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X Little or no trend in PHI and convection-favoring weather types for

Ovewlew COHC‘USKDHS most of the grid points (1951-2010/2014); but high annual variability

Due to a lack of long-term, reliable,and
consistentinformation about the occurrence of the conditionsthat favor severe convective events including hail.

of severe convective storms (SCS) in Europe — especially those Regardingweather pattern: Most regions feature positive trends for thermodynamic and

connected with hail events — we have developed methodologies negative trends for dynamic quantities: Positive trends for thermodynamic parameters, negative
that enablesto indirectly estimate thunderstorm and hail probability trends for lifting (not shown).

from numerical weather prediction or climate models. Using these
two approaches, we investigated the temporal and spatial
variability of convective predisposition and hail potential over past

decades and identified large-scale atmospheric processes (e.g.,
teleconnection patterns’ SST’ block|ng) thatdetermine the Spatio_ Areas with bIOCking aCtiVity over the eastern North Atlantic (redUCtion) and Scandinavia

temporal variability of SCS. influence (increasing) thunderstorm activity in western/central Europe. Reasons are resulting
condition for the upper flow, moisture transportand stability conditions.

Large-scale mechanism like teleconnections (e.g., NOA, EA) or SST substantiallyimpact local-
scale convective activity in Europe: e.g. increased convective activity during NAO- and EA+.

Several simultaneouspeaksin EA/SST time series and days with convection-favoring conditions.
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