Inhaltsverzeichnis

1. Einleitung ... 5
2. Qualifikationsziele .. 6
3. Aufbau des Studiengangs ... 7
 3.1. Orientierungsprüfung ... 7
 3.2. Bachelorarbeit .. 7
 3.3. Mathematik und Informatik .. 7
 3.4. Klassische Experimentalphysik ... 7
 3.5. Theoretische und Moderne Physik ... 8
 3.6. Grundlagen Meteorologie und Klimaphysik .. 8
 3.7. Theoretische Meteorologie .. 8
 3.8. Angewandte Meteorologie ... 8
 3.9. Überfachliche Qualifikationen ... 8
 3.10. Zusatzleistungen ... 8
 3.11. Mastervorzug .. 9
4. Studienablauf ... 10
5. Entschleunigter Studienplan .. 12
6. Auszüge aus der SPO ... 14
7. Module ... 18
 7.3. Erfolgskontrollen - M-PHYS-105751 ... 20
 7.4. Fortgeschrittene Theoretische Meteorologie [Met-FoTM5-1] - M-PHYS-100904 22
 7.5. Grundlagen der Theoretischen Meteorologie [Met-GrTM3-2] - M-PHYS-100903 23
 7.6. Höhere Mathematik I - M-MATH-101327 ... 24
 7.7. Höhere Mathematik II - M-MATH-101328 ... 25
 7.8. Höhere Mathematik III - M-MATH-101329 ... 26
 7.9. Klassische Experimentalphysik I, Mechanik - M-PHYS-101347 .. 27
 7.11. Klassische Experimentalphysik III, Optik und Thermodynamik - M-PHYS-101349 29
 7.12. Klassische Theoretische Physik I, Einführung - M-PHYS-101350 30
 7.15. Moderne Experimentalphysik für Geophysiker und Meteorologen - M-PHYS-101345 33
 7.18. Orientierungsprüfung - M-PHYS-105758 .. 37
 7.19. Praktikum Klassische Physik I - M-PHYS-101353 ... 38
 7.20. Programmieren - M-PHYS-101346 ... 39
 7.23. Weitere Leistungen - M-PHYS-105711 .. 42
8. Teilleistungen .. 43
 8.2. Advanced Numerical Weather Prediction - T-PHYS-111429 .. 44
 8.3. Advanced Practical Course - T-PHYS-111421 ... 45
 8.4. Allgemeine Meteorologie - T-PHYS-101091 .. 46
 8.5. Allgemeine Zirkulation - T-PHYS-101522 ... 47
 8.6. Analysetechniken für große Datenbestände - T-INFO-101305 .. 48
 8.7. Analysis of Turbulent Flows - T-BGU-103561 ... 50
 8.8. Applied Meteorology (Module Exam) - T-PHYS-111430 ... 51
 8.9. Atmosphärische Chemie - T-PHYS-101548 .. 52
 8.10. Atmosphärische Zirkulation und Zusammensetzung - T-PHYS-101524 53
 8.11. Atmospheric Aerosols - T-PHYS-111418 .. 54
 8.12. Atmospheric Processes (Module Exam) - T-PHYS-111420 ... 55
 8.13. Atmospheric Radiation - T-PHYS-111419 ... 56
 8.15. Bodenkundliche Geländeeübung - T-BGU-107486 ... 58
 8.16. Building and Environmental Aerodynamics - T-BGU-111060 .. 59

Meteorologie und Klimaphysik Bachelor 2021 (B.Sc.)
Modulhandbuch mit Stand vom 15.03.2022

Inhaltsverzeichnis
8.17. Climate Modeling & Dynamics with ICON - T-PHYS-111412 ...60
8.18. Cloud Physics - T-PHYS-111416 ..61
8.19. Components of the Climate System (Module Exam) - T-PHYS-111415 ..62
8.20. Computergestützte Datenauswertung - T-PHYS-103242 ...63
8.21. Einführung in das Rechnergestützte Arbeiten - T-PHYS-103684 ..64
8.22. Einführung in die Meteorologie und Klimaphysik (Modulprüfung) - T-PHYS-11145065
8.23. Einführung in die Synoptik - T-PHYS-101093 ...66
8.24. Einführung in die Vulkanologie, Prüfung - T-PHYS-103644 ...67
8.25. Einführung in die Vulkanologie, Studienleistung - T-PHYS-103553 ...68
8.27. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorlesung - T-BGU-10354170
8.28. Einführung in Klassifizierungsverfahren der Fernerkundung - T-BGU-10572571
8.29. Energetics - T-PHYS-111417 ..72
8.30. Energy Meteorology - T-PHYS-111428 ..73
8.31. Exam on Physics of Planetary Atmospheres - T-PHYS-109180 ..74
8.32. Experimental Meteorology (Module Exam) - T-PHYS-111425 ..75
8.33. Field Trip - T-PHYS-111422 ..76
8.34. Fortgeschrittene Theoretische Meteorologie - T-PHYS-101514 ..77
8.35. Geodateninfrastrukturen und Web-Dienste - T-BGU-101756 ...78
8.36. Geodateninfrastrukturen und Web-Dienste, Vorlesung - T-BGU-10175779
8.37. Geological Hazards and Risk - T-PHYS-103525 ...80
8.38. Geomorphologie und Bodenkunde - T-BGU-107487 ...81
8.39. Grundlagen der Theoretischen Meteorologie - T-PHYS-101484 ..82
8.40. Höhere Mathematik I - T-MATH-102224 ...83
8.41. Höhere Mathematik II - T-MATH-102225 ...84
8.42. Höhere Mathematik III - T-MATH-102226 ..85
8.43. Image Processing and Computer Vision - T-BGU-101732 ..86
8.44. Instrumentenkunde - T-PHYS-101509 ..87
8.45. Integrated Atmospheric Measurements - T-PHYS-111423 ..88
8.46. Klassische Experimentalphysik I, Mechanik - T-PHYS-102283 ..89
8.47. Klassische Experimentalphysik I, Mechanik - Vorlesung - T-PHYS-10229590
8.48. Klassische Experimentalphysik II, Elektrodynamik - T-PHYS-102284 ...91
8.50. Klassische Experimentalphysik III, Optik und Thermodynamik - T-PHYS-10228593
8.52. Klassische Theoretische Physik I, Einführung - T-PHYS-102286 ..95
8.53. Klassische Theoretische Physik I, Vorlesung - T-PHYS-102298 ..96
8.54. Klassische Theoretische Physik II, Mechanik - T-PHYS-102287 ..97
8.56. Klimatologie - T-PHYS-101092 ...99
8.57. Meteorologisches Messen - T-PHYS-101511 ...100
8.58. Meteorologisches Praktikum - T-PHYS-101510 ...101
8.59. Methods of Data Analysis - T-PHYS-111426 ...102
8.60. Middle Atmosphere in the Climate System - T-PHYS-111413 ...103
8.61. Mobile Computing und Internet der Dinge - T-INFO-102061 ..104
8.62. Moderne Experimentalphysik für Geophysiker und Meteorologen - T-PHYS-102294107
8.63. Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorlesung - T-PHYS-103205 ...108
8.64. Moderne Theoretische Physik für Lehramt - T-PHYS-103204 ...109
8.65. Moderne Theoretische Physik für Lehramt - Vorlesung - T-PHYS-103203110
8.66. Moderne Theoretische Physik I, Quantenmechanik 1 - T-PHYS-105134111
8.67. Moderne Theoretische Physik I, Quantenmechanik 1, Vorlesung 1 - T-PHYS-102317112
8.68. Numerik und Statistik - T-PHYS-101518 ...113
8.69. Numerische Methoden - Klausur - T-MATH-100803 ..114
8.70. Numerische Methoden in der Meteorologie - T-PHYS-101516 ...115
8.71. Numerische Wettervorschau - T-PHYS-101517 ...116
8.72. Ocean-Atmosphere Interactions - T-PHYS-111414 ...117
8.73. Parallelrechner und Parallelprogrammierung - T-INFO-101345 ...119
8.74. Physics of Planetary Atmospheres - T-PHYS-109177 ...120
8.75. Platzhalter Mastervorzug 1 - T-PHYS-104084 ...121
8.76. Platzhalter Zusatzleistungen 1 - T-PHYS-103860 ...122
8.77. Platzhalter Zusatzleistungen 11 - T-PHYS-103870 ..123
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kursbeschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.78</td>
<td>Praktikum Klassische Physik I - T-PHYS-102289</td>
<td>124</td>
</tr>
<tr>
<td>8.79</td>
<td>Präsentation - T-PHYS-101525</td>
<td>125</td>
</tr>
<tr>
<td>8.80</td>
<td>Programmieren - T-PHYS-102292</td>
<td>126</td>
</tr>
<tr>
<td>8.81</td>
<td>Remote Sensing of a Changing Climate, Prüfung - T-BGU-106334</td>
<td>127</td>
</tr>
<tr>
<td>8.82</td>
<td>Remote Sensing of a Changing Climate, Vorleistung - T-BGU-106333</td>
<td>128</td>
</tr>
<tr>
<td>8.83</td>
<td>Remote Sensing of Atmosphere and Ocean - T-PHYS-111424</td>
<td>129</td>
</tr>
<tr>
<td>8.84</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet) - T-PHYS-111767</td>
<td>130</td>
</tr>
<tr>
<td>8.85</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet) - T-PHYS-111766</td>
<td>131</td>
</tr>
<tr>
<td>8.86</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet) - T-PHYS-111768</td>
<td>132</td>
</tr>
<tr>
<td>8.87</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) - T-PHYS-111764</td>
<td>133</td>
</tr>
<tr>
<td>8.88</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) - T-PHYS-111763</td>
<td>134</td>
</tr>
<tr>
<td>8.89</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) - T-PHYS-111765</td>
<td>135</td>
</tr>
<tr>
<td>8.90</td>
<td>Seminar on IPCC Assessment Report - T-PHYS-111410</td>
<td>136</td>
</tr>
<tr>
<td>8.91</td>
<td>Seminar über aktuelle Themen aus der Risikoforschung - T-PHYS-107673</td>
<td>137</td>
</tr>
<tr>
<td>8.92</td>
<td>Statistik in der Meteorologie - T-PHYS-101515</td>
<td>138</td>
</tr>
<tr>
<td>8.93</td>
<td>Strömungsmesstechnik - T-BGU-103562</td>
<td>139</td>
</tr>
<tr>
<td>8.94</td>
<td>Synoptik I - T-PHYS-101519</td>
<td>140</td>
</tr>
<tr>
<td>8.95</td>
<td>Synoptik II - T-PHYS-101520</td>
<td>141</td>
</tr>
<tr>
<td>8.96</td>
<td>Synoptische Meteorologie - T-PHYS-101521</td>
<td>142</td>
</tr>
<tr>
<td>8.97</td>
<td>Theoretische Meteorologie I - T-PHYS-101482</td>
<td>143</td>
</tr>
<tr>
<td>8.98</td>
<td>Theoretische Meteorologie II - T-PHYS-101483</td>
<td>144</td>
</tr>
<tr>
<td>8.99</td>
<td>Theoretische Meteorologie III - T-PHYS-101512</td>
<td>145</td>
</tr>
<tr>
<td>8.100</td>
<td>Theoretische Meteorologie IV - T-PHYS-101513</td>
<td>146</td>
</tr>
<tr>
<td>8.101</td>
<td>Tropical Meteorology - T-PHYS-111411</td>
<td>147</td>
</tr>
<tr>
<td>8.102</td>
<td>Turbulent Diffusion - T-PHYS-111427</td>
<td>148</td>
</tr>
<tr>
<td>8.103</td>
<td>Verteiltes Rechnen - T/INFO-101298</td>
<td>150</td>
</tr>
</tbody>
</table>
Studien- und Prüfungsordnung (SPO) in der Version von 2021

1 Einleitung

Das Karlsruher Institut für Technologie (KIT) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studierendenausbildung am KIT in der Regel der Mastergrad steht. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum. Der Bachelor-Abschluss hat ein eigenständiges berufsqualifizierendes Profil und legt die Grundlagen für den konsekutiven Master-Studiengang „Meteorology and Climate Physics“. Der Bachelor-Studiengang vermittelt wissenschaftliche Grundlagen, Methodenkompetenz und berufsfieldbezogene Qualifikationen. Das Hauptaugenmerk liegt hierbei auf der Vermittlung eines breit angelegten Grundwissens sowie ersten Erfahrungen mit Verfahren, die in der meteorologischen Berufspraxis eingesetzt werden. Eine stärkere Profilbildung und Vertiefung sowie eigenständiges wissenschaftliches Arbeiten ist dem Master-Studium vorbehalten.

Im Folgenden wird ein Überblick über den Ablauf des Bachelor-Studienganges Meteorologie und Klimaphysik gegeben. Die expliziten Durchführungsregelungen des Studienganges und der Prüfungen finden sich in der Studien- und Prüfungsordnung für den Bachelor-Studiengang Meteorologie und Klimaphysik (siehe Amtliche Bekanntmachung Nr. 28 des KIT vom 16.06.2021; ein entsprechender Link findet sich auf der Internetseite der KIT-Fakultät für Physik). In diesem Modulhandbuch werden die Lehrveranstaltungen des Studienganges detailliert beschrieben und die jeweiligen Regeln der Leistungsüberprüfung bekannt gegeben.

Das KIT plant für das Sommersemester eine Rückkehr zum Präsenzformat. Auch die Vorlesungszeiten sind wieder auf Vor-Corona-Blöcke angepasst worden.
2 Qualifikationsziele

3.1 Orientierungsprüfung

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105758</td>
<td>Orientierungsprüfung</td>
<td>0 LP</td>
</tr>
</tbody>
</table>

3.2 Bachelorarbeit

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100908</td>
<td>Modul Bachelorarbeit</td>
<td>15 LP</td>
</tr>
</tbody>
</table>

3.3 Mathematik und Informatik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101327</td>
<td>Höhere Mathematik I</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-MATH-101328</td>
<td>Höhere Mathematik II</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-MATH-101329</td>
<td>Höhere Mathematik III</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101346</td>
<td>Programmieren</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.4 Klassische Experimentalphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101347</td>
<td>Klassische Experimentalphysik I, Mechanik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-PHYS-101348</td>
<td>Klassische Experimentalphysik II, Elektrodynamik</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-PHYS-101349</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-PHYS-101353</td>
<td>Praktikum Klassische Physik I</td>
<td>6 LP</td>
</tr>
</tbody>
</table>
3.5 Theoretische und Moderne Physik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101350 Klassische Theoretische Physik I, Einführung</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-101351 Klassische Theoretische Physik II, Mechanik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-PHYS-101345 Moderne Experimentalphysik für Geophysiker und Meteorologen</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

3.6 Grundlagen Meteorologie und Klimaphysik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105734 Einführung in die Meteorologie und Klimaphysik</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-PHYS-100907 Atmosphärische Zirkulation und Zusammensetzung</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.7 Theoretische Meteorologie

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100903 Grundlagen der Theoretischen Meteorologie</td>
<td>11 LP</td>
</tr>
<tr>
<td>M-PHYS-100904 Fortgeschrittene Theoretische Meteorologie</td>
<td>11 LP</td>
</tr>
</tbody>
</table>

3.8 Angewandte Meteorologie

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100902 Meteorologisches Messen</td>
<td>11 LP</td>
</tr>
<tr>
<td>M-PHYS-100905 Numerik und Statistik</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-PHYS-100906 Synoptische Meteorologie</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

3.9 Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101799 Schlüsselqualifikation</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.10 Zusatzleistungen

<table>
<thead>
<tr>
<th>Zusatzleistungen (Wahl: max. 30 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105711 Weitere Leistungen</td>
<td>30 LP</td>
</tr>
</tbody>
</table>
3.11 Mastervorzug

Wahlinformationen

Dies bedeutet, dass ab Bekanntgabe der Zulassung zum Masterstudium und Beginn des Mastersemester die Teilnahme an der Prüfung als regulärer erster Prüfungsversuch im Rahmen des Masterstudiums erfolgt.

<table>
<thead>
<tr>
<th>Mastervorzugsleistungen (Wahl: höchstens 30 Bestandteile)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105751 Erfolgskontrollen</td>
<td>30 LP</td>
</tr>
</tbody>
</table>

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Angewandte Meteorologie
 - Grundlagen Meteorologie und Klimaphysik
 - Klassische Experimentalphysik
 - Mathematik und Informatik
 - Theoretische Meteorologie
 - Theoretische und Moderne Physik
 - Überfachliche Qualifikationen
4 Studienplan

4.1 Studienablauf

- Der Bachelorstudiengang Meteorologie und Klimaphysik ist nicht zulassungsbeschränkt.
- Das Studium kann generell nur zum Wintersemester aufgenommen werden.
- Die Regelstudienzeit beträgt sechs Semester und umfasst 180 LP (Studienplan siehe nächste Seite).

Im Rahmen des meteorologischen Praktikums und der Bachelorarbeit lernen die Studierenden den Umgang mit meteorologischen Datensätzen. Dazu gehört die Anwendung statistischer Verfahren, die grafische Darstellung sowie der Umgang mit spezieller Software (Datenverarbeitung und Programmieren).

Beim Studiengang Meteorologie und Klimaphysik handelt es sich im Vergleich zu den Studienfächern Physik, Mathematik oder Informatik um ein kleines Studienfach. Am KIT beginnen max. 50 Studierende pro Jahr mit dem Studium der Meteorologie und Klimaphysik. Das hervorragende Betreuungsverhältnis und die Nähe zu aktuellen Forschungsarbeiten des Instituts für Meteorologie und Klimaforschung schaffen so beste Studienbedingungen.

