Module Handbook
Master of Science Meteorology (M.Sc.)
SPO 2015
Winter term 2020/21
Date: 30/09/2020

KIT DEPARTMENT OF PHYSICS
Table Of Contents

1. Introduction to the Study Guide .. 4
2. Curriculum .. 5
3. Competence Goals .. 8
4. Excerpts from the Regulation for the Study and Examination ... 9
5. Modules ... 16
 5.1. Applied Meteorology [Met-AngM2-1] - M-PHYS-109954 ... 18
 5.2. Atmospheric Processes [Met-AtPr1-1] - M-PHYS-109952 ... 20
 5.5. Computer Vision and GIS - M-BGU-102757 ... 23
 5.6. Computer Vision and Remote Sensing - M-BGU-102759 ... 24
 5.9. Geoeconomy - M-BGU-103398 ... 28
 5.10. Geological Hazards and Risk - M-PHYS-101833 ... 30
 5.11. Geophysical analysis of natural hazards - M-PHYS-103336 ... 32
 5.12. GIS and Geo Data Infrastructures - M-BGU-102760 ... 34
 5.13. GIS and Remote Sensing - M-BGU-102758 ... 35
 5.16. Modern Theoretical Physics for Teacher Students - M-PHYS-101664 .. 40
 5.17. Modern Theoretical Physics I, Quantum Mechanics I - M-PHYS-101707 .. 41
 5.18. Module Wildcard Electives - M-PHYS-103403 .. 42
 5.19. Numerical Methods - M-MATH-100536 ... 43
 5.20. Physics of Planetary Atmospheres - M-PHYS-104488 ... 44
 5.22. Specialisation Phase [Met-Spph3-1] - M-PHYS-109955 ... 46
6. Courses ... 47
 6.3. Advanced Practical Courses - T-PHYS-109135 ... 49
 6.4. Applied Meteorology (Module Exam) - T-PHYS-109143 ... 50
 6.5. Atmospheric Aerosols - T-PHYS-108938 .. 51
 6.6. Atmospheric Processes (Module Exam) - T-PHYS-108939 ... 52
 6.7. Atmospheric Radiation - T-PHYS-107696 .. 53
 6.10. Big Data Analytics - T-INFO-101305 ... 56
 6.11. Building and Environmental Aerodynamics - T-BGU-111060 ... 57
 6.13. Cloud Physics - T-PHYS-107694 .. 59
 6.14. Components of the Climate System (Module Exam) - T-PHYS-108933 ... 60
 6.15. Data Analysis in Geoscience Remote Sensing Projects, Prerequisite - T-BGU-106633 61
 6.16. Database Systems - T-INFO-101497 ... 62
 6.17. Distributed Computing - T-INFO-101298 ... 63
 6.18. Energetics - T-PHYS-107695 ... 64
 6.20. Exam on Physics of Planetary Atmospheres - T-PHYS-109180 .. 66
 6.21. Experimental Meteorology (Module Exam) - T-PHYS-109137 .. 67
 6.22. Field Course Soil Science - T-BGU-107486 ... 68
 6.23. Field Trip - T-PHYS-109136 ... 69
 6.25. Fluid Mechanics of Turbulent Flows - T-BGU-110841 ... 71
 6.26. Geo Data Infrastructures and Web Services - T-BGU-101756 ... 72
 6.27. Geodata Infrastructures and Web-Services, Prerequisite - T-BGU-101757 73
 6.28. Geological Hazards and Risk - T-PHYS-103525 .. 74
 6.29. Geomorphology and Soil Science - T-BGU-107487 ... 75
 6.30. Image Processing and Computer Vision - T-BGU-101732 .. 76
6.31. Integrated Atmospheric Measurements - T-PHYS-109902 ... 77
6.32. Introduction into Classification Methods of Remote Sensing - T-BGU-105725 78
6.33. Introduction to GIS for Students of Natural, Engineering and Geo Sciences - T-BGU-101681 79
6.34. Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite - T-BGU-103541 80
6.35. Introduction to Volcanology, Exam - T-PHYS-103644 ... 81
6.36. Introduction to Volcanology, Prerequisite - T-PHYS-103553 ... 82
6.37. Master`s Thesis - T-PHYS-109616 ... 83
6.38. Meteorological Hazards - T-PHYS-109140 ... 84
6.40. Middle Atmosphere in the Climate System - T-PHYS-108931 ... 86
6.41. Mobile Computing and Internet of Things - T-INFO-102061 ... 87
6.42. Modern Theoretical Physics for Teacher Students - T-PHYS-103204 .. 88
6.43. Modern Theoretical Physics for Teacher Students - Prerequisite - T-PHYS-103203 89
6.44. Modern Theoretical Physics I, Quantum Mechanics 1 - T-PHYS-105134 ... 90
6.45. Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1 - T-PHYS-102317 91
6.46. Numerical Methods - Exam - T-MATH-100803 ... 92
6.47. Ocean-Atmosphere Interactions - T-PHYS-108932 ... 93
6.48. Parallel Computer Systems and Parallel Programming - T-INFO-101345 .. 94
6.49. Physics of Planetary Atmospheres - T-PHYS-109177 ... 95
6.52. Remote Sensing of Atmospheric State Variables - T-PHYS-109133 .. 98
6.55. Scientific Concept Development - T-PHYS-109617 ... 101
6.56. Seminar on IPCC Assessment Report - T-PHYS-107692 .. 102
6.57. Seminar on Recent Topics of Risk Science - T-PHYS-107673 ... 103
6.58. Tropical Meteorology - T-PHYS-107693 ... 104
6.59. Turbulent Diffusion - T-PHYS-108610 ... 105
6.60. Visualization - T-INFO-101275 ... 107
6.61. Wildcard - T-PHYS-106795 .. 108
6.62. Wildcard - T-PHYS-106796 .. 109
6.63. Wildcard - T-PHYS-106794 .. 110
6.64. Wildcard - T-PHYS-108286 .. 111
6.65. Wildcard - T-PHYS-106797 .. 112
6.66. Wildcard - T-PHYS-108283 .. 113
6.67. Wildcard - T-PHYS-108285 .. 114
6.68. Wildcard - T-PHYS-108284 .. 115

