yo

k + ε
o(i)
k −Hkx f (i)

k

)
, (6.25)

where ε
o(i)
k is a synthetic vector of perturbations of observations yo

k .

The ensemble average of Eq. (6.25) yields Eq. (6.22), provided that the ensemble

average of ε
o(i)
k is zero:

Yo
k1 = 0 , (6.26)

where Yo
k =

[
ε

o(i)
k , . . . ,ε

o(N)
k

]
and 1 = [1, . . . ,1]T . To compute the analysed error covari-

ance, we first subtract the analysis Eq. (6.25) from (6.22) and gain the equation for the

update of an ensemble perturbation:

Xa(i)
k = X f (i)

k +Kk

(
ε

o(i)
k −HkX f (i)

k

)
, (6.27)

which can be written in a matrix form for the full ensemble as

Xa
k = X f

k +Kk

(
Yo

k−HkX f
k

)
. (6.28)
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The analyse error covariance carried by the ensemble can then be calculated using

Eq. (6.20):

Pa
k =

1
N−1

[
X f

k +Kk

(
Yo

k−HkX f
k

)][
X f

k +Kk

(
Yo

k−HkX f
k

)]T

= P f
k −P f

k HT
k KT

k −KkHkP f
k +KkHkP f

k HT
k Kk

+
1

N−1
KkYo

kYoT

k KT
k +

1
N−1

(I−KkHk)X f
k YoT

k KT
k

+
1

N−1
KkYo

kX f T

k

(
I−HT

k KT
k
)

. (6.29)

In the EnKF, if all members are updated with the same observations without perturbations,

that is, Yo
k = 0, the analysed error covariance produced by the ensemble becomes

Pa
k = P f

k −P f
k HT

k KT
k −KkHkP f

k +KkHkP f
k HT

k Kk

= (I−KkHk)P f
k

(
I−HT

k KT
k
)

. (6.30)

Differing from Eq. (6.13), this expression contains one factor, (I−KkHk), too many.

The missing term KkRkKT
k causes Pa

k to be less than the value given by Eq. (6.13) and

therefore results in underestimating analysis error and a premature reduction in the

ensemble spread (Houtekamer and Mitchell, 1998; Burgers et al., 1998).

If there was Yo
k that satisfies not just Eqs. (6.24) and (6.26) but also

X f
k YoT

k KT
k = 0 , (6.31)

then the analyzed error covariance (6.29) would exactly match the theoretical value (6.13).

However, such a solution does not exist in general. Consequently, EnKF only satisfies

these conditions approximately in a statistical sense, which can be expressed as (Burgers

et al., 1998):

Pa
k = (I−KkHk)P f

k +O
(

1√
N

)
. (6.32)

This traditional algorithm is a stochastic filter and has become known as the perturbed

observations EnKF. Its advantage is that the covariance matrices are no longer evolved

using the forecast model like they are in KF, however, it introduces sampling errors which
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6.4. Ensemble Square Root Filter

reduce the accuracy of the analysis covariance estimate, especially for small ensembles

as Eq. (6.32) suggests. Therefore, designing an approach that does not require perturbed

observations is desirable.

6.4. Ensemble Square Root Filter

Ensemble Square Root Filter (EnSRF) is a deterministic filter which means that no

perturbed observations are used, and thus it differs from EnKF in the analysis step

(Tippett et al., 2003).

We begin with substituting Eq. (6.17) to (6.12), which yields

Kk =
1

N−1
X f

k X f T

k HT
k

(
1

N−1
HkX f

k X f T

k HT
k +Rk

)−1

. (6.33)

At this point, we can effectively handle the nonlinear observation operator H . In

Eq. (6.33), we see that the linearized operator Hk always appears next to the matrix X f
k .

The i-th column of HkX f
k is Hk

(
x f (i)−x f

k

)
, which is the 1-st order Taylor approximation

of H
(

x f (i)
)
−H

(
x f

k

)
. Instead of linearizing H on the entire model space, we linearly

approximate HkX f
k by the n×N matrix of forecast ensemble observation perturbations

Y f
k =

[
y f (1)

k −y f
k ,y

f (2)
k −y f

k , . . . ,y
f (N)
k −y f

k

]
, (6.34)

where y f
k :=

1
N

N
∑

i=1
H
(

x f (i)
k

)
is the observation ensemble mean and y f (i)

k := H
(

x f (i)
)

.

Notice that the sum of the columns of Y f
k is zero.

Consequently, we can rewrite Eq. (6.12) as

Kk = X f
k Y f T

k

[
Y f

k Y f T

k +(N−1)Rk

]−1

︸ ︷︷ ︸
=:D−1

k

, (6.35)

where Dk ∈ RN×N is positive definite and hence invertible.

The analysis ensemble mean is given by the following step:

xa
k = x f

k +Kk

(
yo

k−y f
k

)
(6.36)
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and the analysis covariance matrix can now be written as

Pa
k =

1
N−1

Xa
kXaT

k

= (I−KkHk)P f
k

=
(

I−X f
k Y f T

k D−1
k Hk

) 1
N−1

X f
k X f T

k

=
1

N−1
X f

k

(
I−Y f T

k D−1
k Y f

k

)
X f T

k , (6.37)

so the analysis ensemble perturbation matrix Xa
k is updated by

Xa
k = X f

k Wa
k , (6.38)

where Wa
k ∈ RN×N is a matrix square root of I−Y f T

k D−1
k Y f

k in the sense that

WaT

k Wa
k = I−Y f T

k D−1
k Y f

k . (6.39)

Thus the analysis states can now be updated as

xa(i)
k = xa

k +X f (i)
k . (6.40)

Eq. (6.39) is essentially a Monte Carlo implementation of a square root filter (Maybeck,

1979), which explains the name of EnSRF. However, the matrix square roots in Eq. (6.39)

are not unique, they can be computed in different ways, such as by Cholesky factorization

or by singular value decomposition (Stoer, 1999), but they are all functionally equivalent,

distinguishing only in algorithmic details. In the next section, one form of EnSRF is

introduced, which computes the matrix square roots in the subspace spanned by the

ensemble.

6.5. Ensemble Transform Kalman Filter

There are two difficulties in evaluating D−1
k . The first is size: a p× p matrix. For

atmospheric applications where p ≈ O(105), it can be costly to gain the inverse of Dk.

The second difficulty occurs when the largest eigenvalue of Dk in Eq. (6.12) may be

many orders of magnitude larger than its smallest eigenvalue. In this case, the matrix is
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6.5. Ensemble Transform Kalman Filter

ill-conditioned and hence very problematic to inverse. To implement it in an efficient

manner, Ensemble Transform Kalman Filter (ETKF) rewrites the Kk so that the matrix

inverse can be done in the ensemble space. ETKF makes use of the identity:

Y f T

k

[
Y f

k Y f T

k +(N−1)Rk

]−1
=
[
(N−1)I+Y f T

k R−1
k Y f

k

]−1
Y f T

k R−1
k , (6.41)

which can be verified if we multiply both sides of the equation on the right by
[
Y f

k Y f T

k +(N−1)Rk

]
and consider that Y f T

k R−1
k

[
Y f

k Y f T

k +(N−1)Rk

]
=
[
(N−1)I+Y f T

k R−1
k Y f

k

]
Y f T

k . Now

we have

Kk = X f
k

[
(N−1)I+Y f T

k R−1
k Y f

k

]−1
Y f T

k R−1
k , (6.42)

and then Eq. (6.13) becomes

Pa
k =

1
N−1

(I−KkHk)X f
k X f T

k

=
1

N−1
X f

k

{
I− 1

N−1

(
I+

1
N−1

Y f T

k R−1
k Y f

k

)−1

Y f T

k R−1
k Y f

k

}
X f T

k . (6.43)

Applying the identity I− (I+B)−1B = (I+B)−1 with B =
1

N−1
Y f T

k R−1
k Y f

k , we can

rewrite the analysis error covariance matrix as

Pa
k =

1
N−1

X f
k

(
I+

1
N−1

Y f T

k R−1
k Y f

k

)−1

X f T

k

= X f
k

[
(N−1)I+Y f T

k R−1
k Y f

k

]−1

︸ ︷︷ ︸
=:P̃a

k

X f T

k

= X f
k P̃a

kX f T

k , (6.44)
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where P̃a
k ∈ RN×N is the analysis error covariance matrix in the ensemble space that

transforms the forecast ensemble perturbations into the analysis ensemble perturbations.