Angeboten werden am KIT neben dem Bachelorstudiengang Meteorologie und Klimaphysik auch der englischsprachige Masterstudiengang Meteorology and Climate Physics. Obwohl der Bachelorstudiengang ein eigenständiger, berufsqualifizierender Abschluss ist, wird am KIT der Masterabschluss als Regelabschluss betrachtet.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungs- punkte</th>
<th>Klassische Experimentalphysik</th>
<th>Theoretische und Moderne Physik</th>
<th>Mathematik und Informatik</th>
<th>Grundlagen Meteorologie & Klimaphysik</th>
<th>Theoretische Meteorologie</th>
<th>Angewandte Meteorologie</th>
<th>Bachelorarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WS)</td>
<td>30</td>
<td>3 Prüfungen</td>
<td>Klassische Experimentalphysik I: Mechanik 8 LP</td>
<td>Klassische Theoretische Physik I: Einführung 6 LP</td>
<td>Höhere Mathematik I 10 LP</td>
<td>Allgemeine Meteorologie 6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (SS)</td>
<td>31</td>
<td>4 Prüfungen</td>
<td>Klassische Experimentalphysik II: Elektrodynamik 7 LP</td>
<td>Klassische Theoretische Physik II: Mechanik 6 LP</td>
<td>Höhere Mathematik II 10 LP</td>
<td>Klimatologie 4 LP</td>
<td>Einführung in die Synoptik 2 LP</td>
<td></td>
</tr>
<tr>
<td>3 (WS)</td>
<td>29</td>
<td>2 Prüfungen</td>
<td>Klassische Experimentalphysik III: Optik & Thermo-Dynamik 9 LP</td>
<td>Praktikum Klassische Physik I 6 LP</td>
<td>Höhere Mathematik III 4 LP</td>
<td>Theoretische Meteorologie I 6 LP</td>
<td>Instrumentenkunde 2 LP</td>
<td>Meteorologisches Praktikum 8 LP</td>
</tr>
<tr>
<td>4 (SS)</td>
<td>32</td>
<td>3 Prüfungen</td>
<td>Moderne Physik für Meteorologen 8 LP</td>
<td>Programmieren 6 LP</td>
<td></td>
<td>Theoretische Meteorologie II 3 LP</td>
<td>Modulprüfung Fortgeschrittene Theor. Met. 2 LP</td>
<td>Numerische Methoden in der Meteorologie 4 LP</td>
</tr>
<tr>
<td>5 (WS)</td>
<td>29</td>
<td>2 Prüfungen</td>
<td></td>
<td></td>
<td></td>
<td>Theoretische Meteorologie IV 3 LP</td>
<td>Modulprüfung Fortgeschrittene Theor. Met. 2 LP</td>
<td>Statistik in der Meteorologie 4 LP</td>
</tr>
<tr>
<td>6 (SS)</td>
<td>29</td>
<td>2 Prüfungen</td>
<td></td>
<td></td>
<td></td>
<td>Modulprüfung 4 LP</td>
<td>Synoptik B 4 LP</td>
<td>Präsentation 3 LP</td>
</tr>
</tbody>
</table>

5 Entschleunigter Studienplan

5.1 Ziele

5.2 Qualifizierte Teilnahme

- Eine qualifizierte Teilnahme ist nur innerhalb der ersten drei Fachsemester möglich.
- Innerhalb eines Semesters müssen MINT-Kurse im Umfang von mindestens 10 Semesterwochenstunden (SWS) besucht werden.
- In den anzurechnenden Kursen besteht Anwesenheitspflicht. Im Krankheitsfall ist ein ärztliches Attest vorzulegen. Andere Verhinderungsgründe werden im Rahmen einer Kulanzregelung bis maximal 20% der Kurstermine akzeptiert.
- Der Kursbesuch ist durch aktive Mitarbeit geprägt.
- Jeder Kurs (z.B. Höhere Mathematik I) kann nur einmal angerechnet werden, auch wenn dieser über mehrere Semester wiederholt besucht wird.

5.3 Beispiele

Der folgende Studienplan ist ein Beispiel, welches veranschaulichen soll, wie das Bachelorstudium Meteorologie und Klimaphysik durch Miteinbeziehung von MINT-Kursen entschleunigt werden kann.

- Im zweiten Semester liegt die Konzentration auf der Mathematik und der Meteorologie. Die Vorlesungen der Physik (Experimentelle Physik II und Theoretische Physik II) werden ins 4. Semester verschoben. Das zweite Semester dient also als MINT-Semester.
- Im zweiten Semester ist somit Platz für beide MINT-Kurse der Höheren Mathematik (HM) I und II, wodurch das Verschieben der Orientierungsprüfung erreicht wird.
- Gleichzeitig wird die Motivation der Studierenden durch die bessere Balance zwischen HM und den Meteorologievorlesungen aufrechterhalten.
- Im dritten Semester ist Platz für eventuell notwendige Wiederholungen der Physikvorlesungen des ersten Semesters. Ist keine Wiederholung notwendig, kann die Vorlesung Experimentelle Physik III oder das Physikale Praktikum vorgezogen werden.

Die Physik- und Mathematik-Kurse sind somit nicht auf vier, sondern auf sechs Semester verteilt. In jedem Semester sind Meteorologie-Vorlesungen enthalten, damit der direkte Bezug zum Studienfach nicht verloren geht. Ein persönliches Gespräch mit den Fachstudienberatern der Meteorologie ist auf jeden Fall empfehlenswert, da so gewährleistet werden kann, dass der entschleunigte Studienplan an die Bedürfnisse der Studierenden angepasst werden kann.
5.4 Was bedeutet Entschleunigung für die Ausbildungsförderung (BAföG)?

- Die Anzahl der möglichen Prüfungsversuche bleibt durch den Besuch des MINT-Kollegs unberührt.
- Lassen Sie sich zu Ihrem Studienverlauf im Zusammenhang mit dem MINT-Kolleg unbedingt von Ihrem Fachstudienberater/Ihrer Fachstudienberaterin beraten.
- Sollten Sie die Hochschule wechseln, so kann es bei der Teilnahme am MINT-Kolleg zu Problemen bei der Weiterbewilligung von Ausbildungsförderung kommen, selbst wenn Sie das Studienfach beibehalten. Bitte informieren Sie sich vorab beim zuständigen Amt für Ausbildungsförderung des Studierendenwerks Karlsruhe.

5.5 Wie läuft die qualifizierte Teilnahme ab?

- Beratung vor Kursbeginn über die qualifizierte Teilnahme am MINT-Kolleg.
- Besuch der Kurse im qualifizierenden Umfang.
- Nach Vorlesungsende:
 - Rückmeldung an Frau Nitsche (Koordinatorin am MINT-Kolleg Baden-Württemberg, siehe Kontakt unten), dass Sie die qualifizierte Teilnahme in Anspruch nehmen möchten.
 - Nach Bestätigung können Sie die Bescheinigung über die qualifizierte Teilnahme im Sekretariat (Raum 306, Geb. 50.20) abholen.
 - Melden Sie sich zur MINT-Prüfung im Prüfungsportal an.
 - Legen Sie die Bescheinigung dem Studierendenservice und ggf. dem BAföG-Amt vor.

Kontakt:

Andrea Nitsche
Tel. 0721-608 41993
E-Mail: andrea.nitsche@kit.edu oder info@mint-kolleg.kit.edu

Weitere Informationen:
Häufige Fragen: http://www.mint-kolleg
6 Auszüge aus der SPO BA 2021

6.1 Regelstudienzeit, Studienaufbau, Leistungspunkte (§3 SPO)

(1) Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Die Regelstudienzeit beträgt sechs Semester. Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 2 Satz 3 bis 5. Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

(6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

6.2 Modulprüfungen, Studien- und Prüfungsleistungen (§4 SPO)

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungs begleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.
6.3 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen (§5 SPO)

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
1. in den Bachelorstudiengang Meteorologie und Klimaphysik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Bachelorstudiengang Meteorologie und Klimaphysik den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

6.4 Modul Bachelorarbeit (§14 SPO)

(3) Die Bachelorarbeit kann von Hochschullehrer/innen, habilitierten Wissenschaftler/innen und leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG vergeben werden. Darüber hinaus kann der Prüfungsausschuss weitere Prüfende gemäß § 18 Abs. 2 bis 4 zur Vergabe des Themas berechtigen. Den Studierenden ist Gelegenheit zu geben, für das

(4) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

6.5 Zusatzleistungen (§15 SPO)

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren. Auf Antrag der Studierenden kann die Zuordnung des Moduls später geändert werden.

6.6 Mastervorzug (§15a SPO)

6.7 überfachliche Qualifikationen (§16 SPO)

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

6.8 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten (§19 SPO)

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbe-trachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Studiengang Meteorologie und Klimaphysik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

Beider Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Außerhalb des Hochschulsystems erworbbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein normiertes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

Weitere Informationen zur Anerkennung von Leistungen oder Studienzeiten finden Sie auf der Seite des Prüfungsausschusses der Fakultät Physik.
7 Module

7.1 Modul: Atmosphärische Zirkulation und Zusammensetzung (Met-AtZZ6-1) [M-PHYS-100907]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Grundlagen Meteorologie und Klimaphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-101522</th>
<th>Allgemeine Zirkulation</th>
<th>1 LP</th>
<th>Fink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101548</td>
<td>Atmosphärische Chemie</td>
<td>3 LP</td>
<td>Ruhnke</td>
</tr>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101524</td>
<td>Atmosphärische Zirkulation und Zusammensetzung</td>
<td>2 LP</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 40 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen

keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Atmosphärische Zirkulation und Zusammensetzung T-PHYS-101524.

Arbeitsaufwand

1. Präsenzzeit in Vorlesungen, Übungen: 57 Stunden
2. Vor-/Nachbereitung derselbigen: 33 Stunden
3. Prüfungsvorbereitung und Präsenz in selbstiger: 90 Stunden

Empfehlungen

Grundlegende Kenntnisse über die Dynamik und Chemie des Klimasystems sind hilfreich.
7.2 Modul: Einführung in die Meteorologie und Klimaphysik (Met-EinfMetKli1-2) [M-PHYS-105734]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Grundlagen Meteorologie und Klimaphysik

Leistungspunkte: 14
Notenskala: Zehntelnoten
Turnus: Jährlich
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungstitel</th>
<th>Leistungspunkte</th>
<th>Verantwortlich</th>
<th>Zehntelnoten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101091 Allgemeine Meteorologie</td>
<td>6 LP</td>
<td>Kunz</td>
<td></td>
</tr>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101092 Klimatologie</td>
<td>4 LP</td>
<td>Ginete Werner Pinto</td>
<td></td>
</tr>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101093 Einführung in die Synoptik</td>
<td>2 LP</td>
<td>Fink</td>
<td></td>
</tr>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-111450 Einführung in die Meteorologie und Klimaphysik (Modulprüfung)</td>
<td>2 LP</td>
<td>Knippertz</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 45 Minuten) nach §4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie und Klimaphysik über die in diesem Modul angebotenen Lehrveranstaltungen.

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Einführung in die Meteorologie un Klimaphysik T-PHYS-111450.

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 124 Stunden
2. Vor-/Nachbereitung derselbigen: 236 Stunden
3. Prüfungsvorbereitung: 60 Stunden
7.3 Modul: Erfolgskontrollen [M-PHYS-105751]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Mastervorzug

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlinformationen
§ 15 a Mastervorzug

Mastervorzugsleistungen (Wahl: max. 30 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrer/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111410</td>
<td>Seminar on IPCC Assessment Report</td>
<td>1 LP</td>
<td>Pinto, Ginete Werner</td>
</tr>
<tr>
<td>T-PHYS-111411</td>
<td>Tropical Meteorology</td>
<td>3 LP</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111412</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>3 LP</td>
<td>Pinto, Ginete Werner</td>
</tr>
<tr>
<td>T-PHYS-111413</td>
<td>Middle Atmosphere in the Climate System</td>
<td>1 LP</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111414</td>
<td>Ocean-Atmosphere Interactions</td>
<td>1 LP</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111415</td>
<td>Components of the Climate System (Module Exam)</td>
<td>4 LP</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111416</td>
<td>Cloud Physics</td>
<td>3 LP</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-111417</td>
<td>Energetics</td>
<td>1 LP</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111418</td>
<td>Atmospheric Aerosols</td>
<td>3 LP</td>
<td>Möhler</td>
</tr>
<tr>
<td>T-PHYS-111419</td>
<td>Atmospheric Radiation</td>
<td>1 LP</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-111420</td>
<td>Atmospheric Processes (Module Exam)</td>
<td>4 LP</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-111421</td>
<td>Advanced Practical Course</td>
<td>2,5 LP</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-111422</td>
<td>Field Trip</td>
<td>1,5 LP</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-111423</td>
<td>Integrated Atmospheric Measurements</td>
<td>1 LP</td>
<td>Schmitt</td>
</tr>
<tr>
<td>T-PHYS-111424</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>3 LP</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111425</td>
<td>Experimental Meteorology (Module Exam)</td>
<td>2 LP</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111426</td>
<td>Methods of Data Analysis</td>
<td>3 LP</td>
<td>Pinto, Ginete Werner, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111427</td>
<td>Turbulent Diffusion</td>
<td>3 LP</td>
<td>Hoose, Hoshyaripour</td>
</tr>
<tr>
<td>T-PHYS-111428</td>
<td>Energy Meteorology</td>
<td>1 LP</td>
<td>Emeis, Ginete Werner, Pinto</td>
</tr>
<tr>
<td>T-PHYS-111429</td>
<td>Advanced Numerical Weather Prediction</td>
<td>3 LP</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111430</td>
<td>Applied Meteorology (Module Exam)</td>
<td>4 LP</td>
<td>Pinto, Ginete Werner</td>
</tr>
<tr>
<td>T-PHYS-103203</td>
<td>Moderne Theoretische Physik für Lehramt - Vorleistung</td>
<td>0 LP</td>
<td>Eder</td>
</tr>
<tr>
<td>T-PHYS-103204</td>
<td>Moderne Theoretische Physik für Lehramt</td>
<td>8 LP</td>
<td>Eder</td>
</tr>
<tr>
<td>T-PHYS-102317</td>
<td>Moderne Theoretische Physik 1, Quantenmechanik 1, Vorleistung 1</td>
<td>4 LP</td>
<td>Shnirman</td>
</tr>
<tr>
<td>T-PHYS-105134</td>
<td>Moderne Theoretische Physik 1, Quantenmechanik 1</td>
<td>4 LP</td>
<td>Studiendekan Physik</td>
</tr>
<tr>
<td>T-PHYS-109177</td>
<td>Physics of Planetary Atmospheres</td>
<td>8 LP</td>
<td>Leisner</td>
</tr>
<tr>
<td>T-PHYS-109180</td>
<td>Exam on Physics of Planetary Atmospheres</td>
<td>2 LP</td>
<td>Leisner</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Einführung in Geographie für Studierende natur- ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101732</td>
<td>Image Processing and Computer Vision</td>
<td>3 LP</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-101756</td>
<td>Geodateninfrastrukturen und Web-Dienste</td>
<td>1 LP</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101757</td>
<td>Geodateninfrastrukturen und Web-Dienste, Vorleistung</td>
<td>3 LP</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Einführung in Geographie für Studierende natur- ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung</td>
<td>3 LP</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulbeschreibung</td>
<td>Leistungspunkte</td>
<td>Dozent</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>T-BGU-103561</td>
<td>Analysis of Turbulent Flows</td>
<td>6 LP</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>T-BGU-103562</td>
<td>Strömungsmechanik</td>
<td>3 LP</td>
<td>Gromke</td>
</tr>
<tr>
<td>T-BGU-105725</td>
<td>Einführung in Klassifizierungsverfahren der Fernerkundung</td>
<td>3 LP</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-106333</td>
<td>Remote Sensing of a Changing Climate, Vorleistung</td>
<td>1 LP</td>
<td>Cermak</td>
</tr>
<tr>
<td>T-BGU-106334</td>
<td>Remote Sensing of a Changing Climate, Prüfung</td>
<td>3 LP</td>
<td>Cermak</td>
</tr>
<tr>
<td>T-BGU-106612</td>
<td>Advanced Fluid Mechanics</td>
<td>6 LP</td>
<td>Eiff</td>
</tr>
<tr>
<td>T-INFO-101298</td>
<td>Verteiltes Rechnen</td>
<td>4 LP</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-101305</td>
<td>Analysetechniken für große Datenbestände</td>
<td>5 LP</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101345</td>
<td>Parallelrechner und Parallelprogrammierung</td>
<td>4 LP</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-102061</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>5 LP</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-PHYS-103525</td>
<td>Geological Hazards and Risk</td>
<td>8 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-PHYS-103553</td>
<td>Einführung in die Vulkanologie, Studienleistung</td>
<td>3 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-PHYS-103644</td>
<td>Einführung in die Vulkanologie, Prüfung</td>
<td>1 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-PHYS-107673</td>
<td>Seminar über aktuelle Themen aus der Risikoforschung</td>
<td>4 LP</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-BGU-107486</td>
<td>Bodenkundliche Geländeübung</td>
<td>1 LP</td>
<td>Wilcke</td>
</tr>
<tr>
<td>T-BGU-107487</td>
<td>Geomorphologie und Bodenkunde</td>
<td>8 LP</td>
<td>Wilcke</td>
</tr>
<tr>
<td>T-BGU-111060</td>
<td>Building and Environmental Aerodynamics</td>
<td>3 LP</td>
<td>Gromke</td>
</tr>
<tr>
<td>T-MATH-100803</td>
<td>Numerische Methoden - Klausur</td>
<td>5 LP</td>
<td>Kunstmann, Plum, Reichel</td>
</tr>
<tr>
<td>T-PHYS-104084</td>
<td>Platzhalter Mastervorzug 1</td>
<td>2 LP</td>
<td></td>
</tr>
</tbody>
</table>

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Angewandte Meteorologie
 - Grundlagen Meteorologie und Klimaphysik
 - Klassische Experimentalphysik
 - Mathematik und Informatik
 - Theoretische Meteorologie
 - Theoretische und Moderne Physik
 - Überfachliche Qualifikationen
 - Zusatzleistungen
7.4 Modul: Fortgeschrittene Theoretische Meteorologie (Met-FoTM5-1) [M-PHYS-100904]

Verantwortung: Prof. Dr. Peter Braesicke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Theoretische Meteorologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modul名称</th>
<th>Leistungspunkte</th>
<th>Notenberechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101512</td>
<td>Theoretische Meteorologie III</td>
<td>6 LP</td>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
</tr>
<tr>
<td>T-PHYS-101513</td>
<td>Theoretische Meteorologie IV</td>
<td>3 LP</td>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
</tr>
<tr>
<td>T-PHYS-101514</td>
<td>Fortgeschrittene Theoretische Meteorologie</td>
<td>2 LP</td>
<td>Braesicke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 45 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen
Die Teilleistung Theoretische Meteorologie I (T-PHYS-101482) aus dem Modul Grundlagen der theoretischen Meteorologie muss bestanden sein um dieses Modul zu belegen.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-PHYS-101482 - Theoretische Meteorologie I muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele
Die Studierenden können komplexe konzeptionelle Modelle der theoretischen Meteorologie erklären, sie auf grundlegende atmosphärische Phänomene anwenden und Problemstellungen mit Hilfe dieser Modelle selbstständig mathematisch lösen.