1 Introduction to the Study Guide

This module handbook is the relevant document describing the structure and the contents of the Master’s degree program in Meteorology, and thus provides helpful information and guidance for the studies. The degree program and its subjects and modules are described in detail, thus providing the necessary information for planning an interdisciplinary course of studies tailored to each student’s personal interests and needs.

The first section Study Guide specifies the organization of the degree program and further formalities in addition to the general regulations for the Study and Examination.

A key function of the module handbook is the collection of module descriptions (Section 2) and course descriptions (Section 3), which provide information on the requirements and recommendations.

In addition to this module handbook, the university calendar and possibly announcements of the institutes inform about further details, for example, on times and places of lectures and classes.

Please note, that only the German version of the Regulation for the Study and Examination ("Studien- und Prüfungsordnung", SPO) is legally binding. The translated version is for the purpose of information only.

According to the operating instructions for study operation of July 30, 2020, courses of all kinds with a limited number of participants can again be held on the KIT campus since August 1, 2020, provided that the hygiene regulations and the safety distance are observed. In all cases, a risk assessment in accordance with the "Regulations on KIT Operation, as of July 8, 2020" must be prepared by the responsible persons. Due to the limited space available and the minimum distances between persons to be observed, the number of participants allowed will be considerably lower than the officially permitted number (500). We will make every effort to maintain the quality of teaching, even if there are no or only a few classroom events. Information on this can be found in the current timetable, which can be found on the website under "Study and Teaching".
3 Curriculum

3.1 Program Structure | Subjects

The degree program in Meteorology comprises 120 credits corresponding to the European Credit Transfer System (ECTS) and is divided into the subjects

- Atmosphären- und Klimaprozesse (Atmospheric and Climate Processes) (24 ECTS)
- Angewandte und Experimentelle Meteorologie (Applied and Experimental Meteorology) (24 ECTS)
- Wahlpflichtbereich (Compulsory Electives) (8 ECTS)
- Überfachliche Qualifikationen (Soft Skills) (4 ECTS)
- Wissenschaftliches Arbeiten: (Research Work: Specialization Phase) (30 ECTS)
- Masterarbeit (Master’s Thesis) (30 ECTS)
- Zusätzliche Leistungen (Additional Subjects) (max. 30 ECTS)

Atmospheric and Climate Processes
This is one of two core meteorological subjects comprising two large modules on Components of the Climate System (12 ECTS, see chapter 2.1.) and Atmospheric Processes (12 ECTS, see chapter 2.2.).

Applied and Experimental Meteorology
This is one of two core meteorological subjects comprising two large modules on Experimental Meteorology (14 ECTS, see chapter 2.3.) and Applied Meteorology (10 ECTS, see chapter 2.4.).

Compulsory Electives
The study can be complemented by electives to individualize the degree program. These could thus be modules from related disciplines such as Physics, Geocology, Geophysics, Mechanical Engineering, or Applied Geo sciences.