Thus, we have

Xa
k = X f

k

[
(N−1)P̃a

k
] 1

2

= X f
k Wa

k (6.45)

and

Kk = X f
k P̃a

kY f
k R−1

k . (6.46)

Instead of an expensive computation of D−1
k in Eq. (6.35), Eq. (6.46) takes advantage

of the fact that the matrix Rk is much easier to invert due to its typically diagonal or

block diagonal structure and many or all of the blocks of Rk may remain the same from

one analysis time to the next so R−1
k need not be recomputed each time. In addition, the

matrix inverse P̃a
k is done within the ensemble space, which usually has a much smaller

dimension than the observation space (N� p).

Therefore, Eq. (6.36) becomes

xa
k = x f

k +X f
k P̃a

kY f
k R−1

k

(
yo

k−y f
k

)
︸ ︷︷ ︸

:=wa
k

= x f
k +X f

k wa
k , (6.47)

where wa
k is the analysis increment in the ensemble space.

In Eq. (6.45), Wa
k is the symmetric square root of the analysis error covariance matrix

in ensemble space. Since P̃a
k is symmetric positive definite matrix, it always has a unique

symmetric positive definite square root (Halmos, 1974). It is numerically solved by

singular vector decomposition (SVD) using eigenvalues and eigenvectors of (N−1)P̃a
k:

Wa
k =UΣ

1
2UT , (6.48)

where U is an orthogonal matrix of eigenvectors of (N− 1)P̃a
k and Σ

1
2 is the diagonal

matrix of the square roots of the eigenvalues.
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With this choice for Wa
k , we obtain

Pa
k = X f

k P̃a
kX f T

k

= X f
k

1
N−1

Wa
kWaT

k X f T

k

=
1

N−1
Xa

kXaT

k (6.49)

and as shown in Wang et al. (2004) that the sum of columns Xa(i)
k of Xa

k is zero, so the

analysis ensemble has the correct sample mean.

Another reason in favor of the use of the symmetric square root to calculate Wa
k

from P̃a
k is that it ensures the continuous dependency of Wa

k on P̃a
k (Hunt et al., 2007),

which is substantial in a local analysis scheme, as we will see in the next section, so

that adjacent analysis points, whose corresponding local forecast ensemble has small

disparities, will differ slightly in P̃a
k . The derived symmetric square root matrix can carry

such characteristics and result in similar analysis ensemble perturbations at adjacent

points and thus smoothness in the analysis. Another desirable property of the symmetric

square root is that it minimize the distance3 between Wa
k and the identity matrix, thus the

analysis ensemble perturbations are in this sense as close as possible to the the forecast

ensemble perturbations subject to the constraint on the analysis error covariance matrix

(Ott et al., 2004). Harlim (2006) showed that the symmetric solution outperforms a

non-symmetric one, given the same ensemble size.

Once xa
k and Pa

k are specified, we have to construct an analysis ensemble of model

states, whose mean is xa
k and whose error covariance matrix satisfies Pa

k =
1

N−1
Xa

kXaT

k .

To fulfill these conditions, we generate the ensemble using

xa(i)
k = xa

k +X f
k Wa(i)

k

= x f
k +X f

k wa
k +X f

k Wa(i)
k

= x f
k +X f

k

(
wa

k +Wa(i)
k

)
, (6.50)

where Wa(i)
k is the ith column of symmetric square root matrix Wa

k =
[
(N−1)P̃a

k
] 1

2 .

3The distance is measured by the Frobenius norm.
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Fig. 6.1.: Top view of a localized domain: model grid and irregularly distributed observations
are denoted with© and4, respectively, while the current analysis grid point and its associated
observations are found within the localization radius (indicated by the dashed line).

6.6. Local Ensemble Transform Kalman Filter

Hunt et al. (2007) adopted an alternative algorithm of ETKF, named Local Ensemble

Transform Kalman Filter (LETKF), by performing the analyses locally in space. The fun-

damental difference between LETKF and ETFK is, as the names suggest, the localization,

which ameliorates computational efficiency because the analyses at different model grid

points are independent and can be done in parallel. Furthermore, since observations are

assimilated simultaneously, not serially, it is simple to take observation error correlations

into account. In what follows, we will introduce the corresponding techniques including

localization and covariance inflation.

6.6.1. Localization

In fact, the forecast covariance matrix P f
k in all previous mentioned forms of Ensemble

Kalman filters suffer from a sampling error which increases as the absolute value of the

correlation between an observation and a state variable becomes weak. To estimate those

weak correlations precisely, thousands of ensemble members are required in any case,

thus for the limited size of ensemble in practical use we have to somehow deal with the

sampling error associated with weak correlations. Although the expected correlation

is usually not known a priori, it is generally believed that the correlation weakens with
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physical distances between an observations and a state variable. As observations become

remote from the state variables, their potential positive impact can be expected to be

insignificant. So we consider only the observations from a local domain surrounding

the location of the analysis (Keppenne, 2000; Ott et al., 2002, 2004) and multiply the

entries in R−1
k by a factor that decays from one to zero as the distance of the observations

from the analysis grid point increases, which corresponds to gradually increasing the

uncertainty assigned to the observations until beyond a certain distance they have infinite

uncertainty and thus no influence on the analysis. The choice of the size of the local

domains should reflect the distance over which dynamical correlations represented by the

ensemble are meaningful. A common idea is to use observations within a cylinder of a

given radius and height centered at the analysis grid point and to determine empirically

which value of volume produces the best results (see Fig. 6.1). This is denoted as explicit

localization. Another localization is done implicitly by multiplying the elements in P f
k

with a distance-depend weight function. If the expected absolute value of correlation is

small enough, the weight can be equal to zero and the regression does not need to be done.

The most popular weight function χ(d,c) is given by Gaspari and Cohn (1999), where d

is the distance and c half-width. For d ≥ 2c, the observation has no impact on the state

variable; for d < 2c, χ behaviors like a Gaussian. The optimal value of c depends on

the size of the ensemble, with increasing size, corrections at larger and larger distances

can be precisely estimated. Therefore, an appropriate c can be specified for a certain

ensemble size. In this work, the explicit manner is employed in which we choose a local

subset of the global observations within a local domain around each grid point of the

model and conduct separate analyses simultaneously using only the local observations.

A complementary reason favoring the localization is deduced from the fact that the rank

of P f
k is equal to the rank of X f

k , which is at most N−1 because the sum of its columns

is equal to 0. Consequently, the ensemble size limits the rank of P f
k that can represent

uncertainty only in (N−1)-dimensional subspace spanned by the columns of X f
k and a

global analysis will allow correction to the model state only in this subspace, which means

that forecast errors will increase in directions not included in this space and will not be

adjusted by the analysis step. If the observations are plentiful whereas the ensemble

size N is small, the analysis will inevitably smooth the observational information, which

leads to a loss of analysis accuracy and divergence from the real state. Consequently, we

need to make the ensemble size commensurable with the number of observed degrees
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within the global model to provide an accurate representation, which makes the algorithm

computationally very inefficient. As recognized in Oczkowski et al. (2005) and Patil et al.

(2001), the smaller the local domain in a model we choose, the smaller the ensemble size

is necessary to properly represent the model dynamics in the local domain. So if we carry

out the analysis step locally by choosing different linear combinations of the ensemble

members in different domains, the selected ensembles need to represent uncertainty only

in the local domain and the rank problem is mitigated to a high extent. The global analysis

that becomes a larger amount of small local problems, each of which individually has no

rank problem, is able to fit much higher observed degrees of freedom (Fukumori, 2002;

Ott et al., 2002, 2004).