Inhalt
Dieses Modul soll Studierenden weiterführende theoretische Aspekte der Meteorologie, insbesondere im Bereich von atmosphärischen Wellenphänomenen und der Grenzschicht vermitteln. Im Hinblick auf den ersten Schwerpunkt werden die quasigeostrophische Theorie, barokline Instabilität, Skalenwechselwirkungen und Flüsse sowie die Dynamik der mittleren Atmosphäre behandelt.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Fortgeschrittene theoretische Meteorologie T-PHYS-101514.

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 90 Stunden
2. Vor-/Nachbereitung derselbigen: 180 Stunden
3. Prüfungsvorbereitung und Präsenz in selbiger: 60 Stunden

Empfehlungen
Kenntnisse aus den Modulen Einführung in die Theoretische Meteorologie werden benötigt, Grundlegende Kenntnisse der Theoretischen Physik und Höheren Mathematik sind hilfreich.
Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Theoretische Meteorologie

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101482</td>
<td>Theoretische Meteorologie I</td>
<td>6 LP</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-PHYS-101483</td>
<td>Theoretische Meteorologie II</td>
<td>3 LP</td>
<td>Hoose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101484</td>
<td>Grundlagen der Theoretischen Meteorologie</td>
<td>2 LP</td>
<td>Hoose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 45 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können fundierte hydrodynamische und thermodynamische Prinzipien und Zusammenhänge in der Atmosphäre auf Basis physikalischer Gesetzmäßigkeiten erklären und meteorologische Fragestellungen auf mathematischem Wege lösen.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Grundlagen der theoretischen Meteorologie.

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 90 Stunden
2. Vor-/Nachbereitung derselben: 180 Stunden
3. Prüfungsvorbereitung und Präsenz in selbiger: 60 Stunden

Empfehlungen
Kenntnisse aus den Modulen Einführung in die Meteorologie, Klassische Experimentalphysik I + II, Höhere Mathematik I + II sowie Klassische Theoretische Physik I + II werden benötigt.
7.6 Modul: Höhere Mathematik I [M-MATH-101327]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik und Informatik

Leistungspunkte 10
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102224</th>
<th>Höhere Mathematik I</th>
<th>10 LP</th>
<th>Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können:

- mit reellen und komplexen Zahlen rechnen, sowie grundlegende Funktionen und ihre Eigenschaften reproduzieren und erläutern,
- mit den üblichen Methoden Folgen und Reihen auf Konvergenz untersuchen und Grenzwerte berechnen,
- grundlegende Techniken der Differential- und Integralrechnung einer Veränderlichen benennen, erläutern und anwenden,
- Funktionenfolgen auf verschiedene Konvergenzarten untersuchen,
- die Grundzüge der linearen Algebra erläutern, auf einfache Aufgaben anwenden und lineare Gleichungssysteme lösen.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 300 Stunden
Präsenzzeit: 120 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 180 Stunden
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
7.7 Modul: Höhere Mathematik II [M-MATH-101328]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik und Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102225 | Höhere Mathematik II | 10 LP | Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können:

- Eigenwerte und Eigenvektoren berechnen, sowie Matrizen diagonalisieren,
- die wichtigen Sätze der mehrdimensionalen Differentialrechnung benennen, erläutern und anwenden,
- Volumen- und Oberflächenintegrale berechnen,
- Integralsätze benennen und anwenden,
- Rechenregeln der Fouriertransformation benennen, erläutern und anwenden.

Inhalt

Skalarprodukt und Orthogonalität, Determinanten, Kreuzprodukt, Eigenwerte, Diagonalisierung von Matrizen, Jordan-Normalform;
partielle und totale Ableitungen, Umkehreule, implizit definierte Funktionen, Satz von Taylor, Extremwaufgaben mit und ohne Nebenbedingungen, Vektoranalysis, Volumenintegrale, Kurvenintegrale, Oberflächenintegrale, Integralsätze;
holomorphe Funktionen, Cauchyscher Integralsatz, Cauchy-Formel, Laurententwicklung, Residuensatz, konforme Abbildungen; Fourierreihen, Fouriertransformation, Fourierinversionsformel, Satz von Plancherel, Faltung.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 300 Stunden
Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
7.8 Modul: Höhere Mathematik III [M-MATH-101329]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik und Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102226 | Höhere Mathematik III | 4 LP | Anapolitanos, Hundertmark, Kunstmann, Lamm |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können:

- elementare gewöhnliche Differentialgleichungen explizit lösen,
- Sätze zur Existenz und Eindeutigkeit bei Differentialgleichungssystemen benennen und an Beispielen erläutern,
- Lösungen für homogene und inhomogene lineare Systeme berechnen,
- einfache partielle Differentialgleichungen explizit lösen,

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
7.9 Modul: Klassische Experimentalphysik I, Mechanik [M-PHYS-101347]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Leistungspunkte 8
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102295</td>
<td>Klassische Experimentalphysik I, Mechanik - Vorleistung</td>
<td>0 LP</td>
<td>Husemann</td>
</tr>
<tr>
<td>T-PHYS-102283</td>
<td>Klassische Experimentalphysik I, Mechanik</td>
<td>8 LP</td>
<td>Husemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der klassischen Mechanik, Hydrodynamik und speziellen Relativitätstheorie und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Inhalt
Klassische Mechanik: Basisgrößen, Messen und Messunsicherheit, Mechanik von Massepunkten (Kinematik und Dynamik), Newtonsche Axiome, Beispiele für Kräfte (Gravitationsgesetz, auch für beliebige Masseverteilungen, Hookesches Gesetz, Reibung), Erhaltungssätze (Energie, Impuls, Drehimpuls), Stoßprozesse, Harmonische Schwingungen, gekoppelte Oszillatoren, deterministisches Chaos. Planetenbahnen (Keplersche Gesetze), Rotierende Bezugssysteme (Scheinkräfte), Trägheitstensor, Eulersche Kreisellgleichungen (Präzession, Nutation), Wellenausbreitung in der Mechanik, Dopplereffekt.

Hydrodynamik: Schwimmende Körper, Barometrische Höhenformel, Kontinuitätsgleichung, laminare und turbulente Strömungen, Bernoulli-Gleichung, Hagen-Poiseuellesches Gesetz (innere Reibung), Oberflächenspannung, Eulersche Bewegungsgleichung, Wasserwellen.

Spezielle Relativitätstheorie: Michelson-Morley-Experiment, Bewegte Bezugssysteme, Lorentztransformation, Relativistische Effekte, Longitudinale und transversaler Dopplereffekt, Relativistische Mechanik, kinetische Energie.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Klassische Experimentalphysik I, Mechanik: Vorlesung, 4 SWS;
Übungen zu Klassische Experimentalphysik I: Übung, 2 SWS

Literatur
Lehrbücher der klassischen Mechanik
7.10 Modul: Klassische Experimentalphysik II, Elektrodynamik [M-PHYS-101348]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Jedes Sommersemester</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Zehntelnoten</td>
<td>1 Semester</td>
<td></td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Kursbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102296</td>
<td>Klassische Experimentalphysik II, Elektrodynamik - Vorleistung</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-PHYS-102284</td>
<td>Klassische Experimentalphysik II, Elektrodynamik</td>
<td>7 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der klassischen Elektrodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Inhalt

Zeitlich veränderliche elektromagnetische Felder: Induktionsgesetze (Selbstinduktion, Transformator, Motor, Generator), Elektrische Schaltkreise (Ein- und Ausschaltvorgänge, komplexe Scheinwiderstände, RLC-Schwingkreise), Verschiebungssstrom. Die Maxwellschen Gleichungen (Integral- und Differentialform), Elektromagnetische Wellen, Hertzscher Dipol, Normaler Skin-Effekt, Hohlleiter.

Elektrodynamik der Kontinua: Polarisierung und Magnetisierung (Para-, Ferro-, Dia-Elektrete und -Magnet), Depolarisations- und Entmagnetisierungsfaktoren, Elektrische und magnetische Suszeptibilitäten, Dielektrische Funktion, magnetische Permeabilität.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Arbeitsaufwand
210 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Lehr- und Lernformen
Klassische Experimentalphysik II, Elektrodynamik: Vorlesung, 3 SWS;
Übungen zu Klassische Experimentalphysik II: Übung, 2 SWS

Literatur
Lehrbücher der klassischen Elektrodynamik
Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102297</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik - Vorlesung</td>
<td>0 LP</td>
<td>Wegener</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102285</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik</td>
<td>9 LP</td>
<td>Wegener</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Optik und klassischen Thermodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Inhalt

Optik:
- Einführung: Beschreibung von Lichtfeldern, Überlagerung ebener Wellen, Kohärenz, Lichtausbreitung in Materie (optische Konstanten, Dispersion und Absorption, Polarisation, Gruppengeschwindigkeit)
- Wellenoptik: Huygens-Fresnelsches Prinzip, Beugung, Interferenz (Zweifach- / Vielfachinterferenzen, Spalt, Lochblende, Doppelspalt, Gitter, Interferometer, Auflösungsvermögen, Holographie), Polarisation (Fresnelsche Formeln), Doppelbrechung, Optische Aktivität, Streuung (Rayleigh, Thomson, Mie)
- Photonen: Eigenschaften des Photons, Strahlungsgesetze, Nichtlineare Optik

Thermodynamik:
- Kinetische Gastheorie: Druck, Wärmekapazität, Maxwellsche Geschwindigkeitsverteilung, Transportphänomen (freie Weglänge, Wärmeleitung, innere Reibung, Diffusion)
- Phänomenologische Thermodynamik und Anwendungen: Thermodynamische Potentiale, Hauptsätze der Wärmelehre, Zustandsgleichungen, Kreisprozesse (Carnot, Stirling, Wirkungsgrad), Reale Gase und Substanzen (van der Waals-Gleichung, Joule-Thomson-Effekt, kritischer Punkt, Aggregatzustände, Tripelpunkt, Phasenübergänge)

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Arbeitsaufwand
270 Stunden bestehend aus Präsenzzeiten (105), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (165)

Lehr- und Lernformen
Klassische Experimentalphysik III, Optik und Thermodynamik: Vorlesung 5 SWS; Übungen zu Klassische Experimentalphysik III, Optik und Thermodynamik: Übung 2 SWS

Literatur
Lehrbücher der Optik und Thermodynamik
7.12 Modul: Klassische Theoretische Physik I, Einführung [M-PHYS-101350]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Theoretische und Moderne Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102298</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
<td>0 LP</td>
<td>Mühleitner</td>
</tr>
<tr>
<td>T-PHYS-102286</td>
<td>Klassische Theoretische Physik I, Einführung</td>
<td>6 LP</td>
<td>Mühleitner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können einfache mechanische Probleme analysieren und haben die Fähigkeit, diese mit grundlegenden mathematischen Konzepten zu lösen.

Inhalt

Mathematische Hilfsmittel: Differential- und Integralrechnung, Einfache Differentialgleichungen, Potenzreihen, Komplexe Zahlen, Vektoren, Gradient, Linienintegral, Delta-Distribution

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen

Klassische Theoretische Physik I, Einführung: Vorlesung, 2 SWS;
Übungen zu Klassische Theoretische Physik I, Einführung: Übung, 2 SWS

Literatur

Lehrbücher der klassischen theoretischen Mechanik
7.13 Modul: Klassische Theoretische Physik II, Mechanik [M-PHYS-101351]

Verantwortung: Studiendekan Physik

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Theoretische und Moderne Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modultitel</th>
<th>LP</th>
<th>Nester</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102299 Klassische Theoretische Physik II, Mechanik - Vorleistung</td>
<td>0 LP</td>
<td>Nierste</td>
</tr>
<tr>
<td>T-PHYS-102287 Klassische Theoretische Physik II, Mechanik</td>
<td>6 LP</td>
<td>Nierste</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Die Studentinnen und Studenten können die Konzepte der analytischen Mechanik auf mechanische Systeme anwenden. Sie sind in der Lage, die Lagrangeformel eines mechanischen Systems herzuleiten und können daraus die Bewegungsgleichungen ausrechnen. Die Studierenden haben außerdem die Fähigkeit, die Hamiltonschen Bewegungsgleichungen aufzustellen.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen
Klassische Theoretische Physik II, Mechanik: Vorlesung, 2 SWS; Übungen zu Klassische Theoretischen Physik II, Mechanik: Übung, 2 SWS

Literatur
Lehrbücher der klassischen theoretischen Mechanik
7.14 Modul: Meteorologisches Messen (Met-MetM3-2) [M-PHYS-100902]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Angewandte Meteorologie

Leistungspunkte: 11
Notenskala: Zehntelnoten
Turnus: Jährlich
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101509</td>
<td>Instrumentenkunde</td>
<td>2</td>
<td>Klose</td>
</tr>
<tr>
<td>T-PHYS-101510</td>
<td>Meteorologisches Praktikum</td>
<td>8</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-101511</td>
<td>Meteorologisches Messen</td>
<td>1</td>
<td>Fink, Klose</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 30 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die im Modul angebotenen Lehrveranstaltungen.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können die zu Grunde liegenden Prinzipien in etablierten meteorologischen Messgeräten theoretisch erklären und diese fachgerecht bei eigenen Messungen einsetzen sowie gewonnene Daten unter Verwendung üblicher Standards wissenschaftlich korrekt auswerten.

Die Studierenden sind sich der Verpflichtung bewusst, gewonnene Primärdaten nicht zu verfälschen oder zu ergänzen oder unerwünschte Daten zu verheimlichen. Sie übernehmen die Verantwortung für die Aufbewahrung von Primärdaten und für die Kennzeichnung der Verwendung von Fremddaten.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Meteorologisches Messen T-PHYS-101511.

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Praktikum: 60 Stunden
2. Vor-/Nachbereitung derselbigen: 240 Stunden
3. Prüfungsvorbereitung und Präsenz in selbiger: 30 Stunden

Empfehlungen
Kenntnisse aus dem Modul Einführung in die Meteorologie werden benötigt.
7.15 Modul: Moderne Experimentalphysik für Geophysiker und Meteorologen [M-PHYS-101345]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Theoretische und Moderne Physik

Leistungspunkte 8 Notenskala Zehntelnoten Turnus Jedes Sommersemester Dauer 1 Semester Sprache Deutsch Level 3 Version 1

Pflichtbestandteile

T-PHYS-103205 Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung 0 LP Quast
T-PHYS-102294 Moderne Experimentalphysik für Geophysiker und Meteorologen 8 LP Husemann, Quast

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Die Studentinnen und Studenten erkennen die Probleme der klassischen Physik, Schlüsselexperimente der modernen Physik zu beschreiben. Sie erlangen die grundlegenden Fähigkeiten zur mathematischen Behandlung einfacher quantenmechanischer Systeme und erwerben das notwendige Faktenwissen zur Beschreibung des Mikrokosmos. Sie verstehen die Bedeutung dieser Grundlagen für Teilgebiete der modernen Physik und können sie auf konkrete Fragestellungen anwenden.

Inhalt
- Einführung in den Mikrokosmos
- Spezielle Relativitätstheorie
- Einführung in die Quantenphysik
- Atomphysik
- Festkörperphysik
- Kernphysik
- Teilchenphysik

Zusammensetzung der Modulnote
Die Modulnote wird aus der Note der schriftlichen Abschlussprüfung bestimmt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Vorlesung 4 SWS, Übung 2 SWS
7.16 Modul: Modul Bachelorarbeit (Met-MBAr6-1) [M-PHYS-100908]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101526</td>
<td>Bachelorarbeit</td>
<td>12 LP</td>
<td>Hoose</td>
</tr>
</tbody>
</table>
| T-PHYS-101525 | Präsentation
| Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. | 3 LP | Hoose |

Erfolgskontrolle(n)

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Angewandte Meteorologie
 - Grundlagen Meteorologie und Klimaphysik
 - Klassische Experimentalphysik
 - Mathematik und Informatik
 - Theoretische Meteorologie
 - Theoretische und Moderne Physik
 - Überfachliche Qualifikationen
2. Der Bereich Mathematik und Informatik muss erfolgreich abgeschlossen worden sein.
3. Der Bereich Klassische Experimentalphysik muss erfolgreich abgeschlossen worden sein.
4. Der Bereich Theoretische und Moderne Physik muss erfolgreich abgeschlossen worden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, ein eingegrenztes Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden zu bearbeiten und die gewonnenen Erkenntnisse anschließend in einer schriftlichen Arbeit und in einem Vortrag verständlich und präzise darzustellen und kompetent zu diskutieren.