Examples of possible Compulsory Elective Modules from other disciplines are listed in section II chapter 5. All subject-specific modules, for which an examination has not already been taken, can be chosen.

Research Work: Specialization Phase
Students carry out an interdisciplinary Study Project, for which 30 ECTS are credited. The project prepares students for independent scientific working and writing, and introduces skills in project management. The Study Project focuses on the topic of the subsequent Master’s Thesis and serves as a preparation for the scientific work. In addition to the competence in reading and understanding scientific literature, the students acquire abilities for independent work and critical evaluation of results in the context of the literature.

Master’s Thesis
This module is intended to provide students with in-depth aspects of scholarly writing and presentation. Building on the results from the Specialization Phase, students further advance their own research project to finally write a Master’s Thesis. The written scientific work includes a summary of the state of the literature, presentation of the goals, methods used and the results obtained as well as a discussion of the knowledge gained and the remaining open questions.
More information about the modules *Specialization Phase* and *Master’s Thesis* is provided in the Guidelines to Master’s Thesis in section 4.

3.2 Program

The master’s degree program in Meteorology deepens and extends the essential scientific qualifications obtained in the Bachelor’s program in a research-oriented way. Consolidation occurs in the areas of Theoretical Meteorology and Numerical Weather Prediction, Climatology, Remote Sensing and Data Analysis as well as in Atmospheric Chemistry and Aerosols, while extensions take place in the area of Applied Meteorology. A comprehensive practical course familiarizes the graduates with methods of modern atmospheric measurements in the laboratory and field. With the completion of the Master’s thesis, the graduates have demonstrated that they are capable of applying scientific knowledge and methods to independently solve complex research problems. In addition, they acquired detailed skills in an elective from a wide range of other natural sciences.

Graphic Course Program M.Sc. Meteorology (SPO 2015)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WS)</td>
<td>30</td>
<td>Components of the Climate System 12 ECTS</td>
<td></td>
<td>Elective 1 & Elective 2 at least 8 ECTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Examinations</td>
<td>Atmospheric Processes 12 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (SS)</td>
<td>31</td>
<td>Experimental Meteorology 14 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Examinations</td>
<td>Applied Meteorology 10 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (WS)</td>
<td>29</td>
<td></td>
<td>Specialization Phase: Scientific Concept Development 30 ECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (SS)</td>
<td>32</td>
<td></td>
<td>Master’s Thesis 30 ECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In addition to the compulsory modules mentioned here, interdisciplinary qualifications amounting to 4 credit points must be completed. In this example, the Soft Skills are scheduled for semesters 1 and 2. Depending on your choice, additional examinations may be required in the respective semesters.

Course Program of the Masters Course Meteorology. Credits corresponding to the European Credit Transfer System (ECTS).
Exemplary choice of subject in the compulsory elective area:

Module „Fluid Mechanics and Turbulence“ (graded)

WS (1st semester): Choice between:
- Flow Measurement Techniques (3 CP, oral exam, approx. 30 min.) and
- Environmental Aerodynamics (3 CP, oral exam, approx. 30 min.)

SS (2nd semester): Choice between:
- Advanced Fluid Mechanics (6 CP, written exam, 90 min.) and
- Fluid Mechanics of Turbulent Flows (6 CP, oral exam, approx. 45 min.)

In the event of a clash of dates with selected compulsory courses, students always have the option of postponing attendance of the elective compulsory modules until the third or fourth semester. It is recommended that the planning be done together with the departmental student advisor during a consultation.
2 Qualification Goals

The graduates of the Master’s program in Meteorology know and understand the scientific fundamentals of meteorology and climatology, and have deepened them in the areas of the climate system, atmospheric processes as well as applied and experimental meteorology. This also includes aspects of atmospheric composition and thus of trace gases and aerosols. They have well-founded knowledge of programming techniques, numerical methods, computer simulations and data analysis, and have the ability to explain and at least partly apply complex atmospheric measurements in the laboratory, field and from satellite. They are familiar with mechanisms of the climate system and climate change. They know the relevance of meteorological phenomena such as extreme weather events, air pollution and climate change for society, nature and economy as well as for geoscientific neighboring disciplines, and can discuss and debate them. They also have detailed knowledge in a scientific elective.