6.6.2. Covariance inflation

Besides sampling errors, ensemble Kalman filters are also subject to other sources of

errors, such as model errors and interpolation as well as representativeness errors of the

operator. All these errors can potentially cause underestimation of the forecast covariance

and overconfidence in the forecast state estimate. As previously stated, the ensemble

spread P f
k ignores model errors. Moreover, when the observations are dense, P f

k will be

reduced massively and turns out to be too small. As spread represents the uncertainty, the

filter believes that it performs better than it does in reality and thus the analysis loses track

of the truth. In order to compensate for this tendency, an ad hoc approach is commonly

employed which artificially inflates the forecast error covariance matrix P f
k before each

analysis (alternatively, one could inflate the analysis error covariance matrix Pa
k after each

analysis). Although the standard covariance inflation method is to multiply the forecast

ensemble perturbations X f
k by an appropriate constant factor

√
β > 1, which is equal to

multiplying P f
k by β , one can also attain similar results in a more efficient way which

leaves X f
k alone but rewrites P̃a

k as follows

P̃a
k =

[
(N−1)I/β +Y f T

k R−1
k Y f

k

]−1
. (6.51)

It can be shown that this modification has the same effect on the analysis mean xa(i)
k and

covariance matrix Pa
k as multiplying X f

k and Y f
k by

√
β , respectively. Notice that in case
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of a linear H , this is same as inflating the forecast ensemble by
√

β before applying H

to get Y f
k . If β is close to one, this is a good approximation even for a nonlinear H .

On the other hand, covariance inflation can be thought as applying a damping factor

to the influence of previous observations on the current analysis. Because this damping

factor is applied in each analysis step, the cumulative effect is to diminish the influence

of an observation on future analyses exponentially with time, so the inflation factor

determines the time scale over which observations have an influence. This effect is

particularly advantageous in the presence of model errors, because then the model can

only reliably propagate information given by the observations for a limited time range. In

this sense, covariance inflation also localizes the analysis in time.

But a single value of inflation is not appropriate for all state variables since the ensemble

spread is very sensitive to the observing density. When the observations are dense, the

ensemble spread is cut down excessively, which means that the model is too confident,

so a larger value of β should be taken, and vice versa. A fixed β can result in values

that are inconsistent with climatological values, and in the worse case, incompatible

with model’s numerical methods (Anderson, 2008), leading to model failure. So an

adaptive inflation is preferable (Li et al., 2009), which proposed an online estimation of

the inflation factor. The idea is to compare the “observed” observation-minus-forecast,

given by [yo−H (x f )], with the “predicted” one, given by (R+HP f HT ). This method

was adopted in a LETKF environment by Bonavita et al. (2010), where β was time and

space dependent.

6.6.3. Implementation of LETKF

In this section, we explain how the LETKF algorithm given above is implemented. This

method can be summarized by ten steps described below. The inputs to the analysis are

a forecast ensemble of n[g]-dimensional model state vectors
{

x f (i)
[g] : i = 1,2, . . . ,N

}
, a

nonlinear operator H[g] from the n[g]-dimensional model space to the p[g]-dimensional

observation space, an p[g]-dimensional vector yo
[g] of observations, and an p[g]× p[g]

observation error covariance matrix R[g]. The subscript [g] refers to the global model

state and all available observations, from which a local subset will be chosen for each

local analysis and the subscript [l] reflects a local domain associated with an arbitrary

grid point. Step 1 and 2 are basically global operations, but can be carried out locally in a
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parallel scheme, if H is a local interpolation operator. In Step 3, for each model grid

point, we truncate x f
[g] and X f

[g] to contain only the model variables for that grid point, and

truncate yo
[g], y f

[g] and Y f
[g] to contain observations within a local domain around that point.

After the local analysis for each grid point is done separately in Step 3 - 8, the final result

of the global analysis is given in Step 9. In Step 10, the new global forecast ensemble is

created.

In details the steps are:

1. Apply the operator H[g] to each x f (i)
[g] to obtain the global forecast observation

ensemble
{

y f (i)
[g]

}
, and calculate the ensemble average y f

[g] of
{

y f (i)
[g]

}
. Construct

the global forecast observation ensemble perturbation p[g]×N matrix Y f
[g] by taking

its columns to be the vectors obtained by substracting y f
[g] from each y f (i)

[g] .

2. Calculate the ensemble mean x f
[g] of

{
x f (i)
[g]

}
and subtract x f

[g] from each x f (i)
[g] to

build the columns of global forecast ensemble perturbation n[g]×N matrix X f
[g].

3. Select all necessary data needed to obtain the analysis ensemble at a given grid

point. Select the rows of x f
[g] and X f

[g] corresponding to the given grid point, forming

their local counterparts: the n[l]-dimensional vector x f
[l] and the n[l]×N matrix X f

[l].

Select the rows of y f
[g] and Y f

[g] corresponding to the observations chosen for the

analysis in the local domain to form the p[l]-dimensional vector y f
[l] and p[l]×N

matrix Y f
[l]. Select the corresponding rows of yo

[g] to form the p[l]-dimensional vector

yo
[l]. Select the corresponding rows and columns of R[g] to form p[l]× p[l] matrix

R[l].

4. Calculate the N× p[l] matrix C[l] = Y f T

[l] R−1
[l] . Since this is the only step where R[l]

is used, it is much more convenient to estimate C[l] by solving the linear system

R[l]CT
[l] = Y f than inverting R[l].

5. Calculate the N×N matrix P̃a
[l] =

[
(N−1)I/β +Y f T

[l] R−1
[l] Y f

[l]

]−1
.

6. Calculate the N×N matrix Wa
[l] =

(
(N−1)P̃a

[l]

) 1
2
.
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7. Calculate the N-dimensional vector wa
[l] = P̃a

[l]C[l]

(
yo
[l]−yo

[l]

)
and add it to each

column of Wa
[l], The columns of resulting N×N matrix are the weight vectors{

wa(i)
}

.

8. Calculate the analysis ensemble members at the analysis grid point by xa(i)
[l] =

X f
[l]w

a
[l]+x f (i)

[l] .

9. After completing Step 3-8 for each grid point, the results of Step 8 are gathered to

form the global analysis ensemble
{

xa(i)
[g]

}
.

10. Calculate the new global forecast ensemble
{

x f (i)
[g]

}
by x f (i)

[g] = M
(

xa(i)
[g]

)
.

6.7. 4-Dimensional Local Ensemble Transform Kalman Filter

In an operational setting, the analyses are generated at several hours intervals, though

many observations are available more frequently. Since significant changes could happen

over such a time interval, it is reasonable to consider observations at intermediate times

than to pretend that they were taken at the analysis time. Hunt et al. (2004) extended the

LETKF to a four-dimensional version 4D Local Ensemble Transform Kalman Filter (4D-

LETKF) which estimates the analysis ensemble mean by fitting the linear combinations

of the trajectories of the background ensemble to all of the observations collected between

two analysis times.

Recall that in Section 6.5 we wrote the analysis mean as xa = x f +X f wa (cf. Eq. (6.47),

the subscript k is omitted here and hereafter for brevity),where wa is determined by R,

yo, y f and Y f . Essentially, wa specifies the linear combination of background ensemble

states that best fit yo. Moreover, yo and Y f are formed by mapping the background

ensemble into the observational space. So for observations taken at different times yo

and Y f must be accordingly redefined. To be more concrete, let’s assume that we have

data (t j,yo
t j
) from various times t j since the last analysis. Let x f

t j and X f
t j be the ensemble

background mean and matrix of background ensemble perturbations at time t j. Let Ht j

be the observation operator for time t j and Rt j the error covariance matrix for these

observations. So now, for each t j, we apply Ht j to the background ensemble state x f (i)
t j

to gain vectors y f (i)
t j , average those vectors to gain y f

t j , and subtract y f
t j from y f (i)

t j to get

the columns of Y f
t j . Then, a combined observation vector yo is formed by vertically
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concatenating the column vectors yo
t j

, and analogously by vertical concatenation of the

vectors y f
t j and matrices Y f

t j , respectively, we build the combined background observation

mean y f and perturbation matrix Y f . The corresponding R is a block diagonal matrix

with blocks Rt j (this assumes that observations taken at different times have uncorrelated

errors, though such correlations if present could be included in R).