Weiterhin sind sich die Studierenden ihrer Verantwortung im Umgang mit selbst gewonnenen Daten, entwickelten Methoden und verwendeten Materialien und deren Aufbewahrung bewusst. Sie sind in der Lage, mit der Arbeit anderer Forscher korrekt umzugehen und deren Urheberrechte zu schützen.

Inhalt

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Teilleistung Bachelorarbeit T-PHYS-101526.

Anmerkungen

Die maximale Bearbeitungsduer für das Modul Bachelorarbeit beträgt sechs Monate.

Die Präsentation hat spätestens vier Wochen nach der Abgabe der Bachelorarbeit zu erfolgen.
Arbeitsaufwand
1. Präsenzzeit: 20h
2. Vorbereitung der Präsentation: 70h
3. Bachelorarbeit: 360h

Empfehlungen
keine
7.17 Modul: Numerik und Statistik (Met-NuSt4-2) [M-PHYS-100905]

Verantwortung: Prof. Dr. Corinna Hoose
Prof. Dr. Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Angewandte Meteorologie

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Inhaltsbeschreibung</th>
<th>Notenskala</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101515</td>
<td>Statistik in der Meteorologie</td>
<td>Zehntelnoten</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-PHYS-101516</td>
<td>Numerische Methoden in der Meteorologie</td>
<td>Zehntelnoten</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-PHYS-101517</td>
<td>Numerische Wettervorhersage</td>
<td>Zehntelnoten</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-PHYS-101518</td>
<td>Numerik und Statistik</td>
<td>Zehntelnoten</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen

keine

Qualifikationsziele

Inhalt

Darüber hinaus vermittelt das Modul Wissen über die Funktionsweise eines modernen Wettervorhersagesystems, insbesondere im Hinblick auf die Diskretisierung der hydrodynamischen Gleichungen, Beobachtungssysteme, Datenassimilation, Chaos und Ensemblevorhersage, Verifikation sowie betriebliche Aspekte der Wettervorhersage.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Numerik und Statistik T-PHYS-101518.

Arbeitsaufwand

1. Präsenzzeit in Vorlesungen, Übungen: 113 Stunden
2. Vor-/Nachbereitung derselben: 247 Stunden
3. Prüfungsvorbereitung und Präsenz selbiger: 60 Stunden

Empfehlungen

Kenntnisse aus dem Modul Einführung in die Meteorologie und Grundkenntnisse in Höherer Mathematik sowie erste Erfahrungen im Programmieren in einer Linux-Umgebung sind hilfreich.
7.18 Modul: Orientierungsprüfung [M-PHYS-105758]

Einrichtung: KIT-Fakultät für Physik
Universität gesamt

Bestandteil von: Orientierungsprüfung

Leistungspunkte: 0
Notenskala: best./nicht best.
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101091</td>
<td>Allgemeine Meteorologie</td>
<td>6</td>
<td>Kunz</td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Klimatologie</td>
<td>4</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-101093</td>
<td>Einführung in die Synoptik</td>
<td>2</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-102286</td>
<td>Klassische Theoretische Physik I, Einführung</td>
<td>6</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>T-PHYS-102298</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
<td>0</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>T-PHYS-111450</td>
<td>Einführung in die Meteorologie und Klimaphysik (Modulprüfung)</td>
<td>2</td>
<td>Knipertz</td>
</tr>
</tbody>
</table>

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

Keine

Anmerkungen

Für Studierende, die im Sommersemester 2020, im Wintersemester 2020/2021, im Sommersemester 2021 oder im Wintersemester 2021/2022 in einem Studiengang eingeschrieben sind oder waren, verlängert sich die Frist zum Ablegen der Orientierungsprüfung um jeweils ein Semester (§ 32 Abs. 5 a Satz 1 LHG).

Dies bedeutet, dass sich die Frist für

- Studierende, welche in einem der genannten Semester im gleichen Studiengang eingeschrieben sind, um ein Semester verlängert;
- Studierende, welche in zwei der genannten Semester im gleichen Studiengang eingeschrieben sind, um zwei Semester verlängert;
- Studierende, welche in drei oder mehr der genannten Semester im gleichen Studiengang eingeschrieben sind, um maximal drei Semester verlängert.
7.19 Modul: Praktikum Klassische Physik I [M-PHYS-101353]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Leistungspunkte 6
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102289</td>
<td>Praktikum Klassische Physik I</td>
<td>6</td>
<td>best./nicht best.</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Das Praktikum ist bestanden, wenn alle 10 Versuche durchgeführt und die zugehörigen Protokolle fristgerecht angefertigt und anerkannt sind.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden lernen grundlegende physikalische Phänomene kennen, indem sie selbstständig Experimente durchführen. Sie beherrschen unterschiedliche Messgeräte und Messmethoden und erlangen die Fähigkeit, experimentelle Daten zu erfassen und darzustellen, sowie die Daten zu analysieren, eine Fehlerrechnung durchzuführen und ein Messprotokoll zu erstellen.

Inhalt
Das Praktikum umfasst die Gebiete

- **Grundlagen** (Versuche sind u.a.: Elektrische Messverfahren, Oszilloskop, Transistorgrenzschaltungen)
- **Mechanik** (Versuche sind u.a.: Pendel, Resonanz, Kreiselphänomene, Elastizität, Aeromechanik)
- **Elektrizitätslehre** (Versuche sind u.a.: Vierpole und Leitungen, Gruppen- und Phasengeschwindigkeit, Schaltlogik)
- **Optik** (Versuche sind u.a.: Geometrische Optik)
- **Klassiker** (Versuche sind u.a.: e/m-Bestimmung, Bestimmung der Lichtgeschwindigkeit, Millikan-Versuch)

Zusammensetzung der Modulnote
Für das Praktikum wird keine Note vergeben.

Anmerkungen
Verpflichtende Teilnahme an der Vorbesprechung

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Empfehlungen
Klassische Experimentalphysik I und II, Computergestützte Datenauswertung

Literatur

- Lehrbücher der Experimentalphysik.
- Literatursauszüge zu allen Versuchen sind auf der Webseite des Praktikums hinterlegt.
- Zu einigen Versuchen gibt es komprimierte Hilfetexte, die ebenfalls auf der Webseite des Praktikums veröffentlicht sind.
7.20 Modul: Programmieren [M-PHYS-101346]

Verantwortung: Prof. Dr. Matthias Steinhauser
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Mathematik und Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102292 | Programmieren | 6 LP | Steinhauser |

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Voraussetzungen
keine

Qualifikationsziele
Der/die Studierende erwerbt Grundkenntnisse in der Programmersprache C++. Er/sie erlernt das selbständige Entwickeln von Programmen und das Anwenden von elementaren numerischen Verfahren und Algorithmen auf physikalische Fragestellungen.

Inhalt

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Lehr- und Lernformen
2100211 Programmieren für Physiker, Vorlesung 2 SWS,
2100212 Übungen zum Programmieren für Physiker, 2 SWS,
2100213 Praktikum zum Programmieren für Physiker, 5 SWS.
Modul: Schlüsselqualifikationen (Met-SQ) [M-PHYS-101799]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlbereich (Wahl: mind. 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111763</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-111764</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-111765</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-111766</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-111767</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-111768</td>
<td>Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet)</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-103242</td>
<td>Computergestützte Datenauswertung</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-103684</td>
<td>Einführung in das Rechnergestützte Arbeiten</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Qualifikationsziele

Computergestützte Datenauswertung
Der/die Studierende lernt die Grundlagen der Visualisierung von Daten und deren statistischer Analyse, kann die dazu notwendige Softwareumgebung auf einem eigenen Computer bzw. auf dem persönlichen Konto im CIP-Pool der Fakultät einrichten und sie anhand konkreter Beispiele anwenden.

Einführung in das Rechnergestützte Arbeiten

Angebote des Zentrums für Angewandte Kulturwissenschaft (ZAK), des House of Competence (HoC) und des Sprachenzentrums (SpZ)

Die Qualifikationsziele unterscheiden sich je nach gewählter Veranstaltung und bestehen unter anderem aus:

- Die Studierenden haben durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit erweitert.
- Sie können grundlegende betriebswirtschaftliche und rechtlich Sachverhalte mit ihrem Erfahrungsfeld verbinden.
- Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.
- Sie haben ihre Fähigkeiten erweitert, sich an wissenschaftlichen oder öffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.
- Die Studierenden sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK), am MINT-Kolleg oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

Wählen Sie dazu zunächst in Ihrem Studienablaufplan eine Selbstverbuchungsteilleistung (LP werden mit den tatsächlich erbrachten LP überschrieben) und ordnen Sie dann über den Reiter "ÜQ-Leistungen" eine ÜQ-Leistung zu.

Meteorologie und Klimaphysik Bachelor 2021 (B.Sc.)
Modulhandbuch mit Stand vom 15.03.2022
7.22 Modul: Synoptische Meteorologie (Met-SynM5-2) [M-PHYS-100906]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Angewandte Meteorologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101519 Synoptik I</td>
<td>6 LP</td>
<td>Fink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101520 Synoptik II</td>
<td>4 LP</td>
<td>Fink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101521 Synoptische Meteorologie</td>
<td>2 LP</td>
<td>Fink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtpüfung (ca. 45 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen

keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Synoptische Meteorologie T-PHYS-101521.

Arbeitsaufwand

1. Präsenzzeit in Vorlesungen, Übungen: 113 Stunden
2. Vor-/Nachbereitung derselbigen: 187 Stunden
3. Prüfungsvorbereitung und Präsenz in selbiger: 60 Stunden

Empfehlungen

Kenntnisse aus den Modulen Einführung in die Meteorologie und Einführung in die Theoretische Meteorologie werden benötigt.
Modul: Weitere Leistungen [M-PHYS-105711]

Einrichtung: KiT-Fakultät für Physik
Bestandteil von: Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Zusatzleistungen (Wahl: max. 30 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103860</td>
<td>Platzhalter Zusatzleistungen 1</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-103870</td>
<td>Platzhalter Zusatzleistungen 11</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen

Keine
8 Teilleistungen

8.1 Teilleistung: Advanced Fluid Mechanics [T-BGU-106612]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 6221701 Advanced Fluid Mechanics 4 SWS Vorlesung / Übung (VÜ) /</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 8244106612 Advanced Fluid Mechanics</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 90 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
8.2 Teilleistung: Advanced Numerical Weather Prediction [T-PHYS-111429]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Lehrveranstaltungen

| SS 2022 | 4052051 | Advanced Numerical Weather Prediction | 2 SWS | Vorlesung (V) / 📚 | Knippertz |
| SS 2022 | 4052052 | Exercises to Advanced Numerical Weather Prediction | 1 SWS | Übung (Ü) / 📚 | Knippertz, Burba, Borne |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📚 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Students must achieve 50% of the points on the exercise sheets.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Numerical Weather Prediction
4052051, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
• Introduction
• Parametrizations
• Data assimilation
• Ensemble predictions
• Verification
• Post-processing

Organisatorisches
• Please register for the ILIAS course to receive further information
8.3 Teilleistung: Advanced Practical Course [T-PHYS-111421]

Verantwortung: Dr. Michael Höpfner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4052103</th>
<th>Advanced Meteorological Practical Course</th>
<th>5 SWS</th>
<th>Praktikum (P) / ☑</th>
<th>NN, Wagner, Höpfner, Kohler</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, ☑ Präsenz, ☞ Abgesagt

Erfolgskontrolle(n)
Timely delivery and confirmation of the report on the practicals.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Meteorological Practical Course
4052103, SS 2022, 5 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz

Inhalt
Available experiments include:
• surface energy balance (IMK-TRO)
• infrared spectroscopy (IMK-ASF)
• AIDA cloud and aerosol chamber (IMK-AAF)

Organisatorisches
• AIDA: 25 - 29 July 2022
• Energy balance: (TBD)
• FTIR: May/June (TBD)

Please register for the ILIAS course to receive further information.
8.4 Teilleistung: Allgemeine Meteorologie [T-PHYS-101091]

Verantwortung: apl. Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105734 - Einführung in die Meteorologie und Klimaphysik
M-PHYS-105758 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Studienleistung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Allgemeine Meteorologie</td>
<td>4051011</td>
<td>3</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Kunz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Übungen zur Allgemeinen Meteorologie</td>
<td>4051012</td>
<td>2</td>
<td>Übung (Ü) / Präsenz/Online gemischt</td>
<td>Kunz, Maurer, Augenstein</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Studienleistung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Allgemeine Meteorologie (Vorlesung)</td>
<td>7800012</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Kunz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Vergabe der Leistungspunkte erfolgt nach zweimaligem Vorrechnen in der Übung.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Allgemeine Meteorologie
4051011, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt

Inhalt
(1) Einführung und Überblick: Atmosphäre, Wetter und Klima
(2) Zusammensetzung der Luft
(3) Wichtige meteorologische Größen und Zustandsvariablen
(4) Wetterelemente, Wetterbeobachtungen und Einführung in die synoptische Meteorologie
(5) Aufbau der Atmosphäre und grundlegende Gesetze
(6) Strahlung
(7) Thermodynamische Grundlagen: Zustandsvariablen und Vertikalbewegungen
(8) Kondensationsprozesse und Niederschlagsbildung
(9) Dynamische Grundlagen: Bewegungen und vereinfachte Balancen

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten. Dort sind auch die Termine der Vorlesung aufgeführt. Die Termine in der Liste unten sind nicht korrekt!

V Übungen zur Allgemeinen Meteorologie
4051012, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Übung (Ü)
Präsenz/Online gemischt

Inhalt
Die Studierenden bearbeiten alle Übungsblätter (ca. 13). Jeder Studierende stellt der Übungsgruppe mindestens zwei ausführliche Lösungen pro Semester vor.

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.
8.5 Teilleistung: Allgemeine Zirkulation [T-PHYS-101522]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100907 - Atmosphärische Zirkulation und Zusammensetzung

Teilleistungsart: Studienleistung
Leistungspunkte: 1
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4051171</th>
<th>Atmosphärische Zirkulation</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Fink</th>
</tr>
</thead>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Aktive Teilnahme an der Vorlesung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Atmosphärische Zirkulation
4051171, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
(1) Einführung
(2) Beobachtungssysteme
(3) Grundgleichungen und Skalenanalyse
(4) Unterschiedliche Zerlegungsformen der Zirkulation
(5) Strahlungsbilanz und Bodenergiebilanz
(6) Beobachteter mittlerer Zustand der Atmosphäre
(7) Temperatur
(8) Wind
(9) Unterschiedliche Zerlegungsformen der Zirkulation: Konsequenzen für den atmosphärischen Wasserhaushalt
(10) Unterschiedliche Zerlegungsformen der Zirkulation: Konsequenzen für die Flüsse des atmosphärischen Drehimpulses
(11) Variabilität der Zirkulationsformen auf der Erde
(12) Monsunzirkulationen: Beispiele Afrika und Südostasien

Organisatorisches
- Bitte melden Sie sich im ILIAS-Kurs an, um weitere Infos zu erhalten
8.6 Teilleistung: Analysetechniken für große Datenbestände [T-INFO-101305]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistung: Analysetechniken für große Datenbestände

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>24114</th>
<th>Data Science 1</th>
<th>3 SWS</th>
<th>Vorlesung (V) / Fouché</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>7500087</th>
<th>Data Science 1</th>
<th>Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7500116</td>
<td>Analysetechniken für große Datenbestände</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (i.d.R. 25min) nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
keine

Empfehlungen
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme

Anmerkungen
ab WS21/22 Titeländerung zu DATA Science I M-INFO-105799 / T-INFO-111622.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Science 1
24114, WS 21/22, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Organisatorisches
Diese Lehrveranstaltung kann nicht belegt werden, Data Mining [2520375] belegt wurde/wird.

Empfehlungen:
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme
Literaturhinweise

• Data Mining: Concepts and Techniques (3rd edition):
 Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann Publishers 2011
• Introduction to Data Mining:
 Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison-Wesley 2006
• Knowledge Discovery in Databases:
 Martin Ester, Jörg Sander, Springer 2000
Teilleistung: Analysis of Turbulent Flows [T-BGU-103561]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 6221911 | Modelling of Turbulent Flows - RANS and LES | 4 SWS | Vorlesung / Übung (VÜ) / 🗣 | Uhlmann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 45 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
8.8 Teilleistung: Applied Meteorology (Module Exam) [T-PHYS-111430]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
oral exam (see module description)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung **T-PHYS-111426 - Methods of Data Analysis** muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung **T-PHYS-111427 - Turbulent Diffusion** muss erfolgreich abgeschlossen worden sein.

Empfehlungen
None

Anmerkungen
None
8.9 Teilleistung: Atmosphärische Chemie [T-PHYS-101548]

Verantwortung: Dr. Roland Ruhnke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100907 - Atmosphärische Zirkulation und Zusammensetzung

Lehrveranstaltungen

| SS 2022 | 4051161 | Atmosphärische Chemie | 2 SWS | Vorlesung (V) / 📚 | Ruhnke
| SS 2022 | 4051162 | Übungen zu Atmosphärische Chemie | 1 SWS | Übung (Ü) / 📚 | Ruhnke, Scharun, Feld |

Legende: 🖥 Online, ⚡ Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Vergabe von 3 LP erfolgt bei >50% der Punkte in den Übungen.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Atmosphärische Chemie
4051161, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
1. Einführung
 - Zusammensetzung der Atmosphäre
 - Geochemische Zyklen
 - Stoffkreisläufe
 - Emissionsentwicklungen
2. Grundlagen der Chemie
 - Grundlagen der Reaktionskinetik
 - Grundlagen der Photochemie
 - Katalytische Zyklen
 - Chemische Familien
3. Beispiele aus der Forschung
 - Stratosphärische Chemie
 - Das Ozonloch
 - Troposphärische Chemie
 - Sommersmog

Organisatorisches
- Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten

Übung (Ü)

Übungen zu Atmosphärische Chemie
4051162, SS 2022, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
Der Vorlesung folgend.