Based on the acquired knowledge, the graduates correctly classify facts and thematic areas, and have the ability to solve – or develop approaches to solve – complex problems of the atmospheric and environmental sciences in an analytical-theoretical, computer-based or experimental way. They have the ability to deduce relationships from measured or modeled data, to formulate models, to derive predictions and to concretely test them, and thus to verify or falsify them. In addition, they can apply meteorological knowledge to research-related questions and are able to solve technical problems using the methods of the subject, also employing computer programs.

The graduates furthermore have sound methodological skills with regard to clear presentation and structuring of scientific findings and research results in written and spoken texts, and are proficient in didactically appealing presentation techniques. They can work independently and have extensive communication and organizational skills, including sound knowledge of scientific English. They are able to acquire new knowledge and insights as needed and thus to achieve a broadening or deepening of their knowledge. They have learned to reflect on their actions, and to recognize and evaluate the social and ethical aspects of meteorological research and application.

The distinctiveness of the Master’s program in Meteorology compared to other universities lies in the broad range of aspects of meteorology covered as well as the strong research relevance. A successful completion of the Master’s program in Meteorology is an excellent foundation for a PhD in Meteorology or in related disciplines, and enables an applied or researching professional activity, i.a. in the field of weather forecasting, earth observation, satellite-based remote sensing and the compilation of environmental reports as well as in atmospheric research institutions and in the insurance and energy industries.
4 Excerpts from the Regulation for the Study and Examination (SPO)

4.1 Regular Period of Study, Organization of Study, Credits (§3, SPO)

(1) The regular period of study shall be four semesters.
(2) The curriculum of the program is divided into subjects, the subjects into modules, and the modules are divided into courses. The subjects and their scopes are defined in Article 19. Details are outlined in the module manual.
(3) The workload envisaged for passing courses and modules is expressed in credits. The criteria for assigning credits correspond to the European Credit Transfer System (ECTS). One credit corresponds to a workload of about 30 hours. Usually, the credits shall be distributed equally over the semesters.
(4) The coursework and examinations required for the successful completion of the study are measured in credits and amount to a total of 120 credits.
(5) Upon prior announcement, the courses may also be offered in English.

4.2 Module Examinations, Coursework and Assessments (§4, SPO)

(1) The master's examination shall consist of module examinations. Module examinations shall consist of one or several controls of success ("Erfolgskontrollen"). Controls of success shall consist of coursework ("Studienleistungen") and assessments ("Prüfungsleistungen").
(2) Assessments are:
 • Written examinations,
 • oral examinations, or
 • examinations of another type.
(3) Coursework shall be written, oral, or practical work that is usually accomplished by students simultaneously to the taught courses. The master’s examination must not be completed by a coursework.
(4) At least 70% of the module examinations shall be graded.
(5) In case of complementary contents, module examinations of several modules may be combined (par. 2, nos. 1-3).

4.3 Registration for and Admission to Module Examinations and Courses (§5, SPO)

(1) To participate in module examinations, students shall register online on the Students Portal for the corresponding controls of success. In exceptional cases, registration can be made in writing to the Students Office or another institution authorized by the latter. For controls of success, registration deadlines may be specified by the examiners. Registration of the master’s thesis is outlined in the module manual.

To get help with the Campus System visit https://www.sle.kit.edu/imstudium/videotutorials-campus.php (currently available only in German language) or ask the student counseling via Mail.

(2) For admission to an examination in an elective module, students shall submit – together with their registration for the examination – a binding declaration relating to their choice of the module and its assignment to a subject prior to the first examination in this module. At the request of the student to the examination committee, the choice or assignment can be changed later. If an examination procedure in a module has already started, the choice of elective or assignment to a subject can only be changed after its completion.
(3) Admission to a control of success shall be granted to students, who
• are enrolled in the Master’s Program in Meteorology at KIT; with the admission of students on leave being limited to examinations, and to students, who
• can prove that they meet the requirements for admission to a control of success outlined in the module manual and
• can prove that their entitlement to an examination in the Master’s Program in Meteorology has not been lost.

(4) According to Article 30, par. 5, LHG (Landeshochschulgesetz), admission to individual mandatory courses may be restricted. The examiner shall decide on the selection of students, who have registered in due time before the deadline given by the examiner, taking into account the study progress made by these students and taking into consideration Article 13, par. 1, clauses 1 and 2, if the surplus of registrations cannot be reduced by other or additional courses. In the case of identical study progress, further criteria shall be specified by the KIT departments. The result shall be announced to the students in due time.

(5) Admission shall be refused, if the conditions outlined in pars. 3 and 4 are not fulfilled. Admission may be refused, if a control of success that was required for admission to this Master’s Program was already passed in a KIT bachelor’s program. This shall not apply to premature master’s examinations (“Mastervorzug”). Admission to these shall be approved explicitly according to clause 1.