Accordingly, the steps in Subsection 6.6.3 should be modified. Step 1 is executed

for each observation time t j and the results are combined as described in the previous

paragraph to form y f and Y f . However, Step 2 is only carried out only at the analysis

time and save the resulting x f and X f for use in Step 8.

6.8. Data thinning

Although the high frequency of radar observations is very advantageous for estimating an

initial state for NWP, a huge amount of assimilated observations may also lead to high

computational costs, massive memory space allocation and very time-consuming data

transmission. Additionally, dense data can severely violate the assumption of independent

observation errors made in most assimilation schemes, including Kalman filters. The error

correlations are unknown a priori, and calculations of these correlations in the assimilation

system would require more complex observation error statistics and evoke increased

computational costs. To combat these problems, efforts must be made to cut back on the

amount of observations before assimilation, meanwhile, the quality of assimilation should

be preserved or even be enhanced. Since error correlations often exist for observations

lying close together, if we dilute the observations so sparse that the distances among

observations are larger than the correlation length, the observations can be considered as

uncorrelated. Currently, a simple data thinning method is implemented in the operator,

where observations can be thinned in radial distance and azimuthal scanning angle at

specified intervals. The crudeness of this technique is that the problem of inhomogeneous

radar data distribution (more data at closer distance from radar) is not alleviated by that.

6.9. Statistics used for verification of assimilation performance

A fundamental assumption of the standard KF is that the observations and the model

outputs are unbiased. An observation bias typically indicates instrumental inaccuracies,
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representativeness errors, or, in the case of remote sensing observations, errors in the

retrieval algorithm. After quality control the observations can be often but not always

assumed to be unbiased (Lorenc and Hammon, 1988). In constrast, model forecasts

are hardly ever unbiased. Model forecast errors depend on model structure, parameters,

discretization as well as model initial conditions. Generally, the forecast error contains a

random and a systematic component. The latter one is referred to as model bias.

Let yo = [yo
1, . . . ,y

o
p] be set of observations. We define bias of forecast ensemble mean

by

Bias f =
1
p

p

∑
i=1

[
yo

i − y f
i

]
. (6.52)

It is the difference between the observation and the forecast projected to the observation

points. Bias f is positive when the model overestimates the observations, while a negative

bias reveals underestimation of the observations.

A standard measure for the misfit of simulated ensemble mean and observations is the

root mean square error (RMSE)

RMSE f =

√
1

p−1

p

∑
i=1

[
yo

i − y f
i

]2
, (6.53)

which is considered as the expected spread. In contrast to Bias f , RMSE f quantifies the

error of the estimates in a least-square sense and it is always larger than or equal to zero.

A small RMSE f corresponds to a good fit.

To estimate the reliability of assimilation results (Sacher and Bartello, 2009), RMSE f

is usually compared with the aforementioned spread, which is considered as a measure

for the ensemble variability, defined as

Spread f =

√
Spread f 2

1 +Spread f 2

2 + · · ·+Spread f 2
p

p−1

=

√
1

p−1

p

∑
i=1

Spread f 2

i , (6.54)
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where

Spread f
i =

√
(y f (1)

i − y f
i )

2 +(y f (2)
i − y f

i )
2 + · · ·+(y f (N)

i − y f
i )

2

N−1
, i = 1,2, . . . , p (6.55)

is root mean square difference between the forecast ensemble members and the forecast

ensemble mean. Spread f can be interpreted as the assumed forecast error covariance.

In analogy to definitions of Bias f , RMSE f and Spread f before the analysis step, we

can also define Biasa, RMSEa and Spreada after the analysis step. All of them are

used to quantify the assimilation performance and to represent the model/observations

consistency. If RMSE and spread are approximately identical, the ensemble variance

captures the estimation error correctly and thus the ensemble forecasting system is reliable.

In practice, the RMSE is always higher than the actual spread and an increase in the

spread usually helps to reduce the RMSE and give a better performance of the data

assimilation system.
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convective event of 31 May 2011

In this chapter, first experiments applying the new radar forward operator in the data

assimilation procedure are performed. The used data assimilation scheme is a newly

developed 4D-LETKF software package from DWD (Schraff et al., 2012).

Generally, the best way to examine a newly built data assimilation system and to

investigate the potential impacts of new observations on it is to conduct Observing

System Simulation Experiments (OSSEs, Arnold Jr. and Dey (1986)). The OSSE

methodology begins with a free running mode without data assimilation to provide the

“truth” and generate simulated observations with realistic errors. This run is called Nature

Run (NR). Then, two experiments are to be carried out: a control run, in which current

observational data are included, used to generate a reference field and a perturbation

run, in which simulated new observations under evaluation are added. By comparison of

results of these two runs, we are able to evaluate beforehand the improvement in forecast

skill due to the proposed new data.

There are several advantages of OSSEs, such as easy control of the experiments,

precise knowledge of the data properties and errors, and knowledge of the truth. However,

OSSEs require immense resources in maintenance and computing power (McCarty,

2012), particularly when radar data are involved. Unfortunately, a first version of the

4D-LETKF data assimilation system at DWD has been just finished at the time of this

writing, such that, among the other ongoing work, a framework for OSSEs is still under

construction at present. Therefore, we have to apply the data assimilation system to a

real case, for which the characteristics of model and observation errors are not known

precisely. Considering the assimilation of radar reflectivity would be more problematic

than Doppler velocity for several reasons:

1. Model errors are expected to be particularly large for reflectivity (Gilmore et al.,

2004). Whereas simulated Doppler velocity is computed from the 3D wind vector,

which are controlled by grid-scale dynamics, simulated reflectivity is computed
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from hydrometeor fields, which are controlled by microphysical parametrizations

and their inherent uncertainties.

2. Even if the hydrometeor fields are predicted well by the model, there are consider-

able uncertainties in how to calculate reflectivity from model hydrometeor fields.

particularly for ice and mixed-phase precipitation, i.e., bias errors in the operator,

3. Reflectivity is strongly nonlinearly tied to model variables (Tong and Xue, 2005),

4. Unlike Doppler velocity observation errors, reflectivity observation errors are af-

fected significantly by attenuation and errors in radar calibration (Wilson and

Brandes, 1979).

Therefore, we prefer assimilation of Doppler velocity as a start point to collect first

experiences, and assimilation of reflectivity will be investigated in future.

Additionally, a verification tool for 4D-LETKF results (typically, analysis mean against

observations in terms of surface precipitation) and an algorithm that combines the post-

processing quality products with radar observations to filter contaminated data are cur-

rently also under development. Constrained by these conditions, the experiments results

have to be taken only as first steps and a technical proof of concept. More work will be

done in the future to tune the system towards operational application.

7.1. Description of weather conditions, model and 4D-LETKF setup

On the morning of 31 May 2011, the cold front of low pressure system “Yves” arrived

in West Germany and during day advanced slowly eastwards. Due to the extreme

temperature changes across the front boundary (hardly more than 13◦C in the west, 25 -

32◦C in the east), severe thunderstorms occurred along the frontal zone. After the front

passage, the thunderstorms partly turned into persistent rain (see Fig. 7.1).

All data assimilation experiments described in detail in the next section are run on 8

processors of the NEC SX-9 cluster at DWD. The COSMO-DE-model is operated with

an horizontal resolution of (0.025◦, 0.025◦) and 51 vertical levels within the domain

depicted in Fig. 2.1b. An ensemble size of at least 40, suggested by Chris Snyder at the

COSMO GM at Athens, is expected to be sufficient to render good results. To create the

ensemble members, we start with 40 identical members and add random perturbations
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coming from the boundary data of GME-LETKF. These perturbations will be transported

into the internal domain by the model itself1. Starting at 18:00 UTC 31 May 2011,

we perform a 1-hour data assimilation cycle until 21:00 UTC, i.e., the observations are

assimilated every one hour. It is assumed throughout that the observation error has a

Gaussian distribution with 1 m/s for Doppler velocity. To get rid of outlying observations,

especially in the radar data, a rough solution, though not necessarily a bad one, is to reject

all data that have a potential of being contaminated, i.e., it is claimed that

∣∣yo−y f ∣∣> 3
√
(εo)2 +(ε f )

2 , (7.1)

where εo and ε f are observation and forecast errors in observation space, respectively.