Organisatorisches
- Bitte melden Sie sich im ILIAS-Kurs an, um weitere Infos zu erhalten
8.10 Teilleistung: Atmosphärische Zirkulation und Zusammensetzung [T-PHYS-101524]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100907 - Atmosphärische Zirkulation und Zusammensetzung

Erfolgskontrolle(n)
Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (siehe Modulbeschreibung).

Voraussetzungen
Die Anmeldung zu dieser Teilleistung ist erst möglich, wenn die Studienleistungen Allgemeine Zirkulation und Einführung in Atmosphärische Chemie erbracht wurden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Die Teilleistung T-PHYS-101548 - Atmosphärische Chemie muss erfolgreich abgeschlossen worden sein.
8.11 Teilleistung: Atmospheric Aerosols [T-PHYS-111418]

Verantwortung: Dr. Ottmar Möhler
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Hinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4052041</td>
<td>Atmospheric Aerosols</td>
<td>2 SWS</td>
<td>Mohler</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4052042</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>1 SWS</td>
<td>Mohler, Bogert</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungstitel</th>
<th>Vorlesungstitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Atmospheric Aerosols (Prerequisite)</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

The students participating in the lecture on Atmospheric Aerosols with Exercises are expected to regularly participate in the Exercises. To pass the course, each student has to submit a solution for at least 50% of all exercises, and to present at least one solution to the tutor and the other participants.

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Atmospheric Aerosols

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>Wintersemester</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4052041</td>
<td>WS 21/22</td>
<td>Englisch</td>
<td>Anzeige im Studierendenportal</td>
</tr>
</tbody>
</table>

Inhalt

Gas particle processes (kinetics, diffusion, condensation), aerosol properties (diffusion, coagulation, sedimentation, impaction), aerosol thermodynamics (chemical potential, solubility, crystallization), aerosol cloud processes (Köhler theory, ice nucleation).

Organisatorisches

Please sign up for more information in the Ilias course.
8.12 Teilleistung: Atmospheric Processes (Module Exam) [T-PHYS-111420]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 7800039 | Examination on Atmospheric Processes (Module Exam) | Hoose |

Erfolgskontrolle(n)

Oral exam (see module description).

Voraussetzungen

All module courses must be passed.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-111416 - Cloud Physics muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-111417 - Energetics muss erfolgreich abgeschlossen worden sein.

Empfehlungen

None

Anmerkungen

None
8.13 Teilleistung: Atmospheric Radiation [T-PHYS-111419]

Verantwortung: Dr. Michael Höpfner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Ordnungsinhaber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4052071</td>
<td>Atmospheric Radiation</td>
<td>2</td>
<td>Vorlesung (V) / Höpfner, Järvinen</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Ordnungsinhaber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800106</td>
<td>Atmospheric Radiation (Prerequisite)</td>
<td>2</td>
<td>Hoose</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Short presentation at the end of the semester

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Atmospheric Radiation

4052071, WS 21/22, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Inhalt

- Relevance: Weather/Climate, Chemistry, Remote Sensing
- Short history of light
- Properties of electromagnetic radiation
- Radiometric quantities
- The electromagnetic spectrum
- Boundary conditions: Sun, Earth's surface; reflection and emission
- Radiative transfer in the thermal infrared region: black body radiation, local/non-local thermodynamic equilibrium, transmission, radiative transfer, application in remote sensing
- Molecular spectroscopy, line-broadening
- Radiative transfer in the UV/Visible: absorption and scattering by particles
- Single scattering properties: Rayleigh, Mie-approximations
- Optical phenomena: rainbows, halos
- Radiative transfer with multiple scattering: why are clouds white?, two-stream approximation
- Radiative budget, climate engineering

Organisatorisches

Please sign up for more information in the Ilias course.
8.14 Teilleistung: Bachelorarbeit [T-PHYS-101526]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Corinna Hoose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-100908 - Modul Bachelorarbeit</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Vergabe von 12 LP erfolgt bei Bewertung der Bachelorarbeit mit mindestens "ausreichend".

Voraussetzungen
siehe Modul

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit** 6 Monate
- **Maximale Verlängerungsfrist** 1 Monate
- **Korrekturfrist** 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.
8.15 Teilleistung: Bodenkundliche Geländeübung [T-BGU-107486]

Verantwortung: Prof. Dr. Wolfgang Wilcke
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 6111077 | Bodenkundliche Geländeübung | 1 SWS | Übung (Ü) / 🗣️ | Velescu |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Aufnahme eines Bodenprofils in Kleingruppen im Umfang von ca. 2 Seiten

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
8.16 Teilleistung: Building and Environmental Aerodynamics [T-BGU-111060]

Verantwortung: Dr.-Ing. Christof-Bernhard Gromke
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart	Prüfungsleistung mündlich
Leistungspunkte | 3
Notenskala | Drittelnoten
Turnus | Jedes Semester
Dauer | 1 Sem.
Version | 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 6221905</td>
<td>Building and Environmental Aerodynamics</td>
<td>2 SWS Vorlesung / Übung (VÜ) Gromke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 824411060 | Building and Environmental Aerodynamics | Gromke |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
8.17 Teilleistung: Climate Modeling & Dynamics with ICON [T-PHYS-111412]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 4052151 | Climate Modeling & Dynamics with ICON | 2 SWS | Vorlesung (V) / 🧩 | Ginete Werner Pinto, Ludwig |
| WS 21/22 | 4052152 | Exercises to Climate Modeling & Dynamics with ICON | 1 SWS | Übung (Ü) / 🗣 | Ginete Werner Pinto, Lemburg, Breil |

Prüfungsveranstaltungen

| WS 21/22 | 7800087 | Climate Modeling & Dynamics with ICON (Prerequisite) | Fink, Ginete Werner Pinto |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Successful participation in the exercises.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Climate Modeling & Dynamics with ICON
4052151, WS 21/22, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz/Online gemischt

Inhalt
Introduction to the ICON model, baroclinic life cycles, cloud impact on large-scale circulation of the atmosphere, climate change response of extra tropical jet stream, aerosol impact on tropical rain belts.
Numerical modeling and analysis of climate and climate change (climate system, conceptual models for processes and feedback, chaotic dynamic systems, numerical climate models (EMICS, Global models, regional models), (statistical) analysis methods.

Organisatorisches
Please sign up for more information in the Ilias course.
8.18 Teilleistung: Cloud Physics [T-PHYS-111416]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 4052081 | Cloud Physics | 2 SWS | Vorlesung (V) / 📚 | Hoose |
| WS 21/22 | 4052082 | Exercises to Cloud Physics | 1 SWS | Übung (Ü) / 📚 | Hoose, Jung |

Prüfungsveranstaltungen

| WS 21/22 | 7800105 | Cloud Physics (Prerequisite) | Hoose |

Legende: 📚 Online, 🗣 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
More than 50% of the points from the exercises must be achieved and at least 1x must be pre-calculated.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Cloud Physics
4052081, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Phenomenology, cloud dynamics of stratiform and convective clouds, micro physics of warm and cold clouds, collision and coalescence, primary and secondary ice formation, condensational and depositional growth.

Organisatorisches
Please sign up for more information in the Ilias course.
8.19 Teilleistung: Components of the Climate System (Module Exam) [T-PHYS-111415]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 7800045 | Components of the Climate System (Module Exam) | Fink |

Erfolgskontrolle(n)
Oral exam (see module description).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Es müssen 2 von 3 Bedingungen erfüllt werden:
 3. Die Teilleistung T-PHYS-111413 - Middle Atmosphere in the Climate System muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-111411 - Tropical Meteorology muss erfolgreich abgeschlossen worden sein.

Empfehlungen
None

Anmerkungen
None
8.20 Teilleistung: Computergestützte Datenauswertung [T-PHYS-103242]

Verantwortung: Prof. Dr. Torben Ferber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4010231</td>
<td>Computergestützte Datenauswertung</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Ferber</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4010232</td>
<td>Praktikum zu Computergestützte Datenauswertung</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Ferber, Poenicke, Faltermann</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online
🧩 Präsenz/Online gemischt
🗣 Präsenz
🗙 Abgesagt

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8.21 Teilleistung: Einführung in das Rechnergestützte Arbeiten [T-PHYS-103684]

Verantwortung:
Prof. Dr. Markus Garst
Dr. Andreas Poenicke

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4011141</td>
<td>Rechnergestütztes Arbeiten (Einführung)</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>Schmalian, Poenicke</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4011142</td>
<td>Übungen zu Rechnergestütztes Arbeiten</td>
<td>3</td>
<td>Übung (Ü)</td>
<td>Schmalian, Poenicke</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4023901</td>
<td>Rechnergestütztes Arbeiten (Einführung)</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>Garst, Poenicke</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4023902</td>
<td>Übungen zu Rechnergestütztes Arbeiten</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Poenicke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800009</td>
<td>Einführung in das Rechnergestützte Arbeiten</td>
<td></td>
<td>Schmalian</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8.22 Teilleistung: Einführung in die Meteorologie und Klimaphysik (Modulprüfung) [T-PHYS-111450]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105734 - Einführung in die Meteorologie und Klimaphysik
M-PHYS-105758 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Prüfung</th>
<th>Studentenblock</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800040</td>
<td>Prüfung Einführung in die Meteorologie und Klimaphysik (Modulprüfung)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (ca. 45 Minuten) nach §4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen:

- "Allgemeine Meteorologie",
- "Klimatologie" und
- "Einführung in die Synoptik".

Voraussetzungen

Allgemeine Meteorologie
Klimatologie
Einführung in die Synoptik

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101091 - Allgemeine Meteorologie muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101093 - Einführung in die Synoptik muss erfolgreich abgeschlossen worden sein.
8.23 Teilleistung: Einführung in die Synoptik [T-PHYS-101093]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105734 - Einführung in die Meteorologie und Klimaphysik
M-PHYS-105758 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung mündlich</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 4051141 | Einführung in die Synoptik | 2 SWS | Vorlesung (V) / 🗣 | Fink, Ludwig |

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Studierenden halten in Kleingruppen einen ca. 20 minütigen Vortrag über aktuelle oder vergangene Wetter- oder Klimaphänomene. Analysematerial z.B. in Form von Wetterkarten, Berichten etc. recherchieren Sie eigenständig in einschlägigen Print-, elektronischen Medien sowie im Internet.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Synoptik

4051141, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

1. Einleitung, astronomische Gegebenheiten
2. Stationsmessnetze und Messung
3. Wolken, Nebel, Niederschlag
4. Einheiten und deren Umrechnung
5. Definitionen, Abschätzungen und Richtwerte
6. Bodenwetterkarten, Druckgebilde und Fronten
7. Satelliten und Radar (inkl. Afrika und Tropen)
8. Höhenwetterkarten, großräumige Vertikalbewegungen
9. Interpretation von Höhen und Bodenkarten
10. Ensemble-Vorhersagen
11. Radiosondenaufstiege, bodennahe und freie Atmosphäre
12. Verfassen eines Wetterberichtes

Organisatorisches

- Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten
8.24 Teilleistung: Einführung in die Vulkanologie, Prüfung [T-PHYS-103644]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Dr. Ellen Gottschämmer

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-105751 - Erfolgskontrollen

Voraussetzungen

Erfolgreiche Teilnahme an "Einführung in die Vulkanologie, Studienleistung"

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
8.25 Teilleistung: Einführung in die Vulkanologie, Studienleistung [T-PHYS-103553]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
8.26 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen [T-BGU-101681]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Lehrveranstaltungen

| WS 21/22 | 6071101 | Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü | 4 SWS | Vorlesung / Übung (VÜ) / 🧩 | Wursthorn |

Prüfungsveranstaltungen

| WS 21/22 | 8280101681 | Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen | Wursthorn |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

bestandene Vorleistung in Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen (online-Test: T-BGU-103541)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

8.27 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung [T-BGU-103541]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 6071101</td>
<td>WS 21/22 8280103541</td>
</tr>
<tr>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung</td>
</tr>
<tr>
<td>4 SWS</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
8.28 Teilleistung: Einführung in Klassifizierungsverfahren der Fernerkundung [T-BGU-105725]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Dr.-Ing. Uwe Weidner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Erfolgskontrolle(n)
mündliche Prüfung von ca. 20 min

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
8.29 Teilleistung: Energetics [T-PHYS-111417]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart
Studienleistung

Leistungspunkte
1

Notenskala
best./nicht best.

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4052131</td>
<td>Energetics</td>
<td>2</td>
<td>V</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800107</td>
<td>Energetics (Prerequisite)</td>
<td></td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Active participation

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Energetics
4052131, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Mean meridional circulation, stationary and transient eddies; basic forms, budget equations and transport processes of energy in the atmosphere; principle of available potential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors).

Table of content:
- Literature & Learning goals
- The Climate System
- Basic Equations of the Climate System
- Decomposition of the general circulation
- Radiation budget and energy transports
- Consequences of the radiation and surface energy budgets
- Atmospheric water budget
- Atmospheric and oceanic energy budget
- Concept of „Available Potential Energy (APE)"

Organisatorisches
Please sign up for more information in the Ilias course.
Teilleistung: Energy Meteorology [T-PHYS-111428]

Verantwortung: apl. Prof. Dr. Stefan Emeis
 Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart: Studienleistung
Leistungspunkte: 1
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2022 4052191 Energy Meteorology 2 SWS Vorlesung (V) Emeis, Schroedter-Homscheidt, Ginete Werner Pinto

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Erfolgskontrolle(n)
The students work in small groups on a task chosen at the beginning of the course on the topics of wind, solar or electricity grids. At the end, each student presents his or her results in a short presentation (max. 5 slides) followed by a discussion.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energy Meteorology
4052191, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
• Overview Energy Meteorology
• Physical basics – Wind energy
• Physical basics of energy supply
• Economic basics of energy supply
• Onshore and offshore wind parks
• Wind energy siting – complex terrain
• Physical basics – Solar energy
• Tracking and concentrating solar systems
• Wind measurements
• Radiation forecasts
• Wind energy – yield forecasts
• Climate change & energy system
• Community energy meteorology and where to work

Organisatorisches
• Block Course 01 - 05 August 2022
• Please register for the ILIAS course to receive further information
8.31 Teilleistung: Exam on Physics of Planetary Atmospheres [T-PHYS-109180]

Verantwortung: Prof. Dr. Thomas Leisner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 7800092 | Physics of Planetary Atmospheres (Exam) | Leisner |

Voraussetzungen
None

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-109177 - Physics of Planetary Atmospheres muss erfolgreich abgeschlossen worden sein.
8.32 Teilleistung: Experimental Meteorology (Module Exam) [T-PHYS-111425]

Verantwortung: Dr. Björn-Martin Sinnhuber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Erfolgskontrolle(n)
Oral exam (see module description).

Voraussetzungen
In the Module "Experimental Meteorology" all offered courses must be passed.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-111421 - Advanced Practical Course muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-111422 - Field Trip muss erfolgreich abgeschlossen worden sein.
8.33 Teilleistung: Field Trip [T-PHYS-111422]

Verantwortung: Prof. Dr. Corinna Hoose

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>田</td>
<td>1,5</td>
<td></td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 4052263 | Field Trip | 2 SWS | Exkursion (EXK) / | Ginete Werner Pinto |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Field Trip

4052263, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

The course comprises a one-week excursion to research institutes and observatories in Germany and neighbouring countries.

Organisatorisches

- The date for the field trip will be arranged in the semester opening on April 19th, 12:00-13:00
- Please register for the ILIAS course to receive further information
8.34 Teilleistung: Fortgeschrittene Theoretische Meteorologie [T-PHYS-101514]

Verantwortung: Prof. Dr. Peter Braesicke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100904 - Fortgeschrittene Theoretische Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kursnummer</th>
<th>Titel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800061</td>
<td>Fortgeschrittene Theoretische Meteorologie (Modulprüfung)</td>
<td>Braesicke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (ca. 45 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen

- Theoretische Meteorologie III
- Theoretische Meteorologie IV

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101512 - Theoretische Meteorologie III muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101513 - Theoretische Meteorologie IV muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Kenntnisse aus den Modulen Einführung in die Theoretische Meteorologie werden benötigt, grundlegende Kenntnisse der theoretischen Physik und höherer Mathematik sind hilfreich.
8.35 Teilleistung: Geodateninfrastrukturen und Web-Dienste [T-BGU-101756]

Verantwortung: Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 6026204 | Geodateninfrastrukturen und Webdienste | 1 SWS | Vorlesung (V) | Wursthorn |
| SS 2022 | 6026205 | Geodateninfrastrukturen und Webdienste, Übung | 2 SWS | Übung (Ü) | Wursthorn |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfungsleistung mit einer Dauer von ca. 20 Minuten entsprechend § 4 Abs. 2 Nr. 2 SPO Geodäsie und Geoinformatik.

Voraussetzungen

Die Teilleistung T-BGU-101757 Geodateninfrastrukturen und Web-Dienste, Vorleistung muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101757 - Geodateninfrastrukturen und Web-Dienste, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Geodateninfrastrukturen und Webdienste</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6026204, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt

Der Termin steht noch nicht fest. Interessierte melden sich bitte per E-Mail.

Organisatorisches

nach Vereinbarung
8.36 Teilleistung: Geodateninfrastrukturen und Web-Dienste, Vorleistung [T-BGU-101757]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Sven Wursthorn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-105751 - Erfolgskontrollen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Form</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6026204</td>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wursthorn</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (§ 4 Abs. 3 SPO) basierend auf lehrveranstaltungsbegleitender, unbenoteter Projektbearbeitung mit schriftlicher Ausarbeitung im Umfang von 10 - 20 Seiten. Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>6026204, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Der Termin steht noch nicht fest. Interessierte melden sich bitte per E-Mail.