4.4 Execution of Controls of Success (§6, SPO)

(1) Controls of success shall be performed simultaneously to the taught courses, usually while conveying the contents of the individual modules or shortly afterwards.

(2) The type of control of success (Article 4, par. 2, nos. 1 – 3, par. 3) shall be specified by the examiner of the respective course depending on the contents of the course and teaching objectives of the module. The type of controls of success, their frequency, sequence, weighting, and the determination of the module grade, if applicable, shall be announced in the module manual six weeks prior to the start of the lecturing period at the latest. The examiner and student may change the type of examination and the examination language later on. In the former case, Article 4, par. 4 has to be observed. When organizing examinations, the needs of students with a disability or chronic disease shall be considered according to Article 13, par. 1. Article 13, par. 1, clauses 3 and 4 shall apply accordingly.

(3) In case of an unreasonably high examination workload, a written examination may also be passed orally or an oral examination may also be passed in writing. This modification shall be announced six weeks prior to the examination at the latest.

(4) In case of courses in the English language (Article 3, par. 5), the corresponding controls of success can be executed in this language. Article 6, par. 2 shall apply accordingly.

(5) Written examinations (Article 4, par. 2, no. 1) shall usually be evaluated by an examiner according to Article 17, pars. 2–4. If an evaluation is made by several examiners, the grade shall be the arithmetic mean of the individual evaluations. If the arithmetic mean does not correspond to any of the grade levels defined in Article 7, par. 2, cl. 2, the grade shall be rounded to the next higher or lower grade level. In case of equal distance to the next higher and lower levels, the grade shall be rounded to the next higher grade level. The evaluation procedure shall not exceed six weeks. Written examinations shall last at least 60 and not more than 300 minutes.
(6) Oral examinations (Article 4, par. 2, no. 2) shall be performed and evaluated as group or individual examinations by several examiners (examining board) or by one examiner in the presence of an assessor. Prior to determining the grade, the examiner shall consult the other examiners of the examining board. Oral examinations shall usually last at least 15 minutes and not more than 60 minutes per student.

Major details and results of the oral examination shall be minuted. The result of the examination shall be announced to the student directly after the oral examination.

Students who intend to take the same examination in a later semester shall be admitted to oral examinations as an observer depending on the space available and upon approval of the examinee. They shall not be admitted to the consultation of the examining board and the announcement of the examination results.

(7) For examinations of another type, (Article 4, par. 2, no. 3), appropriate deadlines and submission dates shall be specified. Proper description of the task and adequate documentation shall ensure that the examination passed can be credited to the student.

Major details and results of the control of success shall be minuted.

During oral examinations of another type, an assessor shall be present in addition to the examiner, who shall also sign the minutes together with the examiner.

Theses or papers to be written for an examination of another type shall be provided with the following declaration:

“Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.”

“I herewith declare that the present thesis/paper is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications.”

If the thesis/paper does not contain this declaration, it shall not be accepted. Major details and results of such a control of success shall be minuted.

4.5 Controls of Success by a Multiple-Choice Test (§6a, SPO)

It is outlined in the module manual whether and to what extent controls of success can be made by a multiple-choice test.

4.6 Repetition of Examinations, Ultimate Failure (§8, SPO)

(1) Students may repeat once a written examination that has not been passed (Article 4, par. 2, no. 1). In case a repeated written examination is given the grade of “nicht ausreichend” (5.0, failed), an oral re-examination shall take place soon after the date of the failed examination. In this case, the grade of this examination may not be better than “ausreichend” (4.0, sufficient).

(2) Students may repeat once an oral examination that has not been passed (Article 4, par. 2, no. 2).

(3) Repeated examinations according to paragraphs 1 and 2 shall correspond to the first examination in terms of contents, scope, and type (oral or written). At request, exceptions may be approved by the responsible examination committee.

(4) Examinations of another type (Article 4, par. 2, no. 3) can be repeated once.

(5) Coursework can be repeated several times.
An examination shall ultimately not be passed, if the oral re-examination according to par. 1 was evaluated with the grade of “nicht ausreichend” (5.0, failed). The examination also shall ultimately not be passed, if the oral examination according to par. 2 or the examination of another type according to par. 4 was evaluated twice with the grade of “nicht bestanden” (failed).

The module shall ultimately not be passed, if an examination required for passing the module is ultimately not passed.