Note that too many data will be rejected if the specified observation errors or spread are

too small, and vice versa.

In terms of radar data thinning (cf. Section 6.8), for each 5 km in radial distance and

for each 5 degree in azimuth one bin has been selected. An adaptive covariance inflation

is utilized with an initial value of 1.05 and ranges from 0.5 to 3.0 (cf. Subsection 6.6.2).

7.2. Assimilation experiments

Tab. 7.1 lists four experiments performed to be discussed and evaluated in this section.

At first, 4D-LETKF is first tested in E0 by assimilating the conventional observations

from AIREP, DRIBU, PILOT and SYNOP (see Chapter 1). During the chosen time, there

are no TEMP data available. In terms of localization, a uniform localization strategy

is applied to all types of observations. That is, horizontal localization length is chosen

to 100 km, and for the vertical localization different lengths are set to different heights

due to the variation of observation density with height: it begins with 0.075 log hPa at

the surface level and linearly increases to 0.5 log hPa on the top level. Next, E1 shares

the same configurations as E0 but assimilates Doppler velocity measured from the radar

network of DWD as additional data by using the radar forward operator with simplest

configurations Hradar. Considering much higher resolutions of radar data than the other

data, a stronger localization is applied to radar data in E2, with the horizontal localization

1In the future we want to initialize the ensemble members by multiplying a gauss-distributed random
vector with an error covariance matrix of 3D-VAR in GME-LETKF and then interpolating the resulting
boundary data onto the COSMO-model.
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Fig. 7.1.: Left column:: precipation rate in mmh−1 (see color bar) on 31 May, 2011, derived
from the radar network of DWD and made available form www.Niederschlagradar.de; Right
column: geopotential in gpdam (see color bar) and surface pressure at 18:00 UTC, cited from
www.Wetterzentrale.de

length cut down to 20 km. As mentioned in Chapter 5, we are also very interested in

the influence and efficiency of Hradar with full configurations (compared to E2) in the

framework of data assimilation. For this reason, configurations of Hradar are upgraded to

the full degree in E3 (cf. E4 in Chapter 5). The results of experiments are presented in the

following.

Observation Horizontal localization [km]

Exp. Conventional vr Conventional vr Configurations of Hradar

E0 active passive 100 100 simplest
E1 active active 100 100 simplest
E2 active active 100 20 simplest
E3 active active 100 20 full

Tab. 7.1.: Description of data assimilation experiments. passive: read but not assimilated, active:
read and assimilated; Hradar represents the radar forward operator. Simplest and full respectively
refer to the configurations of Hradar in E0 and E4 in Chapter 5.

170



7.2. Assimilation experiments

Fig. 7.2 shows observation errors, RMSE, spread of prior and posterior ensembles at

21:00 UTC in E0. These statistics are evaluated on the mandatory levels from 1000 to 100

hPa at intervals of 100 hPa with respect to the observations AIREP (the first three subfig-

ures) and from 0 to 20000 m at intervals of 2000 m with respect to Doppler observations

(the lowermost subfigure). For u, v and T, RMSEa is smaller than RMSE f throughout the

entire depth of the model, which indicates that 4D-LETKF is able to extract information

from observations. But we also recognize that, on one hand, observation errors are

obviously set too high, on the other hand, Spread f is considerably smaller than RMSE f ,

both of which make the model believe it performs better than it really does and thus

underestimate the observed information (remember that the observation errors and spread

represent the assumed validity of observations and the model, respectively). As stated in

Section 6.1, tuning the observation errors is a difficult issue and will not be handled in

this study. Instead, we would like to focus on the lack of spread, terminologically called

underdispersion, which is usually caused by underdisturbed initial conditions, no (suffi-

cient) consideration of model errors and finite ensemble size (Buizza et al., 2005). For

Doppler velocity, RMSEa is even larger than RMSE f up to 2000 m. Since RMSEa (in the

lowermost subfigure of Fig. 7.2) represents the difference between observations of vr and

the analysis by assimilating the conventional data, the phenomenon of RMSEa ≥ RMSE f

suggests a disparity between conventional and radar observations at lower levels.

Fig. 7.3 illustrates the preliminary results of assimilating Doppler velocity in E1. One

can clearly see that Spread f of u, v, T and vr is considerably reduced. From a positive

point of view, this confirms the capability of assimilating radar data, but the negative

effect is overconfidence of the model on itself and ignorance of observations. One should

also notice that RMSEa of u, v and T has been hardly improved or even changed for

the worse against RMSE f while RMSEa of vr becomes smaller than RMSE f (cf. vr in

Fig. 7.2). This is because that radar data are much denser than AIREP and they represent

different scales of correlations (radar data for small-scale correlations and AIREP for

large-scale correlations). By applying a same large-scale localization length to both data

the local analysis is essentially attracted to radar data and downgrades the role of AIREP.

In anticipation it should be noted that this also explains the finding in Fig. 7.5, where

RMSE f and Bias f of E1 are often larger than those of E0 for u, v and T. As previously

stated, an effective way to increase spread and to reduce amount of active data used for

local analysis is application of a stricter localization length, that is what happens in E2.
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Fig. 7.4 reveals the positive influences of using separate localization lengths for con-

ventional and radar data. Spread f has been increased and RMSEa lies considerably

beneath RMSE f , which means that the data assimilation system can now better tune the

observations into the model. When comparing E1 and E2 (see Fig. 7.6), RMSE f and

Bias f of E2 are now smaller than those of E1 in general.

What is not shown here are the statistical results of E3 with a full upgrade of Hradar.

This is because of its similar results as E2, which can be explained as follows. In order

to clean the data before assimilation, there is a general data preprocessing procedure

that saves only the data, for which both observed and simulated data are present, in

the input files of data assimilation. On the other hand, recall that the most powerful

update regarding Doppler velocity is weighting by reflectivity that reduces the coverage of

Doppler velocity to the area where the simulated reflectivity exists (cf. Subsection 5.2.3,

the others updates like online beam propagation (e.g., SODE) and beam smoothing

show marginal effects). In fact, this effect is more or less implicitly included in the data

preprocessing procedure and thus we could not see the benefits brought by upgrading

Hradar.

Figs. 7.7, 7.8 and 7.9 illustrate the analysis ensemble mean, Spreada of temperature

T and horizontal wind~vh := (u v)T at height of 5000 m in E0, E1 and E2, respectively.

In E0, Spreada is relative large close to the boundary of the model domain and small in

the inner area (see Figs. 7.7b and 7.7d) because of different densities of observations.

In terms of mean, the temperature T increases gradually from the west to the east in

general but in the south we can observe an Alps-shaped area (cf. Fig. 2.1b) of lower

temperature (see Fig. 7.7a), which results from the terrain following vertical coordinates

that are actually higher than 4000 m in the area of the Alps and thus are associated with

lower temperature than the vicinity. In Fig. 7.7c, the wind~vh blows from the northwest at

the west boundary and changes quickly to the south wind, due to a narrow trough present

at the west boundary (see Fig. 7.1).

Compared to Fig. 7.7, the most obvious differences in Fig. 7.8 are the aforementioned

reduction of spread, caused by assimilation of the highly dense radar data (see Figs. 7.8b

and 7.8d). With respect to the mean, the overall picture of Fig. 7.7 is reproduced by E1

with some differences. For instance for~vh in area of [4W,2W ]× [2S,2N] of Fig. 7.8c, E1

produces considerably higher wind speeds than E0. For T only few differences can be

seen.
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In Fig. 7.9 for E2, spread has been effectively enhanced by the special treatment of

localization length for radar data (see Figs. 7.9b and 7.9d), but only small changes occur

with respect to the mean.

In an operational context, we are also interested in the total wall-clock elapsed time

of each experiment, as shown in Table 7.2. It mainly consists of two parts: the elapsed

time spent by the COSMO-model, including the radar forward operator, and the elapsed

time consumed by 4D-LETKF. As already noticed in Subsection 6.6.3, the algorithm

of 4D-LETKF comprises several steps, but only those steps that are responsible for the

time differences are accounted for here, which are Setup and Grid loop. The former one

arranges the observation vector yo, specifies the observation error covariance matrix R
and conducts the quality control (i.e., Eq. (7.1)). The latter one computes the analysis

covariance matrix Pa on each grid point of a coarse model grid2 and save them.