Organisatorisches

nach Vereinbarung
8.37 Teilleistung: Geological Hazards and Risk [T-PHYS-103525]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungseinheit</th>
<th>SWS</th>
<th>Vorlesungs- / Übungsort</th>
<th>Ansprechpartner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Gottschämmer, Schäfer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Übung (Ü) / 🗣</td>
<td>Gottschämmer, Schäfer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungseinheit</th>
<th>SWS</th>
<th>Vorlesungs- / Übungsort</th>
<th>Ansprechpartner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Geological Hazards and Risk</td>
<td></td>
<td></td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🔄 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
8.38 Teilleistung: Geomorphologie und Bodenkunde [T-BGU-107487]

Verantwortung: Prof. Dr. Wolfgang Wilcke
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6111061</td>
<td>Geomorphologie und Bodenkunde</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wilcke</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6111066</td>
<td>Geomorphologie und Bodenkunde</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Velescu, Stock</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6111071</td>
<td>Böden Europas</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wilcke</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 90 Minuten

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Keine
8.39 Teilleistung: Grundlagen der Theoretischen Meteorologie [T-PHYS-101484]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100903 - Grundlagen der Theoretischen Meteorologie

Erfolgskontrolle(n)
Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (ca. 45 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen
Theoretische Meteorologie I
Theoretische Meteorologie II

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101482 - Theoretische Meteorologie I muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101483 - Theoretische Meteorologie II muss erfolgreich abgeschlossen worden sein.
8.40 Teilleistung: Höhere Mathematik I [T-MATH-102224]

Verantwortung:	PH. D. Ioannis Anapolitanos, Prof. Dr. Dirk Hundertmark, apl. Prof. Dr. Peer Kunstmann, Prof. Dr. Tobias Lamm, Dr. Christoph Schmoeger
Einrichtung:	KIT-Fakultät für Mathematik
Bestandteil von:	M-MATH-101327 - Höhere Mathematik I

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0130200</td>
<td>Höhere Mathematik I für die Fachrichtung Physik</td>
<td>6</td>
<td>Vorlesung (V) / 📚</td>
<td>Schmoeger, Heister</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0130300</td>
<td>Übungen zu 0130200</td>
<td>2</td>
<td>Übung (Ü) / 📚</td>
<td>Schmoeger, Heister</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6700042</td>
<td>Höhere Mathematik I (PHY)</td>
<td>Schmoeger, Anapolitanos, Kunstmann, Hundertmark</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6700042</td>
<td>Höhere Mathematik I (PHY)</td>
<td>Schmoeger, Anapolitanos, Kunstmann, Hundertmark</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

keine
8.41 Teilleistung: Höhere Mathematik II [T-MATH-102225]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm
Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101328 - Höhere Mathematik II

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
10

Notenskala
Drittelnoten

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übungen zu Vorlesung</th>
<th>Lehrveranstaltungsform</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0180500</td>
<td>0180600</td>
<td>Vorlesung (V)</td>
<td>Schmoeger</td>
</tr>
<tr>
<td></td>
<td>Höhere Mathematik II für die Fachrichtung Physik</td>
<td>Übungen zu 0180500</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schmoeger</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übungen zu Vorlesung</th>
<th>Prüfungsveranstaltungsform</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0100015</td>
<td>Höhere Mathematik II (PHY)</td>
<td>Schmoeger, Anapolitanos, Kunstmann</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>0100059</td>
<td>Höhere Mathematik II (PHY)</td>
<td>Schmoeger, Anapolitanos, Kunstmann, Hundertmark</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.42 Teilleistung: Höhere Mathematik III [T-MATH-102226]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101329 - Höhere Mathematik III

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Vorlesungs-</th>
<th>Übungs-</th>
<th>Vorlesungs-</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0130600 Höhere Mathematik III für die Fachrichtung Physik</td>
<td>2 SWS Vorlesung (V)</td>
<td>Kunstmann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0130700 Übungen zu 0130600</td>
<td>1 SWS Übung (Ü)</td>
<td>Kunstmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Prüfungs-</th>
<th>Vorlesungs-</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0100053 Höhere Mathematik III (PHY)</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>0100055 Höhere Mathematik III (PHY)</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Voraussetzungen
keine
8.43 Teilleistung: Image Processing and Computer Vision [T-BGU-101732]

Verantwortung: Dr.-Ing. Uwe Weidner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Prüfungsleistung</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6042101</td>
<td>Image Processing and Computer Vision, Lecture</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6042102</td>
<td>Image Processing and Computer Vision, Exercises</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Weinmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
The assessment consists of a oral exam (ca. 30 min). according § 4 para. 2 No. 2 SPO M.Sc. Geodäsie und Geoinformatik.

Voraussetzungen
Die Teilleistungen T-BGU-106333 und T-BGU-106334 dürfen nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Image Processing and Computer Vision, Exercises
6042102, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Inhalt
8.44 Teilleistung: Instrumentenkunde [T-PHYS-101509]

Verantwortung: Dr. Martina Klose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100902 - Meteorologisches Messen

Teilleistungsart
Studienleistung schriftlich

Leistungspunkte
2

Notenskala
best./nicht best.

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Instrumentenkunde</td>
<td>2</td>
<td>Vorlesung (V) / Klose</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Studienleistung (Vorleistung)</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Instrumentenkunde (Vorleistung)</td>
<td>Klose</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kurzvorträge am Ende der Vorlesungszeit

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Instrumentenkunde
4051031, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Einleitung
2. Grundlegendes
3. Dynamisches Verhalten von Messinstrumenten
4. Temperaturmessung
5. Windmessung
6. Feuchte
7. Strahlungsmessung
8. Niederschlagsmessung
9. Aerologie
10. Aerosolmessung

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.
8.45 Teilleistung: Integrated Atmospheric Measurements [T-PHYS-111423]

Verantwortung: Carolin Schmitt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart: Studienleistung
Leistungspunkte: 1
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 2

Erfolgskontrolle(n):
Short presentation at the end of the semester

Voraussetzungen:
None

Empfehlungen:
None

Anmerkungen:
None
8.46 Teilleistung: Klassische Experimentalphysik I, Mechanik [T-PHYS-102283]

Verantwortung: Prof. Dr. Ulrich Husemann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modus</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4010011</td>
<td>Klassische Experimentalphysik I (Physik I, Mechanik)</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Husemann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4010012</td>
<td>Übungen zu Klassische Experimentalphysik I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Husemann, Waßmer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800022</td>
<td>Klassische Experimentalphysik I, Mechanik - Klausur 1</td>
<td>Husemann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7800023</td>
<td>Klassische Experimentalphysik I, Mechanik - Klausur 2</td>
<td>Husemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

8.47 Teilleistung: Klassische Experimentalphysik I, Mechanik - Vorleistung [T-PHYS-102295]

Verantwortung: Prof. Dr. Ulrich Husemann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 4010011 | Klassische Experimentalphysik I (Physik I, Mechanik) | 4 SWS | Vorlesung (V) / 📚 | Husemann |
| WS 21/22 | 4010012 | Übungen zu Klassische Experimentalphysik I | 2 SWS | Übung (Ü) / 📚 | Husemann, Waßmer |

Prüfungsveranstaltungen

| WS 21/22 | 7800021 | Klassische Experimentalphysik I, Mechanik - Vorleistung | Husemann |

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
8.48 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik [T-PHYS-102284]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

Teilleistungsart	Prüfungsleistung schriftlich	Leistungspunkte	Notenskala	Turnus	Version
		7	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4010021</td>
<td>Klassische Experimentalphysik II (Physik II, Elektrodynamik)</td>
<td>3</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wegener, Naber</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4010022</td>
<td>Übungen zu Klassische Experimentalphysik II</td>
<td>2</td>
<td>Übung (Ü) / 🗣</td>
<td>Wegener, Naber, NN</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 120 min)

Voraussetzungen
erfolgreiche Übungssteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

8.49 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik - Vorleistung [T-PHYS-102296]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4010021</td>
<td>4010022</td>
</tr>
<tr>
<td></td>
<td>Klassische Experimentalphysik II (Physik II, Elektrodynamik)</td>
<td>Übungen zu Klassische Experimentalphysik II</td>
</tr>
<tr>
<td></td>
<td>3 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Wegener, Naber</td>
<td>Wegener, Naber, NN</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8.50 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

Teilleistungsart

- **Prüfungsleistung schriftlich**
- **Leistungspunkte:** 9
- **Notenskala:** Drittelnoten
- **Turnus:** Jedes Wintersemester
- **Version:** 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Vorlesungsstunden (SWS)</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4010031</td>
<td>Klassische Experimentalphysik III (Physik III, Optik und Thermodynamik)</td>
<td>5 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Wegener, Naber</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4010032</td>
<td>Übungen zu Klassische Experimentalphysik III</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Wegener, Naber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsveranstaltungstitel</th>
<th>Wegener</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800052</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik - Klausur 1</td>
<td>Wegener</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7800053</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik - Klausur 2</td>
<td>Wegener</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Schriftliche Prüfung (in der Regel 120 min)

Voraussetzungen

- erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

8.51 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung [T-PHYS-102297]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Leitung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4010031</td>
<td>Vorlesung (V)</td>
<td>5</td>
<td>Physik III, Optik und Thermodynamik</td>
<td>Wegener, Naber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4010032</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Übungen zu Klassische Experimentalphysik III</td>
<td>Wegener, Naber</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800051</td>
<td>Vorlesung (V)</td>
<td>5</td>
<td>Prüfung</td>
<td>Wegener</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📗 Präsenz/Online gemischt, 🗼 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
8.52 Teilleistung: Klassische Theoretische Physik I, Einführung [T-PHYS-102286]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101350 - Klassische Theoretische Physik I, Einführung
 M-PHYS-105758 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmergruppe:

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ✗ Abgesagt

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4010111</td>
<td>Klassische Theoretische Physik I (Theorie A, Einführung)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4010112</td>
<td>Übungen zu Klassische Theoretische Physik I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Mühlleitner, Kerner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Veranstaltung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800025</td>
<td>Klassische Theoretische Physik I, Einführung - Klausur 1</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7800026</td>
<td>Klassische Theoretische Physik I, Einführung - Klausur 2</td>
<td>Mühlleitner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 120 min)

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102298 - Klassische Theoretische Physik I, Einführung - Vorleistung muss erfolgreich abgeschlossen worden sein.
8.53 Teilleistung: Klassische Theoretische Physik I, Einführung - Vorleistung [T-PHYS-102298]

Verantwortung: Prof. Dr. Miliada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101350 - Klassische Theoretische Physik I, Einführung
M-PHYS-105758 - Orientierungsprüfung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studiennummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Modul</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4010111</td>
<td>Vorlesung (V) / 🧩</td>
<td>2</td>
<td>Mühlleitner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übungen zu Klassische Theoretische Physik I</td>
<td>2 SWS</td>
<td>Mühlleitner, Kerner</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800024</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
<td>Mühlleitner</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
8.54 Teilleistung: Klassische Theoretische Physik II, Mechanik [T-PHYS-102287]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

| SS 2022 | 4010121 | Klassische Theoretische Physik II (Theorie B, Mechanik) | 2 SWS | Vorlesung (V) / 🗣 | Nierste |
| SS 2022 | 4010122 | Übungen zur Klassischen Theoretischen Physik II | 2 SWS | Übung (Ü) / 🗣 | Nierste, Ziegler |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

8.55 Teilleistung: Klassische Theoretische Physik II, Mechanik - Vorleistung [T-PHYS-102299]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

Teilleistungsart Studienleistung Leistungspunkte 0 Notenskala best./nicht best. Turnus Jedes Sommersemester Version 1

Lehrveranstaltungen

| SS 2022 | 4010121 | Klassische Theoretische Physik II (Theorie B, Mechanik) | 2 SWS | Vorlesung (V) / 🗣 | Nierste |
| SS 2022 | 4010122 | Übungen zur Klassischen Theoretischen Physik II | 2 SWS | Übung (Ü) / 🗣 | Nierste, Ziegler |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8.56 Teilleistung: Klimatologie [T-PHYS-101092]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105734 - Einführung in die Meteorologie und Klimaphysik
M-PHYS-105758 - Orientierungsprüfung

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Notenskala: best./nicht best.
Turnus: Jedes Sommersemester
Version: 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4051111</th>
<th>Klimatologie</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Ginete Werner Pinto</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4051112</td>
<td>Übungen zu Klimatologie</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Ginete Werner Pinto, Ludwig, Stadelmaier, Kiefer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
2x Vorrechnen in der Übung.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Klimatologie
4051111, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportalen anzeigen

Inhalt
(1) Einführung
(2) Grundlagen der Dynamik
(3) Allgemeine Zirkulation
(4) Wasser, Luftmassen, Zyklen
(5) Ozean
(6) Kryosphäre, Biosphäre
(7) Lithosphäre, Klimazonen
(8) Paleo-Klima
(9) Zyklische Phänomene, Telekonnektionen
(10) Klimawandel

Organisatorisches
• Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten

Übungen zu Klimatologie
4051112, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportalen anzeigen

Inhalt
Der Vorlesung folgend.

Organisatorisches
• Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten
8.57 Teilleistung: Meteorologisches Messen [T-PHYS-101511]

Verantwortung: Prof. Dr. Andreas Fink
Dr. Martina Klose

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-100902 - Meteorologisches Messen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Vergabe von 1 LP erfolgt nach bestandener mündlicher Prüfung (siehe Modulbeschreibung).

Voraussetzungen
Anmeldung ist erst möglich, wenn die Studienleistungen "Instrumentenkunde" und "Meteorologisches Praktikum" erbracht wurden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101509 - Instrumentenkunde muss erfolgreich abgeschlossen worden sein.
8.58 Teilleistung: Meteorologisches Praktikum [T-PHYS-101510]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100902 - Meteorologisches Messen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 4051253 | Meteorologisches Praktikum I (Anfängerpraktikum) | 5 SWS | Praktikum (P) / 🗣 | Fink, Gasch |

Legende: Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Vergabe der Leistungspunkte erfolgt nach fristgerechter Abgabe und Gutbefund aller schriftlichen Versuchsauswertungen (Bestehen der Eingangsbegehung bei den Versuchen ist Voraussetzung zur Zulassung zum Versuch)

Empfehlungen
Kenntnisse aus dem Modul Einführung in die Meteorologie werden benötigt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Meteorologisches Praktikum I (Anfängerpraktikum)
4051253, SS 2022, 5 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden führen selbstständig Versuche zu folgenden Themen durch:
• Feuchte
• Temperatur
• Strahlung
• Bodenwärstemstrom
• Niederschlag
• Druck
• Wolken
• Aerosol
• Windkanal
• Pilotballon

Organisatorisches
• Vorbesprechung: 20.04.22, 14:00 - 15:30 Uhr in 13/2
• Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten
8.59 Teilleistung: Methods of Data Analysis [T-PHYS-111426]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistung: Methods of Data Analysis [T-PHYS-111426]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart

Studienleistung
Leistungspunkte 3
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4052171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods of Data Analysis</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung (V) / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Lerch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4052172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises to Methods of Data Analysis</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung (Ü) / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Ehmel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤝 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Successful participation in the exercises.

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Methods of Data Analysis

4052171, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Basics
2. Significance testings
3. Regression
4. Time series
5. Fourier wavelet analysis
6. Spatial analysis
7. Clustering
8. Machine Learning
9. Summary

Organisatorisches

- Please register for the ILIAS course to receive further information

Exercises to Methods of Data Analysis

4052172, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Following the lecture.
8.60 Teilleistung: Middle Atmosphere in the Climate System [T-PHYS-111413]

Verantwortung: Dr. Michael Höpfner
Dr. Miriam Sinnhuber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHY-S105751 - Erfolgskontrollen

Teilleistungsart Studienleistung
Leistungspunkte: 1
Notenskala: best./nicht best.
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

| WS 21/22 | 4052061 | Middle Atmosphere in the Climate System | 2 SWS | Vorlesung (V) / 🗣 | Höpfner, Sinnhuber |

Prüfungsveranstaltungen

| WS 21/22 | 7800008 | Middle Atmosphere in the Climate System (Prerequisite) | Fink |

Legende: Online, Präsenz/Online gemischt, Präsenz, × Abgesagt

Erfolgskontrolle(n)
Short presentation at the end of the semester

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Middle Atmosphere in the Climate System
4052061, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
- History of science of the middle atmosphere (MA)
- Mean state of the MA: temperature, wind, chemical composition
- Radiation: sun, radiative transfer, energy budget, photolysis
- Measurements: in-situ/remote sounding, ground-based, airborne/balloon, satellite
- Aerosols: stratospheric background aerosol layer, volcanic enhancement, polar stratospheric clouds, polar mesospheric clouds, meteoric dust
- Chemistry: general concepts, global ozone layer, polar ozone chemistry
- Dynamics: fundamental description, meridional circulation, equatorial circulation, waves and tides, stratospheric warmings, tracer and age-of-air, upper troposphere/lower stratosphere, cross-tropopause transport
- Coupling and climate: chemistry-climate coupling, trends,

Organisatorisches
Please sign up for more information in the Ilias course.
8.61 Teilleistung: Mobile Computing und Internet der Dinge [T-INFO-102061]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungselement</td>
<td></td>
<td>5</td>
<td>Dreistelte</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrbereich</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2400051</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>2+1 SWS</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrbereich</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7500107_1115</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500145</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500338_21.01.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500341_07.02.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500343_21.02.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500345_01.03.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7500347_25.03.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7500285_04.04.22</td>
<td>Mobile Computing und Internet der Dinge</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (i.d.R. 20min) nach § 4 Abs. 2 Nr. 2 SPO, in der auch Übungsresultate bewertet werden.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Mobile Computing und Internet der Dinge</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400051, WS 21/22, 2+1 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Meteorologie und Klimaphysik Bachelor 2021 (B.Sc.)
Modulhandbuch mit Stand vom 15.03.2022
Inhalt

Beschreibung:

- Mobile Computing:
 - Plattformen: SmartPhones, Tablets, Glasses
 - Mensch-Maschine-Interaktion für Mobile Computing
 - Software Engineering, -Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
 - Sensoren und Sensordatenauswertung
- Internet der Dinge:
 - Plattformen für das Internet der Dinge: Raspberry Pi und Arduino
 - Personal Area Networks: Bluetooth (4.0)
 - Home Networks: ZigBee/IEEE 802.15.4
 - Technologien des Internet der Dinge
 - Middleware für das Internet der Dinge

Lehrinhalt:

Mobile Computing:

- Plattformen: SmartPhones, Tablets, Glasses
- Mensch-Maschine-Interaktion für Mobile Computing
- Software Engineering, -Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
- Sensoren und Sensordatenauswertung

Internet der Dinge:

- Plattformen für das Internet der Dinge: Raspberry Pi und Arduino
- Personal Area Networks: Bluetooth (4.0)
- Home Networks: ZigBee/IEEE 802.15.4
- Middleware für das Internet der Dinge

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min

Präsenzzeit: Besuch der Übung
15 x 45 min
11 h 15 min

Vor- / Nachbereitung der Vorlesung und Übung
15 x 90 min
22 h 30 min

Entwicklung einer adaptiven Webseite und einer mobilen App
33 h 45 min

Foliensatz 2x durchgehen
2 x 12 h
24 h 00 min

Prüfung vorbereiten
8 TEILLEISTUNGEN

Teilleistung: Mobile Computing und Internet der Dinge [T-INFO-102061]

36 h 00 min
SUMME
150 h 00 min
Arbeitsaufwand für die Lerneinheit "Mobile Computing und Internet der Dinge"

Lernziele:
Ziel der Vorlesung ist es, Kenntnisse über Grundlagen, weitergehende Methoden und Techniken des Mobile Computing und des Internet der Dinge zu erwerben.
Nach Abschluss der Vorlesung können die Studierenden

- Techniken zur Gestaltung von Mobile Computing Software und Benutzerschnittstellen für Mobile Computing Anwendungen benennen, beschreiben und erklären und bewerten,
- Software- und Kommunikationsschnittstellen für das Internet der Dinge und Basiskenntnisse zu Personal Area Networks (PAN) benennen, beschreiben, vergleichen und bewerten,
- selbstständige Systeme für Mobile Computing und das Internet der Dinge entwerfen, Entwürfe analysieren und bewerten,
- eine adaptive Webseite entwerfen, implementieren und auf ihre Usability hin untersuchen,
- eine eigene App konzipieren und implementieren, die über Bluetooth mit einem Gerät kommuniziert.