A second repetition of the same examination according to Article 4, par. 2 shall be possible in exceptional cases at the request of the student only (“Antrag auf Zweitwiederholung” — application for a second repetition). As a rule, the application shall be submitted in writing to the examination committee within two months after announcement of the grade. The examination committee shall decide on the first application of a student for a second repetition. If the examination committee dismisses the application, a member of the Presidential Committee shall decide. Upon comment of the examination committee, a member of the Presidential Committee shall decide on further applications for a second repetition. If the application is accepted, the second repetition shall take place on the next but one examination date at the latest. Paragraph 1, clauses 2 and 3 shall apply accordingly.

Repetition of a passed examination shall not be permitted.

In case a Master's thesis has been granted the grade “nicht ausreichend” (5.0, failed), it can be repeated once. A second repetition of the Master's thesis shall be excluded.

4.7 Loss of the Entitlement to an Examination (§9, SPO)

In case coursework or an examination required according to the present Regulations for Study and Examination is ultimately not passed or the master’s examination, including potential repetitions, is not passed completely by the end of the examination period of the seventh semester, the entitlement to examination in the Master's Program in Meteorology shall expire, unless the student is not responsible for having exceeded the deadline. The decision on extending the deadline and on exceptions from the deadline regulations shall be made by the examination committee taking into account the activities listed in Article 32, par. 6, LHG at the request of the student. This request shall be made in writing usually six weeks prior to the expiry of the deadline.

4.8 Deregistration, Absence, Withdrawal (§10, SPO)

(1) Students can revoke their registration for written examinations until the issue of the examination tasks without having to indicate any reasons (deregistration). Deregistration can be made online on the Students Portal by 12 pm on the day before the examination or in justified exceptional cases with the Students Office during office hours. If the deregistration is addressed to the examiner, the latter shall ensure that the deregistration is documented in the Campus Management System.

(2) In case of oral examinations, deregistration shall be declared to the examiner at least three working days before the date of examination. Withdrawal from an oral examination less than three working days before the date of examination shall be possible under the conditions outlined in par. 5 only. In principle, withdrawal from oral reexaminations in the sense of Article 9, par. 1 shall be possible under the conditions of par. 5 only.

(3) Withdrawal from examinations of another type and from coursework shall be subject to the provisions given in the module manual.

(4) An examination shall be deemed to have been “nicht ausreichend” (5.0, failed), if the student fails to be present at the examination without a good reason or if she/he...
withdraws from the examination after its start without a good reason. The same shall apply, if the master’s thesis is not submitted within the period envisaged, unless the student is not responsible for having exceeded the deadline.

(5) The reason given for withdrawal after the start of the examination or absence shall be notified immediately, credibly, and in writing to the examination committee. In case of sickness of the student or of a child cared for by the student alone or of a relative in need of care, submission of a medical certificate may be required.

4.9 Maternity Leave, Parental Leave, Assumption of Family Obligations (§12, SPO)

(1) At the student’s request, the maternity protection periods as defined by the Act on the Protection of the Working Mother (Mutterschutzgesetz, MuSchG), as amended, shall be considered. The required evidence shall be enclosed with this request. The maternity protection periods suspend any deadline according to the present examination regulations. The duration of maternity protection shall not be included in the deadline given.

(2) At request, the deadlines of parental leave shall be considered according to the valid legislation (Bundeselterngeld- und Elternzeitgesetz (Parental Benefit and Parental Leave Act – BEEG)). Four weeks prior to the desired start of the parental leave period at the latest, the student shall inform the examination committee in writing about the time when she/he wishes to be on parental leave. The required evidence shall be enclosed. The examination committee shall then check whether the legal prerequisites would justify an employee’s claim for parental leave and inform the student immediately of the result and the new times of examination. The period of work on the Master’s thesis may not be interrupted by parental leave. In this case, the thesis shall be deemed to have not been assigned. After expiry of the parental leave period, the student shall receive a new subject that is to be dealt with within the period defined in Article 14.

(3) At request, the examination committee shall decide on the flexible handling of examination deadlines according to the provisions of the Act of Baden-Württemberg on Universities and Colleges (LHG), if students have to assume family obligations. Paragraph 2, clauses 4 to 6 shall apply accordingly.

4.10 Students with a Disability or Chronic Disease (§13, SPO)

(1) When organizing degree programs and examinations, the needs of students with a disability or chronic disease shall be considered. In particular, students with a disability or chronic disease shall be granted preferred access to courses with a limited number of participants and the order for passing certain courses shall be adapted to their needs. According to the Federal Equality Act (Bundesgleichstellungsgesetz, BGG) and Vol. 9 of the Social Code (SGB IX), students are disabled, if their bodily function, mental capacity, or emotional health most probably deviates from the state typical of the age for a period longer than six months and, hence, their participation in social life is impaired. At the request of the student, the examination committee shall decide on the existence of conditions outlined in clauses 2 and 3. The student shall submit the required evidence for this purpose.