In Table 7.2, we can clearly see an acute increase (601.47%) from E0 to E1. The reason

for that is quite plausible. Due to the consideration of radar data, more efforts have to be

made in Setup to treat yo, R and quality control. Furthermore, the local analyses have to

consider far more observations when estimating Pa and thus consume more computational

time in 4D-LETKF. In E2, the time increase reduces significantly to 281.87%, which

is attributable to the stronger localization that makes the local analyses have much less

observations to deal with and save the computational time in Grid loop. In E3, we first

see a moderate time increase to 640.63 s in COSMO due to the upgrade of configurations

of the radar forward operator (cf. Section 5), however, as mentioned before, the use of

weighting by reflectivity trims the number of observations, which accelerates the process

of 4D-LETKF and compensates the increased time in COSMO. Combining all these

effects, E3 requires just 110.27% more time than E0 but much less time than E2.

2For reasons of time, the analysis covariance matrix are first computed on a coarse model grid and then
interpolated onto the fine grid.
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4D-LETKF [s] Total [s]

Exp. COSMO [s] Setup Grid loop Total COSMO + 4D-LETKF Increase [%]

E0 453.06 19.93 114.04 1214.3 1667.36 Reference
E1 466.88 1251.27 8899.41 11229.13 11696.01 601.47%
E2 438.25 1139.14 3655.67 5928.95 6367.20 281.87%
E3 640.63 928.49 914.36 2865.32 3505.95 110.27%

Tab. 7.2.: Wall-clock elapsed time distribution of data assimilation experiments. Fifth column:
total elapsed time of 4D-LETKF; Sixth column: total elapsed time of the experiment (i.e.,
COSMO + 4D-LETKF); Seventh column: Time increase of each experiment in reference to E0.

7.3. Summary

In this chapter we have reviewed the performance of 4D-LETKF with a convective case

through short assimilation cycles. Note that these analyses are preliminarily since critical

parts of the assimilation scheme are still under construction. Therefore, the focus of

experiments has been laid on the technical aspects of 4D-LETKF. The capability of 4D-

LETKF to assimilate conventional and radar data was shown in E0 and E1, respectively.

But there are two critical issues arising in E1. First, the spread dropped dramatically,

which made the model underweight the observed information. Second, RMSE and bias

of u, v and T with respect to AIREP became even worse. These issues were attributable to

the assimilation of highly dense radar data and relative weak localization strength. These

issues were then defused in E2 by using a shorter localization length, where the spread

was successfully increased and RMSE and bias became plainly smaller. Although only

few improvements in statistics have been seen with the E3-setup, the computational time

was (surprisingly) reduced against E2, which allows the full upgrade of the radar forward

operator for the operational use.

It must be recognized that these results are based on the statistics from merely one

assimilation cycle. In order to obtain more convincing results, these values have to be

averaged over weeks or months of cycled assimilations. Furthermore, we should choose

cases that have more detailed observations, particularly TEMP, available for verification.

Of cause, an effective quality control to remove gross observation errors and a realistic

appraisal of the magnitude and structure of the error correlations in “good” data are
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7.3. Summary

Fig. 7.2.: Various error statistical parameters Spread f , RMSE f , obs. err and RMSEa for 21:00
UTC in E0 as indicated by different notations, concerning the horizontal velocity components u
and v in m/s (the two uppermost subfigures), temperature T in K (the third subfigure) as function
of pressure in hPa and Doppler velocity vr in m/s (the lowermost subfigure) as function of height
in m (mandatory levels only). The right ordinate refers to the number of observations, indicated
by “obs” bar (note the different scale relative to the foregoing subfigures).
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

Fig. 7.3.: As Fig. 7.2 but for E1
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7.3. Summary

Fig. 7.4.: As Fig. 7.2 but for E2
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

Fig. 7.5.: Comparison of RMSE f and Bias f between E0 and E1
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7.3. Summary

Fig. 7.6.: As Fig. 7.5 but for E1 and E2
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of~vh (d) Spreada of~vh

Fig. 7.7.: Analysis ensemble mean and Spreada at 5000 m in COSMO-DE domain (Fig. 2.1b)
for 21:00 UTC in E0. First row: mean and Spreada of temperature T in K; Second row: mean
and Spreada of horizontal wind~vh in m/s
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7.3. Summary

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of~vh (d) Spreada of~vh

Fig. 7.8.: As Fig. 7.7 but for E1
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7. Data assimilation experiments using 4D-LETKF for the convective event of 31 May 2011

(a) Analysis ensemble mean of T (b) Spreada of T

(c) Analysis ensemble mean of~vh (d) Spreada of~vh

Fig. 7.9.: As Fig. 7.7 but for E2
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7.3. Summary

also desirable. Concerning the high temporal resolution of radar observations we can

consider performing the analysis step more frequently, e.g., every 15 min. Although

the localization length has been cut to maintain a realistic amount of spread and to

reduce RMSE, to preserve adequate continuity of analysis on adjacent points, we can

not arbitrarily limit the localization length, so an optimal value of localization has to be

tuned. From this point of view, an adaptive localization, depending on the density of

observations, is desirable. Due to the limited ensemble size, the forecast covariance can

not correctly represent large- and small-scales correlations at the same time. Motivated

by this, a two-step analysis is currently under development at DWD: in the first step the

conventional data are assimilated, and its results serve as first guess for the second step,

performing assimilation of the additional radar data. More perspectives will be discussed

in Chapter 8.
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8. Conclusions and outlook

The goal of this thesis is to develop an efficient radar forward operator to be implemented

into operational weather forecast COSMO-model. Based on current output data of the

COSMO1-model, Doppler weather radar observations are calculated, which allows for

a direct comparison in terms of observed radar data. With the help of the operator, the

COSMO-model is able to assimilate besides usual meteorological observations the radar

data. As radars provide measurements in very high spatial and temporal resolutions

and DWD operates a well-distributed radar network covering the whole COSMO-DE

domain, it is aimed at that the quality of operational weather forecasts, especially of

short term QPFs of convective events, can be improved by means of assimilating radar

data into the COSMO-model. The development work is shared with an accompanying

PhD project of Dorit Jerger (Jerger et al., 2012), who concentrated on aspects of radar

reflectivity, attenuation and the application of the operator as a verification tool for the

cloud microphysics in the model, whereas the present thesis focused on aspects of radar

beam propagation as, e.g., beam bending and broadening, programming issues as, e.g.,

parallelization and vectorization strategies, as well as application for data assimilation.

For the sake of flexible use, a modular operator has been designed. Each module

represents a specific physical process or quantity of radar measurement, e.g., beam

bending, beam broadening, Doppler velocity and reflectivity, and provides various options

associated with different levels of sophistication. A series of sensitivity experiments have

been conducted to find the best balance between efficiency and accuracy of modules. For

beam bending, three methods have been investigated. 43ERM is a commonly applied

in radar meteorology, considering climatological standard conditions; TORE is derived

and modified from an existing method, characterized by total reflection and exploits

Snell’s law for spherically stratified media; SODE is based on a new formulation of the

2nd order ODE describing the ray propagation in spherically stratified media based on

Fermat’s principle. It turned out that 43ERM works well under standard conditions or
1For the abbreviations please refer to Appendix D
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for high elevations but suffers from height overestimation in the case of superrefraction

or ducting, especially for low elevations. Both TORE and SODE methods consider the

actual refractivity in the atmosphere and are robust under non-standard conditions. They

compute beam heights radially outwards in step of range bins instead of surface distance,

which eases the implementation of the operator. But it was found that an ad hoc approach

has to be imposed in TORE to determine the correct sign of local elevations at reflection

points that occur under ducting conditions or negative antenna elevation. In contrast,

SODE does not require such an additional constraint and shows the best stability and

performance in all presented tests. Although the accuracy of online methods is also

dependent on the density of aerological observations and model (vertical) resolution, the

advantage of SODE will be increasingly obvious due to more dense observation networks

and higher model resolution in the future. With respect to beam broadening, it is pointed

out that the pulse-volume averaging generally show stronger effects in vertical than in

horizontal directions and is especially necessary when the beams encounter obstacles. The

averaging is numerically done by the Gauss-Legendre quadrature with variable integration

points nh and nv in horizontal and vertical directions. It was recognized that for our

experiments with the COSMO-model at a usual resolution, the tuple (nh,nv) = (5,9) is a

reasonable choice to guarantee good averaging results.