Organisatorisches
Dienstag 9:45 bis 11:15 Uhr. Der Termin für die Übung ist Dienstag 08:10 bis 09:30 Uhr, wann die erste Übung stattfindet wird in der Vorlesung bekanntgegeben.
Lecture: Tue: 9:45-11:15 (Corona-Online/Zoom: 10:00-12:00), Exercise will be Tue 8:10-9:30
Mündliche Prüfung nach Vereinbarung. In der Prüfung werden auch Übungsresultate bewertet.
Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Literaturhinweise
Werden in der Vorlesung bekannt gegeben
8.62 Teilleistung: Moderne Experimentalphysik für Geophysiker und Meteorologen [T-PHYS-102294]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101345 - Moderne Experimentalphysik für Geophysiker und Meteorologen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 4012141 Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen 4 SWS Vorlesung (V) Quast

SS 2022 4012142 Übungen zur Modernen Physik für Geophysiker und Meteorologen 2 SWS Übung (Ü) Quast, Brommer

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 120 Minuten)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103205 - Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung muss erfolgreich abgeschlossen worden sein.
8.63 Teilleistung: Moderne Experimentalphysik für Lehramt, Geophysik und Meteorologie - Vorleistung [T-PHYS-103205]

Verantwortung: Prof. Dr. Günter Quast
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101345 - Moderne Experimentalphysik für Geophysiker und Meteorologen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrperson(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4012141</td>
<td>Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurbildung</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Quast</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4012142</td>
<td>Übungen zur Modernen Physik für Geophysiker und Meteorologen</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Quast, Brommer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4012145</td>
<td>Übungen zur Modernen Physik für Lehramtskandidaten und Ingenieurbildung</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Quast, Brommer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgreiche Teilnahme an den Übungen.

Voraussetzungen
keine
8.64 Teilleistung: Moderne Theoretische Physik für Lehramt [T-PHYS-103204]

Verantwortung: Dr. Robert Eder
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmerinnen und Teilnehmer:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 4012131</td>
<td>Moderne Theoretische Physik für Lehramtskandidaten</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
</tr>
<tr>
<td></td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 21/22 4012132</td>
<td>Übungen zu Moderne Theoretische Physik für Lehramtskandidaten</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>WS 21/22 7800078</td>
<td>Moderne Theoretische Physik für Lehramt</td>
</tr>
<tr>
<td></td>
<td>Eder, Klinkhamer, Gieseke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 45 min

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103203 - Moderne Theoretische Physik für Lehramt - Vorleistung muss erfolgreich abgeschlossen worden sein.
8.65 Teilleistung: Moderne Theoretische Physik für Lehramt - Vorleistung [T-PHYS-103203]

Verantwortung: Dr. Robert Eder
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart
Studienleistung
Leistungspunkte 0
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4012131</td>
<td>Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Eder</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4012132</td>
<td>Übungen zu Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Eder, Gaa, Steward</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-Nummer</th>
<th>Prüfungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800077</td>
<td>Moderne Theoretische Physik für Lehramt - Vorleistung</td>
<td></td>
<td></td>
<td>Eder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8.66 Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1 [T-PHYS-105134]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 4010141</td>
<td>Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Shnirman</td>
</tr>
<tr>
<td>SS 2022 4010142</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Shnirman, Reich</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 45 min

Voraussetzungen
erfolgreiche Übungsteilnahme
8.67 Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 [T-PHYS-102317]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 4010141 | Moderne Theoretische Physik I (Theorie D, Quantenmechanik I) | 4 SWS | Vorlesung (V) / ☎️ | Shnirman |
| SS 2022 | 4010142 | Übungen zu Moderne Theoretische Physik I | 2 SWS | Übung (Ü) / ☎️ | Shnirman, Reich |

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, ☎️ Präsenz, ☑️ Abgesagt

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
8 TEILLEISTUNGEN

8.68 Teilleistung: Numerik und Statistik [T-PHYS-101518]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100905 - Numerik und Statistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7800062</td>
<td>Numerik und Statistik (Modulprüfung)</td>
<td>Knippertz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (ca. 60 Minuten) nach § 4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul angebotenen Lehrveranstaltungen.

Voraussetzungen
Die Anmeldung ist erst möglich, wenn die Studienleistungen Statistik in der Meteorologie und Numerische Methoden in der Meteorologie erbracht wurden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101516 - Numerische Methoden in der Meteorologie muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101515 - Statistik in der Meteorologie muss erfolgreich abgeschlossen worden sein.
8.69 Teilleistung: Numerische Methoden - Klausur [T-MATH-100803]

Verantwortung: apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2022</th>
<th>0180300</th>
<th>Numerical Methods (Electrical Engineering, Meteorology, Remote sensing, Geoinformatics)</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Kunstmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0180400</td>
<td>Tutorial for 0180300</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Kunstmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>WS 21/22</th>
<th>0100017</th>
<th>Numerische Methoden - Klausur</th>
<th></th>
<th>Plum, Wugalter, Anapolitanos, Kunstmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0100056</td>
<td>Numerische Methoden - Klausur</td>
<td></td>
<td>Anapolitanos, Kunstmann</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🗣️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Voraussetzungen
keine
8.70 Teilleistung: Numerische Methoden in der Meteorologie [T-PHYS-101516]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100905 - Numerik und Statistik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td></td>
</tr>
<tr>
<td>4051181</td>
<td>Numerische Methoden in der Meteorologie</td>
</tr>
<tr>
<td>SS 2022</td>
<td></td>
</tr>
<tr>
<td>4051182</td>
<td>Übungen zu Numerische Methoden in der Meteorologie</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ☐ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Teilleistung ist bestanden, wenn mindestens 50% der Punkte aus den Übungen erbracht wurden und einmal in der Übung vorgerechnet wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)
Numerische Methoden in der Meteorologie
4051181, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
1. Gewöhnliche und partielle Differentialgleichungen und Beispiele aus der Meteorologie
2. Finite Differenzenverfahren
3. Advektionsprobleme
4. Semi-Lagrangesche Verfahren
5. Spektrale Methoden
Organisatorisches
- Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten

Übung (Ü)
Übungen zu Numerische Methoden in der Meteorologie
4051182, SS 2022, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Inhalt
Der Vorlesung folgend.
1. Gewöhnliche und partielle Differentialgleichungen und Beispiele aus der Meteorologie
2. Finite Differenzenverfahren
3. Advektionsprobleme
4. Semi-Lagrangesche Verfahren
5. Spektrale Methoden
Organisatorisches
- Bitte melden Sie sich im ILIAS-Kurs an, um weitere Infos zu erhalten
8.71 Teilleistung: Numerische Wettewahrung [T-PHYS-101517]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100905 - Numerik und Statistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4051091</td>
<td>Numerische Wettewahrung</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4051092</td>
<td>Übungen zu Numerische Wettewahrung</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800060</td>
<td>Numerische Wettewahrung (Vorleistung)</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Vergabe von 4 LP erfolgt bei >50% der Punkte auf den Übungsblättern.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Wettewahrung

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4051091, WS 21/22, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt
1. Einleitung
2. Numerische Simulationen und Modelle
3. Datenassimilation (DA)
4. Vorhersagbarkeit
5. Verifikation
6. Nachbereitung

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.
8.72 Teilleistung: Ocean-Atmosphere Interactions [T-PHYS-111414]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 4052121 | Ocean-Atmosphere Interactions | 2 SWS | Vorlesung (V) / 🗣 | Fink, van der Linden |

Prüfungsveranstaltungen

| WS 21/22 | 7800067 | Ocean-Atmosphere Interactions (Prerequisite) | | Fink |

Erfolgskontrolle(n)

Active participation

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ocean-Atmosphere Interactions

4052121, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

- Literature
- Learning goals
- Physical and chemical properties of the upper ocean layers
 - Properties of ocean waters
 - Salinity content and density
 - Temperature distribution in the ocean
 - Horizontal salinity distribution in the ocean
 - Vertical salinity distribution
 - Horizontal and vertical density distribution
 - Characteristic water masses in the oceans
 - Dissolved gases in the ocean
 - Molecular transport
 - Properties of humid air
 - Ocean surface and its immediate environment
- Wind-driven ocean surface currents
 - Equation of motion
 - Ekman’s solution of the equation of motion
 - Mass transport associated with the Ekman current
 - Up-welling in the ocean
 - Sverdrup regime
 - Westerly boundary current: Stommel’s contribution
 - Munk’s solution
- Ocean waves
 - Generation of ocean waves by wind
 - Description of ocean waves
 - Global view on ocean wave climates
 - Ocean wave modeling
 - Ocean wave measurements
- Summary

Organisatorisches
Please sign up for more information in the Ilias course.
8.73 Teilleistung: Parallelrechner und Parallelprogrammierung [T-INFO-101345]

Verantwortung: Prof. Dr. Achim Streit
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
| SS 2022 | 24617 | Parallelrechner und Parallelprogrammierung | 2 SWS | Vorlesung (V) | Streit, Häfner |

Prüfungsveranstaltungen
| WS 21/22 | 7500241 | Parallelrechner und Parallelprogrammierung | Streit |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen aus der Lehrveranstaltung *Rechnerstrukturen* sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Parallelrechner und Parallelprogrammierung

24617, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt
Die Vorlesung gibt eine Einführung in die Welt moderner Parallel- und Höchstleistungsrechner, des Supercomputings bzw. des High-Performance Computings (HPC) und Programmierung dieser Systeme.

Zunächst werden allgemein und exemplarisch Parallelrechnersysteme vorgestellt und klassifiziert. Im Einzelnen wird auf speichergkekoppelte und nachrichtengekoppelte System, Hybride System und Cluster sowie Vektorrechner eingegangen. Aktuelle Beispiele der leistungsfähigsten Supercomputer der Welt werden ebenso wie die Supercomputer am KIT kurz vorgestellt.

Im zweiten Teil wird auf die Programmierung solcher Parallelrechner, die notwendigen Programmierparadigmen und Synchronisationsmechanismen, die Grundlagen paralleler Software sowie den Entwurf paralleler Programme eingegangen. Eine Einführung in die heute üblichen Methoden der parallelen Programmierung mit OpenMP und MPI runden die Veranstaltung ab.

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert. Dies ist bisher eine mündliche Einzelprüfung.

Der Arbeitsaufwand beträgt 120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs.

Aufgrund der aktuellen Situation durch das Coronavirus wird die Vorlesung voraussichtlich als Online-Lehrveranstaltung zum regulären Termin starten. Weitere Infos kommen immer über ILIAS.

Literaturhinweise

Teilleistung: Physics of Planetary Atmospheres [T-PHYS-109177]

Verantwortung: Prof. Dr. Thomas Leisner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltung (Veranst.) / 📚</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4052161</td>
<td>Physics of Planetary Atmospheres</td>
<td>2 SWS</td>
<td>Veranstaltung (Veranst.) / 📚</td>
<td>Leisner</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4052162</td>
<td>Exercises to Physics of Planetary Atmospheres</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Leisner, Duft</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800091</td>
<td>Physics of Planetary Atmospheres (Prerequisite)</td>
<td>Leisner</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

- If this module is part of the Specialization or Compulsory Subject, credits are earned through the associated exam (oral, written or otherwise).
- Otherwise, the exercises, computer exercises, internships or, if necessary, graduation lectures must be successfully completed.

Voraussetzungen

None

Empfehlungen

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level.

Anmerkungen

240 hours consisting of attendance times (60 hours), follow-up of the lecture incl. Exam preparation and editing exercises (180 hours).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physics of Planetary Atmospheres

4052161, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Veranstaltung (Veranst.)
Präsenz

Inhalt

The module gives a broad introduction into the formation and properties of planets and their atmospheres and tries to constrain possible planetary atmospheres by applying fundamental principles of physics. In this respect, the module will focus on the planetary atmospheres in our solar system. Moreover, recently developed methods for the remote sensing of extra solar planets are introduced and the current understanding of their atmospheres is presented. A focus is the energy budget of planetary atmospheres, where clouds play a central role. Their formation and growth will be covered in a generalized fashion.

Organisatorisches

Please sign up for more information in the Ilias course.
8.75 Teilleistung: Platzhalter Mastervorzug 1 [T-PHYS-104084]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Voraussetzungen
keine
8.76 Teilleistung: Platzhalter Zusatzleistungen 1 [T-PHYS-103860]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-105711 - Weitere Leistungen

Voraussetzungen
keine
8.77 Teilleistung: Platzhalter Zusatzleistungen 11 [T-PHYS-103870]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-105711 - Weitere Leistungen

Voraussetzungen
keine
8.78 Teilleistung: Praktikum Klassische Physik I [T-PHYS-102289]

Verantwortung: Dr. Hans Jürgen Simonis
PD Dr. Roger Wolf
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101353 - Praktikum Klassische Physik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td></td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4011113</td>
<td>Praktikum Klassische Physik I (Kurs 1)</td>
<td>6</td>
<td>Praktikum (P)</td>
<td>Simonis, Wolf</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4011123</td>
<td>Praktikum Klassische Physik I (Kurs 2)</td>
<td>6</td>
<td>Praktikum (P)</td>
<td>Simonis, Wolf</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4011133</td>
<td>Praktikum Klassische Physik I (Kurs 3)</td>
<td>6</td>
<td>Praktikum (P)</td>
<td>Simonis, Wolf</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800027</td>
<td>Praktikum Klassische Physik I</td>
<td>Wolf</td>
<td></td>
</tr>
</tbody>
</table>

Legende: ℹ️ Online, 🗿 Präsenz/Online gemischt, 🗞️ Präsenz, ✗ Abgesagt

Voraussetzungen

keine
8.79 Teilleistung: Präsentation [T-PHYS-101525]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100908 - Modul Bachelorarbeit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4051224</th>
<th>Hauptseminar</th>
<th>2 SWS</th>
<th>Hauptseminar (HS) / 🗻</th>
<th>Braesicke, Fink, Hoose, Knippertz, Kunz, Leisner, Ginete Werner Pinto</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>7800082</th>
<th>Präsentation</th>
<th>Hoose</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🗻 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Vergabe von 3 LP erfolgt bei Gutbefund des Vortrags durch mindestens einen/eine Hochschullehrer/in oder einen/eine leitende Wissenschaftler/in gemäß § 14 Abs. 3 Ziff. 1 KITG und einen/eine weitere Prüfende.

Voraussetzungen

Siehe Modul

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Hauptseminar

4051224, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)

Hauptseminar (HS)

Präsenz/Online gemischt

Inhalt

Im Hauptseminar präsentieren Studierende ihre Abschlussarbeiten im Rahmen der TL T-PHYS-101525 "Präsentation" (Bachelor).

Die Anmeldung erfolgt online über Ilias und per Mail an katharina.maurer@kit.edu

Organisatorisches

- Die Organisation findet weiterhin online statt. Bitte melden Sie sich deshalb zum ILIAS-Kurs an, um weitere Infos zu erhalten.
8.80 Teilleistung: Programmieren [T-PHYS-102292]

Verantwortung: Prof. Dr. Matthias Steinhauser
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101346 - Programmieren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>WGS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4010221</td>
<td>Programmieren für Physiker</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Steinhauser</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4010222</td>
<td>Übungen zu Programmieren für Physiker</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Steinhauser, Mildenberger</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4010223</td>
<td>Praktikum zum Programmieren für Physiker</td>
<td>5 SWS</td>
<td>Praktikum (P) / 🗣️</td>
<td>Steinhauser, Mildenberger</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studienleistung. Die erfolgreiche Teilnahme an den praktischen Übungen berechtigt zur Teilnahme an der Übungsklausur (ca. 90 Minuten).