(2) If a student provides evidence of a disability or chronic disease, as a result of which she/he is not able to pass examinations completely or partly within the planned time or in the form envisaged, the examination committee may permit examinations within other time periods or in another form. In particular, disabled students shall be permitted to use the required aids.
(3) In case students provide evidence of a disability or chronic disease, as a result of which they are not able to attend courses regularly or to pass the required coursework or examinations as outlined in Article 19, the examination committee may permit at the student’s request passing of certain coursework and examinations after the expiry of the deadlines given in the present Regulations for Study and Examination.

(4) Examples of possible compensations of disadvantages:
- Modified form of exams, for instance oral exams instead of written exams, and vice versa
- Conducting exams in a separate room
- Allowing necessary utilities and assistance, e.g. sign language interpreter
- Additional breaks during time-limited exams
- Extension of the periods between exams

4.11 Master’s Thesis (§14, SPO)

The Master’s Thesis is an independent scientific study and includes the theoretical and/or experimental work on a complex problem. Students deal with the current state of research and apply the expertise and scientific methods acquired during the studies. They can document, discuss and evaluate the obtained results. Furthermore, they can present and defend the essential findings. The topic of the Master’s Thesis depends on the subject area chosen for the thesis.

(1) For admission to the master’s thesis module, module examinations worth 70 credits must have been passed successfully. In particular, module examination in the subject of “Wissenschaftliches Arbeiten” (Scientific Work) must have been passed successfully. At the request of the student, the examination committee shall decide on exceptions.

(1a) 30 credits are assigned to the master’s thesis module. It consists of the master’s thesis and a presentation. The presentation shall be given four weeks after submission of the master’s thesis at the latest.

(2) The master’s thesis topic can only be given out by university teachers (“Hochschullehrer(in)”), habilitated scientists, and leading scientists (“leitende(r) Wissenschaftler(in)”) according to Article 14, par. 3, clause 1, KITG. In addition, the examination committee can authorize other examiners to give out the topic according to Article 17, pars. 2-4. The student shall be given the possibility of making proposals for the topic. If the master’s thesis is to be written outside of the KIT Department of Physics, the approval of the examination committee shall be required. The master’s thesis may also be accepted in the form of group work, if the contribution of the individual student to be evaluated in the examination can be distinguished clearly based on objective criteria and if the requirement outlined in par. 4 is fulfilled. In exceptional cases, the chairperson of the examination committee shall take care of the student receiving a topic for the master’s thesis within four weeks after her/his request. In this case, the topic is issued by the chairperson of the examination committee.

(3) The subject, task, and scope of the master’s thesis shall be limited by the supervisor such that it can be handled with the workload outlined in par. 4.

(4) The master’s thesis shall demonstrate that the student is able to deal with a problem of her/his subject area in an independent manner and within a limited period of time using scientific methods. The scope of the master’s thesis shall correspond to 30 credits. The maximum duration of work on the thesis shall amount to six months. The subject and task shall be adapted to the scope envisaged. The examination committee shall specify in which
languages the master’s thesis can be written. At the request of the student, the examiner can permit the master’s thesis to be written in a language other than German.

(5) When submitting the master’s thesis, the student shall assure in writing that the thesis is original work by her/him alone and that she/he has used no sources and aids other than indicated, marked all citations in word and content, and observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended. If this declaration is not contained, the thesis will not be accepted.

The wording of the declaration may be:

“Ich versichere wahrheitsgemäß, die Arbeit selbständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.”

“I herewith declare that the present thesis is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications, and that I have observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended.”

If the declaration is not true, the master’s thesis shall be evaluated “nicht ausreichend” (5.0, failed).

(6) The time of giving out of the topic of the master’s thesis shall be recorded in the files of the examination committee by the supervisor and the student. The time of submission of the master’s thesis shall be recorded in the files of the examination committee by the examiner. The student shall be allowed to return the topic of the master’s thesis once only within the first month of the period of work on the thesis. At the justified request of the student, the examination committee may extend the time of work on the thesis given in par. 4 by three months at the maximum. If the master’s thesis is not submitted in time, it shall be deemed to have been “nicht ausreichend” (failed, 5.0), unless the student is not responsible for this failure.