In the stratiform and convective case studies, the ability of the model to represent

different dynamical regimes has been evaluated. In terms of the stratiform event, a good

agreement between model and radar observations was achieved, including the intensity

and position of the event and bright band. Regarding the convective event, the model

is able to catch the general evolution of the system but with some time delay. This

might have contributed to disagreements in intensity and position between simulations

and observations. With respect to configurations of the operator, SODE generates radar

beam propagation comparable to 43ERM because no ducting conditions were prevailing

in those case studies and antenna elevations are relative high. The effects of pulse-

volume averaging become noticeable when beams arrive at long distances or intercept

the melting level. The Mie-scattering scheme stimulates higher reflectivities than the

Rayleigh approximation for partially melted particles due to the special treatment of the

refractive index by Effective Medium Approximations (EMA). Taking attenuation into

account has less significance in the stratiform event but more significant impacts in the

convection case. Weighting Doppler velocity by reflectivity allows for adjustment of
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areal coverage of Doppler velocity to the observed one. From the aspect of computational

time, the most significant increase occurred when pulse-volume averaging was upgraded

to (nh,nv) = (5,9). On the whole, the operator is very efficient due to its sophisticated

parallelization and vectorization.

There are, however, some remaining development steps which have to be left for

future work. A short-term plan includes 1) the implementation of the hydrometeor

fall speed and corresponding sensitivity experiments, where improvements in high-

elevation radar data are expected; 2) implementation of beam smoothing in range (up to

now only in azimuthal and elevational directions), which may be important for higher-

resolution models, e.g., LES (Large Eddy Simulation) models; 3) using quality control

products to clean contaminated data in observations; 4) a new parallelization strategy,

considering the prospective new supercomputer of DWD with thousands of processors;

5) solving the data overlapping problem of multiple radars; 6) using the operator as a

validation tool for the COSMO-model (part of work has been done by my Co-PhD mate

Dorit Jerger). In the long term, one ambitious goal could be to include polarimetric

parameters into the operator in such a way that it is also suitable for the operational use.

Several studies have shown that polarimetric radars provide more accurate information

on cloud/precipitation microphysics than non-polarimetric weather radars (Brandes et al.,

2002; Li and Mecikalski, 2012; Pfeifer et al., 2008), so the integration of polarimetric

parameters may help to reduce the uncertainties in radar estimate of precipitation and

improve radar data assimilation.

In terms of data assimilation, the preliminary results of experiments have shown that

4D-LETKF of DWD is technically able to assimilate the conventional and Doppler

observations. Improvements in spread and RMSE as well as in the computational time

can be attained by tuning the localization length. Moreover, it has been shown that

the most accurate and expensive configurations of the radar forward operator does not

encumber (actually even reduce) the computational time, which makes it feasible for the

operational data assimilation. As the 4D-LETKF system is newly established, there is

still much work to do. The first step may be to develop a verification tool that can quantify

the added value of radar data assimilation for QPF. Alternatively, we can also assimilate

observations from one radar and to use the other (radar) observations for verification.

For a further insight into 4D-LETKF, a framework for OSSEs is an open working task,

which allows us to apply 4D-LETKF to idealized weather systems and to better tune
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4D-LETKF settings (e.g., observation errors, error correlations, localization, covariance

inflation). A more sophisticated data thinning technique that avoids correlations between

adjacent observations and meanwhile produces relative homogeneously distributed data

is desirable. The other thinning techniques like superobing (Ramachandran et al., 2005)

that combines high density clusters of data into simple but more highly weighted datum

is also considerable. Since LETKF makes Gaussian assumptions over observation and

forecast errors, which however are expected often non-Gaussian in reality, OSSES can

also be used to quantify non-Gaussianity. Preferably within the framework of OSSEs,

we would like to begin with the first experiments of assimilating reflectivity, which is

expected to have positive influences not just on the analyses of the hydrometeor variables

(e.g., rain, snow, hail and graupel) of the radar forward operator but also on the analyses

of unobserved variables like temperature, cloud and vertical velocity. Meanwhile, the

impacts on the performance of data assimilation, created by different configurations of

the radar forward operator, should come under closer scrutiny. We expect to see more

updating effects for reflectivity and then we can determine the optimal choice of the

operator configurations in terms of data assimilation. Thereafter, more real case studies,

particularly on convective events, will be performed and the potential of the assimilation

for mid to short range forecast of precipitation events will be appraised.
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A. DWD radar network

Since 2010, DWD has started the exchange of its Doppler C-Band weather radar network

with dual-polarimetric EEC DWSR-5001C/SDP-CE radars. Currently, the network is

being upgraded to new C-Band dual-polarimetric Doppler radars, and some of the radar

sites will be about to change. The details of radars and their distribution are given in

Tab. 1.2, where “Old” denotes the 16 radar sites before the network upgrade and “New”

the 17 stations after renewal.

Name of radar station Abbreviation WMO NR. Coordinates Altitude of antenna [m] Old New

52.48N

Berlin BLN 10384 13.39E 80.3 ×
54.00N

Boostedt BOO 10132 10.05E 124.1 ×
51.12N

Dresden DRS 10488 13.77E 262.4 × ×
49.54N

Eisberg EIS 10780 12.40E 799 × ×
53.34N

Emden EMD 10204 7.02E 58 × ×
51.41N

Essen ESS 10410 6.97E 185.1 × ×
47.87N

Feldberg FBG 10908 8.00E 1517 × ×
Korbach-Rhena 51.31N

Flechtdorf FLD 10440 8.80E 623 × ×
Frankfurt- 50.02N

Walldo FRI 10630 8.56E 144.5 ×
53.62N

Hamburg HAM 10147 10.00E 45.8 ×
52.46N

Hannover HAN 10338 9.69E 80.75 × ×
50.50N

Neuhaus NEU 10557 11.14E 878.5 × ×
50.11N

Neuheilenbach NHB 10605 6.55E 585.15 × ×
49.98N
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Offenthal OFT 10629 8.44E 245.5 ×
52.65N

Prötzel PRO 10392 13.86E 189 ×
48.04N

Memmingen MEM 10950 10.22E 720 ×
München- 48.33N

Fürholzen MUC 10871 11.61E 511.4 ×
54.18N

Rostock ROS 10169 12.06E 36.2 × ×
48.17N

Schnaupping SNA 10873 12.10E 724.399 ×
48.56N

Türkheim TUR 10832 9.78E 764.75 × ×
52.16N

Ummendorf UMD 10356 11.18 183 × ×

Tab. A.1.: Information about DWD radar network
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B. Numerical methods

B.1. Gauss-Legendre quadrature

In a general Gaussian quadrature rule, a definite integral f (x) is first approximated over

the interval [−1,1] by a polynomial approximation function g(x) and a known weighting

function W (x):

∫ 1

−1
f (x)dx =

∫ 1

−1
W (x)g(x)dx .

Those are then approximated by a sum of function values at specified points xi, also called

nodes, multiplied by some weights wi:

∫ 1

−1
W (x)g(x)dx≈

n

∑
i=1

wig(xi) .

In case of Gauss-Legendre quadrature, the weighting function is W (x) = 1, so we can

approximate the integral of f (x) with:

∫ 1

−1
f (x)dx =

n

∑
i=1

wi f (xi) .

For this, we have to first calculate the nodes and the weights and then use them for

numerical integral evaluation, which greatly speeds up the calculation compared to more

simple numerical integration methods.
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The n evaluation points xi for a n-point rule are roots of nth order Legendre Polynomial

Pn(x). Legendre polynomials are defined by the following recursive rule:

P0(x) = 1 ,

P1(x) = x ,

nP2(x) = (2n−1)xPn−1(x)− (n−1)Pn−2(x) .