Voraussetzungen

keine

Verantwortung: Prof. Dr. Jan Cermak
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Lehrform</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Cermak</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Legende: 📤 Online, 📢 Präsenz/Online gemischt, 🗣 Präsenz, 🗑️ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von 20 min

Voraussetzungen
T-BGU-106333 (Remote Sensing in a Changing Climate, Vorleistung) bestanden
T-BGU-101732 (Image Processing and Computer Vision) darf nicht begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Die Teilleistung T-BGU-101732 - Image Processing and Computer Vision darf nicht begonnen worden sein.

Empfehlungen
Keine

Anmerkungen
Keine

Verantwortung: Prof. Dr. Jan Cermak
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-Nummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚 Cermak</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚 Cermak</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

ErfolgreicheBearbeitung von Übungsaufgaben

Voraussetzungen

T-BGU-101732 darf nicht begonnen sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101732 - Image Processing and Computer Vision darf nicht begonnen worden sein.
8.83 Teilleistung: Remote Sensing of Atmosphere and Ocean [T-PHYS-111424]

Verantwortung: Dr. Björn-Martin Sinnhuber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilührveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4052151</th>
<th>Remote Sensing of Atmosphere and Ocean</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Sinnhuber, Cermak</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4052152</td>
<td>Exercises to Remote Sensing of Atmosphere and Ocean</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Sinnhuber, Cermak</td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

More than 50% of the points from the exercises must be achieved.

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Remote Sensing of Atmosphere and Ocean

4052151, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
- physical basics
- radiation transfer
- inverse methods
- basics of satellite remote sensing
- techniques and applications

Organisatorisches
- Please register for the ILIAS course to receive further information

Exercises to Remote Sensing of Atmosphere and Ocean

4052152, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Following the lecture.

Organisatorisches
- Please register for the ILIAS course to receive further information
8.84 Teilleistung: Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet) [T-PHYS-111767]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
8.85 Teilleistung: Selbstverbuchung BSc Meteorologie und Klimaphysik (benotet) [T-PHYS-111766]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verkocht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte
2
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
8.87 Teilleistung: Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) [T-PHYS-111764]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
8.88 Teilleistung: Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) [T-PHYS-111763]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
8.89 Teilleistung: Selbstverbuchung BSc Meteorologie und Klimaphysik (unbenotet) [T-PHYS-111765]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101799 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verbuchung von ÜQ-Leistungen
Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
8.90 Teilleistung: Seminar on IPCC Assessment Report [T-PHYS-111410]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 4052194 | Seminar on IPCC Assessment Report | 2 SWS | Hauptseminar (HS) / 🗣 | Ginete Werner Pinto, Ludwig |

Prüfungsveranstaltungen

| WS 21/22 | 7800084 | Seminar on IPCC Assessment Report | | Fink |

Erfolgskontrolle(n)
Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min) and submission of a written summary (1 page).

Voraussetzungen
none

Empfehlungen
none

Anmerkungen
none

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar on IPCC Assessment Report
4052194, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Causes of climate change and paleoclimate (external and internal influence factors on the climate, results and structure of simple climate models with and without feedbacks, radiation effect and importance of greenhouse gases, results of model projections of the global climate, IPCC process structure and importance for the life on earth).
The objectives of this Seminar are to provide an overview of the last IPCC Report (currently 2013) and to develop scientific presentation and discussion skills.

Organisatorisches
Please sign up for more information in the Ilias course.
8.91 Teilleistung: Seminar über aktuelle Themen aus der Risikoforschung [T-PHYS-107673]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Voraussetzungen
keine

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>
Teilleistung: Statistik in der Meteorologie [T-PHYS-101515]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100905 - Numerik und Statistik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Stundens per Woche (SWS)</th>
<th>Art</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4051071</td>
<td>Statistik in der Meteorologie</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Knippertz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4051072</td>
<td>Übungen zu Statistik in der Meteorologie</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz/Online gemischt</td>
<td>Knippertz, Meyer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800042</td>
<td>Statistik in der Meteorologie (Vorleistung)</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Vergabe von 4 LP erfolgt bei >50% der Punkte in den Übungen.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Statistik in der Meteorologie

4051071, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz/Online gemischt

Inhalt

1. Einleitung (Ziele, Historie, grundlegende Konzepte, Software, Literatur)
2. Deskriptive Statistik (Tabellen, stat. Maßzahlen, graph. Darstellung, Datentransformation)
3. Grundlegende Wahrscheinlichkeitskonzepte (Ereignisse, Zufallsvariablen, bedingte und Verbundwahrscheinlichkeit, Erwartungswert, (Ko-)varianz, Korrelation)
4. Wahrscheinlichkeitsverteilungen (für diskrete und kontinuierliche Variablen)
5. Parameterschätzung (Stichproben, Konfidenzintervalle, Schätzfunktion)
6. Statistische Hypothesentests (Entscheidungsprozedur, Nullhypothese, ein- und zweiseitige Tests)
7. Lineare Regression (ANOVA, Residuumsdiagnostik)
8. Multiple und nicht-lineare Regression (multiple, multivariante, parametrische und nicht-parametrische Regression)
9. Einführung in Zeitreihenanalyse (Filtern und Glätten, Serienkorrelation, autoregressives Modell)

Organisatorisches

Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.
8.93 Teilleistung: Strömungsmesstechnik [T-BGU-103562]

Verantwortung: Dr.-Ing. Christof-Bernhard Gromke
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
8.94 Teilleistung: Synoptik I [T-PHYS-101519]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100906 - Synoptische Meteorologie

Lehrveranstaltungen

WS 21/22	4051051	Synoptik I	2 SWS	Vorlesung (V) / Präsenz	Fink
WS 21/22	4051052	Übungen zu Synoptik I	2 SWS	Übung (Ü) / Präsenz	Fink, Quinting
WS 21/22	4051064	Seminar zur Wettervorhersage I	2 SWS	Seminar (S) / Präsenz	Fink, Quinting

Prüfungsveranstaltungen

| WS 21/22 | 7800049 | Synoptik I (Vorleistung) | Fink |

Erfolgskontrolle(n)
Die Vergabe von 6 LP erfolgt nach bestandenem Test in den Übungen zur Synoptik I und Gutbefeund des Vortrags im Seminar zur Wettervorhersage I.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Synoptik I

4051051, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In der Vorlesung Synoptik I mit Übung werden u.a. Gleichgewichtswinde, ageostrophische Winde, Zyklogen- und Frontenmodelle, Fronto- und Zyklogenese, die Zerlegung des horizontalen Stromfeldes, Divergenz und Vorticity, Rossbywellen sowie die Potentielle Vorticity (PV) und quasigeostrophische Diagnostik behandelt. Im Vordergrund steht die Anwendung der theoretischen und diagnostischen Konzepte anhand von idealisierten Beispielen und vergangenen (Extrem-)Wetterlagen.

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.

Übungen zu Synoptik I

4051052, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In der Übung werden bei der Handanalyse von Wetterkarten die in der Vorlesung vermittelten theoretischen und diagnostischen Konzepte angewendet.

Organisatorisches
Bitte melden Sie sich im Iliaskurs zur Vorlesung "Synoptik I" an, um weitere Informationen zu erhalten.

Seminar zur Wettervorhersage I

4051064, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Wetterseminar soll die in der Vorlesung und Übung vermittelte Diagnostik anhand der aktuellen Wetterlage angewandt und weiter vertieft werden.

Organisatorisches
Bitte melden Sie sich im Iliaskurs zur Vorlesung "Synoptik I" an, um weitere Informationen zu erhalten.
8.95 Teilleistung: Synoptik II [T-PHYS-101520]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100906 - Synoptische Meteorologie

Erfolgskontrolle(n)
Die Vergabe von 4 LP erfolgt nach bestandenem Test in den Übungen zur Synoptik II und Gutbefund des Vortrags im Seminar zur Wettervorhersage.

Voraussetzungen
keine
8.96 Teilleistung: Synoptische Meteorologie [T-PHYS-101521]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100906 - Synoptische Meteorologie

Erfolgskontrolle(n)
Die Vergabe von 2 LP erfolgt nach bestandener mündlicher Prüfung (siehe Modulbeschreibung).

Voraussetzungen
Die Anmeldung ist erst möglich, wenn die Studienleistungen Synoptik I und Synoptik II erbracht wurden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101519 - Synoptik I muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101520 - Synoptik II muss erfolgreich abgeschlossen worden sein.
8.97 Teilleistung: Theoretische Meteorologie I [T-PHYS-101482]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100903 - Grundlagen der Theoretischen Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Ort</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 4051021</td>
<td>Theoretische Meteorologie I</td>
<td>3</td>
<td>Präsenz/Online gemischt</td>
<td>Hoose, Grams</td>
</tr>
<tr>
<td>WS 21/22 4051022</td>
<td>Übungen zu Theoretische Meteorologie I</td>
<td>2</td>
<td>Präsenz/Online gemischt</td>
<td>Hoose, Grams, Muth, Maurer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltnummer</th>
<th>Prüfung</th>
<th>SWS</th>
<th>Ort</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7800013</td>
<td>Theoretische Meteorologie I (Vorleistung)</td>
<td></td>
<td></td>
<td>Hoose, Grams</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Abgesagt

Erfolgskontrolle(n)
Teilleistung ist bestanden, wenn mindestens 50% der Punkte aus den Übungen erbracht sind und einmal in der Übung vorgerechnet wurde.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Theoretische Meteorologie I
4051021, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

> Vorlesung (V)
> Präsenz/Online gemischt

Inhalt

1. Bewegungsgleichungen für Fluide
 - Euler- und Lagrangebetrachtung
 - Kontinuitätsgleichung
 - Impulsbilanzgleichung
 - Thermodynamische Gleichungen für Fluide

2. Rotation und vertikale Schichtung
 - Bewegungsgleichung im rotierenden System
 - Übertragung in Kugelkoordinaten
 - Lokale kartesische Koordinatensysteme
 - Boussinesq- und anelastische Approximation
 - Naturliche Koordinaten
 - Gleichgewichtswinde
 - Statische Stabilität
 - Schwerewellen
 - Ekman-Schicht

3. Flachwassersysteme
 - Flachwassergleichungen
 - Wellenausbreitung

Organisatorisches
Bitte melden Sie sich im Ilias kurs an, um weitere Informationen zu erhalten.
8.98 Teilleistung: Theoretische Meteorologie II [T-PHYS-101483]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100903 - Grundlagen der Theoretischen Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Einsicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4051121</td>
<td>Theoretische Meteorologie II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Grams, Hoose</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4051122</td>
<td>Übungen zu Theoretische Meteorologie II</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Grams, Hoose, NN</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⚠ Abgesagt

Erfolgskontrolle(n)
Die Teilleistung ist bestanden, wenn mindestens 50% der Punkte aus den Übungen erbracht wurden und einmal in der Übung vorgerechnet wurde.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Theoretische Meteorologie II
4051121, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Isentrope Koordinaten
2. Zirkulation und Vorticity
3. Vorticitygleichung
4. Erhaltung Potentieller Vorticity
5. Heterogene thermodynamische Systeme
6. Phasenübergänge in der Atmosphäre
7. Grundlagen der Wolkenphysik

Organisatorisches
- Bitte melden Sie sich zum ILIAS-Kurs an, um weitere Infos zu erhalten

V Übungen zu Theoretische Meteorologie II
4051122, SS 2022, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Der Vorlesung folgend.
1. Isentrope Koordinaten
2. Zirkulation und Vorticity
3. Vorticitygleichung
4. Erhaltung Potentieller Vorticity
5. Heterogene thermodynamische Systeme
6. Phasenübergänge in der Atmosphäre
7. Grundlagen der Wolkenphysik

Organisatorisches
- Bitte melden Sie sich im ILIAS-Kurs an, um weitere Infos zu erhalten
8 TEILLEISTUNGEN

8.99 Teilleistung: Theoretische Meteorologie III [T-PHYS-101512]

Verantwortung: Prof. Dr. Peter Braesicke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100904 - Fortgeschrittene Theoretische Meteorologie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übungen</th>
<th>SWS</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4051041: Theoretische Meteorologie III</td>
<td>4051042: Übungen zu Theoretische Meteorologie III</td>
<td>3/2</td>
<td>Vorlesung (V) / Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800048: Theoretische Meteorologie III (Vorleistung)</td>
<td>Braesicke</td>
</tr>
</tbody>
</table>

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Theoretische Meteorologie III
4051041, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.

Voraussetzungen
keine

Inhalt
1. Einführung, Grundgleichungssystem
2. Quasigeostrophische Theorie (1)
3. Quasigeostrophische Theorie (2)
4. PV Diagnostiken
5. Wellen in der Atmosphäre (Einführung)
6. Barokline Instabilitäten (Grundlagen)
7. Barokline Instabilitäten (Energetik)
8. Wellen in der Atmosphäre (1)
9. Wellen in der Atmosphäre (2)
10. Wellen: Von mittleren zu tropischen Breiten
11. Quasi-Zweijährige Schwungung
12. Brewer-Dobson Zirkulation (TEM und EP Flüsse)
13. Größere Zusammenhänge (ENSO, Monsun, etc.)
14. Vorträge
8.100 Teilleistung: Theoretische Meteorologie IV [T-PHYS-101513]

Verantwortung: Prof. Dr. Peter Braesicke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-100904 - Fortgeschrittene Theoretische Meteorologie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V) / Übung (Ü)</th>
<th>Leistungspunkte</th>
<th>Leistungskamera</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Vorlesung (V) / Hoose</td>
<td>4051081</td>
<td>Theoretische Meteorologie IV</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Übung (Ü) / Bartholdt, Hoose</td>
<td>4051082</td>
<td>Übungen zu Theoretische Meteorologie IV</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Theoretische Meteorologie IV (Vorleistung)</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Braesicke</td>
<td>7800050</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Teilleistung ist bestanden, wenn mindestens 50% der Punkte aus den Übungen erbracht sind und einmal in der Übung vorgerechnet wurde.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Theoretische Meteorologie IV
4051081, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
- Charakteristika der atmosphärischen Grenzschicht
- Statistische und konzeptionelle Werkzeuge in der Grenzschicht-Meteorologie
- Grundlegende Gleichungen für turbulente Strömungen
- Prognostische Gleichungen für turbulente Flüsse
- Turbulente kinetische Energie, Stabilität und Skalierungsparameter
- Schließungsansätze
- Randbedingungen und externer Antrieb
- Statistische Werkzeuge der Zeitreihenanalyse
- Ähnlichkeitstheorie
- Tageszeitliche Entwicklung der Grenzschicht
- Strömung in Pflanzenbeständen
- Grundlagen der Eddy-Kovarianz-Methode
- Modellierung des Oberflächen-Atmosphäre-Austauschs
- Geographische Effekte

Organisatorisches
Bitte melden Sie sich im Iliaskurs an, um weitere Informationen zu erhalten.
8.101 Teilleistung: Tropical Meteorology [T-PHYS-111411]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4052111 Tropical Meteorology 2 SWS Vorlesung (V) / Knippertz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4052112 Exercises to Tropical Meteorology 1 SWS Übung (Ü) / Knippertz, Lemburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800085 Tropical Meteorology (Prerequisite) Fink</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Students must achieve 50% of the points on the exercise sheets.

Voraussetzungen
None

Empfehlungen
None

Anmerkungen
None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Tropical Meteorology

4052111, WS 21/22, 2 SWS, Sprache: Englisch, **Im Studierendenportal anzeigen**

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Dynamics and climate of the Tropics (tropical circulation, Hadley and Walker cells, monsoons, El Niño, equatorial waves, Madden-Julian Oscillation, easterly waves, tropical cyclones, tropical squall lines).

Organisatorisches
Please sign up for more information in the Ilias course.
8.102 Teilleistung: Turbulent Diffusion [T-PHYS-111427]

Verantwortung: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshayripour

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>4052081</th>
<th>Turbulent Diffusion</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 📚</th>
<th>Hoshayripour, Hoose</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Hoshayripour, Hoose, Bruckert</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 💼 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

There are 7 exercises with 100 points in total.
To be admitted for the oral exam the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Voraussetzungen

None

Empfehlungen

None

Anmerkungen

None

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Turbulent Diffusion

4052081, SS 2022, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Inhalt

1. Life cycle of air pollutants
2. Relevant processes and substances
3. Quantification of trace substances
4. Emissions
5. Turbulence and averaging
6. The diffusion equation
7. Chemical Transformations
8. Aerosol processes
9. Atmospheric models: ICON-ART modeling system
10. Parametrisation of turbulent fluxes
11. Aerosol interactions

Organisatorisches

- Please register for the ILIAS course to receive further information

V Exercises to Turbulent Diffusion

4052082, SS 2022, 1 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
Inhalt
There are 7 exercises with 100 points in total. To be admitted for the oral exam the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Organisatorisches

- Please register for the ILIAS course to receive further information
Teilleistung: Verteiltes Rechnen [T-INFO-101298]

Verantwortung: Prof. Dr. Achim Streit
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-PHYS-105751 - Erfolgskontrollen

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen
WS 21/22 2400050 Verteiltes Rechnen 2 SWS Vorlesung (V) / Online Streit, Krauß, Fischer

Prüfungsveranstaltungen
WS 21/22 7500172 Verteiltes Rechnen Streit

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle
• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO stattfindet.

Voraussetzungen
Keine

Empfehlungen
Das Modul: Einführung in Rechnernetze wird vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verteiltes Rechnen
2400050, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online
Inhalt

In einem weiteren Themenblock werden Konzepte zum Management großer bzw. verteilter Daten vorgestellt. Dabei wird sowohl auf übliche Werkzeuge und Frameworks eingegangen, als auch auf den Lebenszyklus von Daten, deren Metadaten und die Daten-Speicherung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle
• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO stattfindet.

120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs

Literaturhinweise