There are also recursive equations for their derivatives:

P′n(x) =
n

x2−1
(xPn(x)−Pn−1(x)) .

The roots of those polynomials are generally not analytically solvable, so they have to be

approximated numerically, for example by Newton iteration:

xn+1 = xn−
f (xn)

f ′(xn)
.

The first guess x0 for the ith root of a n-order polynomials Pn can be given by:

x0 = cos

π

i− 1
4

n+
1
2

 .

After we get the nodes xi, we calculate the appropriate weights by:

wi =
2

(1− x2
i )[P′n(xi)]2

.

At last, we can approximate an integral over an arbitrary interval [a,b] by:

∫ b

a
f (x)dx≈ b−a

2

n

∑
i=1

wi f
(

b−a
2

xi +
a+b

2

)
.

Inductively, we can deduce the 2D integral over an arbitrary interval [a,b]× [c,d] by:

∫ d

c

∫ b

a
f (x1,x2)dx1dx2 ≈

d− c
2

b−a
2

m

∑
j=1

n

∑
i=1

wiu j f
(

b−a
2

xi +
a+b

2
,
d− c

2
x j +

d + c
2

)
,
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where the interval is divided by m nodes with weights u j, j = 1, . . . ,m.

B.2. One step method: fourth order explicit Runge-Kutta method

The boundary value problem of the second-order ordinary differential equation (ODE)

Eq. (3.68) with boundary values Eqs. (3.70) and (3.71) is solved numerically by the one

step fourth order explicit Runge-Kutta method (abbr. RK4), due to its low computational

complexity and relatively reliable stability. However, to apply this method, we have to

transform Eq. (3.68) to two first-order ODEs by substitution
dh
dr

= x:

dh
dr

= x ,

dx
dr

= x2
(

1
n

dn
dh

+
1

RE +h

)
−
(

1
n

dn
dh

+
1

RE +h

)
= 0 ,

and write them in a vector form:

dy
dr

= f (r,y) = f (r,h(r),x(r)), where y =
(

h
x

)
.

Numerical integrators work with discretization, i.e., one divides the integration interval

r0 ≤ r ≤ re into subintervals r0 < r1 < · · ·< rnra = re, l = 0,1, . . . ,nra. ∆rl = rl+1− rl,

l = 0, . . . ,nra− 1 is integration step. For the ease of implementation, an equidistant

integration step ∆r is used here, equal to pulse volume resolution.

We define yl :=

(
h(rl)

x(rl)

)
. To calculate yl+1, one step explicit method means that the

right-hand side of Eq. (B.1):

yl+1 = yl +∆rΦ(rl,yl;∆r) (B.1)

depends only on yl , where Φ is called the increment function. Φ of RK4 is in the form:

Φ =
1
6
(k1 +2k2 +2k3 + k4) ,
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where

k1 = f (rl,yl) ,

k2 = f (rl +0.5∆r,yl +0.5k1∆r) ,

k3 = f (rl +0.5∆r,yl +0.5k2∆r) ,

k4 = f (rl +∆r,yl + k3∆r) .

Here k2 and k3 represent approximations to the derivative y′(·) at points on the solution

curve, intermediate between (rl,y(rl)) and (rl+1,y(rl+1)), and Φ(rl,yl,∆r) is a weighted

average of the ki, i = 1, . . . ,4.

With boundary values

y0 =

 h(r = 0)
dh
dr

(r = 0)

=

(
h0

sinε0

)
,

one can now calculate y at ranges rl = l∆r, l ∈ N0, and the first component of y provides

the desired heights hl = h(rl).
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C. Symbols

α0 Azimuth of radar antenna

αm Moisture term

β Covariance inflation factor

c Light speed

Cp, Cv Heat capacities for constant pressure or volume

D Diameter

e Water vapor partial pressure

ε0 Elevation of radar antenna

εa Analysis error

ε f Forecast error

εo Observation error

η Radar reflectivity

η Model error

E(·) Statistical expected value

f 2 Beam weighting function

f 2
e Effective beam weighting function

~g Apparent acceleration of gravity

γ Radio electric size

h Height

H Observation forward operator

H Linear observation operator

I Identity matrix

Ix Source/sinks of constituent x

I Illumination function of radar pulse volume
~J

x
Diffusion flux of constituent x

K Dielectric factor
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K Kalman gain

λ Radar wavelength

Λ Attenuation coefficient

` Attenuation factor

m Complex refractive index

M Modified refractivity

M Nonlinear model

M Tangent linear operator (Jacobian) of M

∇ Gradient Nabla operator

n Refractive index

N Refractivity

N Distribution function
~Ω Constant angular velocity vector of earth rotation

φ Horizontal angle relative to the beam axis

φ3 Horizontal beamwidth

p Pressure

p′ Perturbation pressure

p Probability density function

Pr Received power at the radar antenna

P f Forecast error covariance matrix

Pa Analysis error covariance matrix

qx Mass fraction(specific content) of constituent x

Qa Total absorption cross section

Qh Diabatic heating

Qm Impact of changes of humidity

Qs Total scattering cross section

Qt Attenuation cross section

Q Model error covariance matrix

ρ Total density of the air mixture

ρx Partial density of mixture constituent x

r Radial distance to radar antenna

rmax Unambiguous range of radar
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Re f f Effective earth radius

RE Earth radius

Rv, Rd Gas constant for water vapor and dry air

R Observation error covariance matrix

s Surface distance

σb Backscattering cross section

τ Pulse duration
~~τ Stress tensor due to friction

θ Vertical angle relative to the beam axis

θ3 Vertical beamwidth

t Time

T Temperature

u Zonal wind

v Meridional wind

~v Wind vector

vr Doppler velocity

vr,max Nyquist velocity

w Vertical wind

wt Terminal fall speed of hydrometeors

wt Average terminal fall speed of hydrometeors

W Range weighting function

xa Analysis state

x f Forecast state

xa Analysis ensemble mean

x f Forecast ensemble mean

xt True state

Xa Analysis ensemble perturbations

X f Forecast ensemble perturbations

y f Observation ensemble mean

yo Set of observations

Y f Forecast ensemble observation perturbations

ζ Terrain following vertical coordinate
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Z Radar reflectivity factor

Ze Equivalent radar reflectivity factor
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D. Abbreviations and Acronyms

3/4D-VAR Three/Four-Dimensional VARiational data assimilation

43ERM 4/3 Earth Radius Model

4D-LETKF Four-Dimensional Local Ensemble Transform Kalman Filter

CAPS Center for Analysis and Prediction of Storms

CFAD Contoured Frequency with Altitude Diagrams

COSMO COnsortium for Small-scale MOdeling

DWD Deutscher Wetterdienst (engl. German Weather Service)

EMA Effective Medium Approximations

GME Global ModEl

ICAO International Civil Aviation Organization

KENDA Km-Scale Ensemble-Based Data Assimilation

KF Kalman filter

EAKF Ensemble Adjustment Kalman filter

EKF Extended Kalman filter

EnKF Ensemble Kalman Filter

ETKF Ensemble Transform Kalman Filter

LES Large Eddy Simulation

LETKF Local Ensemble Transform Kalman Filter

LM Local Model

MAXCAPPI Maximum Constant Altitude Plan Position Indicator

MPI Message Passing Interface

MSL Mean Sea Level

NCAR National Center for Atmospheric Research

NetCDF Network Common Data Form

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction
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ODE Ordinary Differential Equation

OSSE Observing System Simulation Experiments

RK Runge-Kutta method

PPI Plan Position Indicator

PRF Pulse Repetition Frequency

PRT Pulse Repetition Time

PSD Particle Size Distribution

QPF Quantitative Precipitation Forecast

RMSE Root Mean Square Error

SLEVE Smooth Level VErtical

SODE Second-order Ordinary Differential Equation

SRI Surface Rain Intensity

TKE Turbulent Kinetic Energy

TORE TOtal REflection

UCAR University Corporation for Atmospheric Research

VAD Velocity-Azimuth Display

WRF Weather Research and Forecasting
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