(7) The master’s thesis shall be evaluated at least by one university teacher (“Hochschullehrer(in)” or leading scientist (“leitende(r) Wissenschaftler(in)”) according to Article 14, par. 3, clause 1, KITG and another examiner. Usually, one of the examiners is the person who gave out the thesis topic according to par. 2. In case of deviating evaluations of both persons, the examination committee shall fix the grade of the master’s thesis within the limits of the evaluations of both persons. It may also appoint another expert. The evaluation period shall not exceed eight weeks after submission of the master’s thesis.
4.12 Additional Achievements (§15, SPO)

(1) Up to 30 further credits may be acquired in courses offered by KIT (additional achievements, “Zusatzleistungen”). Articles 3 and 4 of the examination regulations shall remain unaffected. These additional achievements shall not be considered when calculating the final and module grades. The credits not considered when determining the module grade shall be listed as additional achievements in the transcript of records. At the student’s request, additional achievements shall be indicated in the master’s certificate and marked as additional achievements. Additional achievements shall be listed with the grades outlined in Article 7.

(2) The student shall declare a module examination an additional achievement when registering for this examination. At the student’s request, allocation of the module can be changed later on.

4.13 Transferable Skills (Soft Skills) (§15a, SPO)

Apart from scientific qualifications, KIT attaches high importance to transferable skills. These skills of 4 credits shall be part of the Master’s Program in Meteorology. Transferable skills may be achieved additively or integratively.

A wide range of interdisciplinary qualifications is offered by
- the House of Competence (HOC)
- the Sprachenzentrum (language center)
- the Center for Cultural and General Studies (ZAK)

4.13 Recognition of Coursework and Examinations as well as of Study Periods (§18, SPO)

(1) Coursework and examinations completed, as well as study periods passed, in study programs at state or state-recognized universities and universities of cooperative education of the Federal Republic of Germany or at foreign state or state-recognized universities shall be recognized at the request of the student, if the competencies acquired do not differ considerably from the achievements or degrees to be replaced. For this, no schematic comparison, but an overall analysis shall be made. As regards the scope of a coursework to be recognized, the principles of the ECTS shall be applied.

(2) The student shall submit the documents required for recognition. Students newly enrolled in the Master’s Program in Meteorology shall submit the application together with the documents required for recognition within one semester after enrollment. If documents are not available in the German or English language, an officially certified translation may be required. The examination committee shall bear the burden of proving that the application does not meet the recognition requirements.

(3) If achievements from outside of the KIT are recognized, they are listed as “anerkannt” (recognized) in the certificate. If grades exist, they shall be taken as is in case of comparable grade scales and shall be included in the calculation of module grades and the final grade. In case of incomparable grade systems, the grades can be converted. In the absence of grades, the note “bestanden” (passed) shall be entered.

(4) When recognizing coursework and examinations passed outside of the Federal Republic of Germany, the equivalence agreements adopted by the Conference of Ministers of Education and the German Rectors’ Conference as well as agreements concluded within the framework of university partnerships shall be considered.

(5) Knowledge and skills acquired outside of the university system shall be recognized, if they are equivalent to the coursework and examinations to be replaced in terms of contents and
level and if the institution, where the knowledge and skills were acquired, has a standardized quality assurance system. Recognition may be refused in parts when more than 50% of the university’s study program is to be replaced.

(6) The examination committee (§16, SPO) shall be responsible for recognition. To determine whether a considerable difference in the sense of par. 1 exists, the responsible subject representatives shall be heard. Depending on the type and scope of coursework and examinations to be recognized, the examination committee shall decide on admission to a higher semester.

4.14 Accomplishments obtained outside of the Higher Education System

Accomplishments made outside of the higher education system, as for example vocational training, can be accredited if the acquired competences contribute to the qualification goals of the Master’s program. Recognition is requested with the respective form of the examination committee. The examination committee verifies to which extent the acquired knowledge and capabilities can be recognized, and which parts of the program they can replace. At maximum, 50% of the university education can be replaced. The form for recognition must be submitted to the study advisor, who will transfer it to the examination committee and the "Studierendenservice".
5 Modules

5.1 Module: Applied Meteorology (Met-AngM2-1) [M-PHYS-100954]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: Applied and Experimental Meteorology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109142</td>
<td>Methods of Data Analysis</td>
<td>0</td>
<td>Ginete Werner Pinto, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109143</td>
<td>Applied Meteorology (Module Exam)</td>
<td>10</td>
<td>Ginete Werner Pinto</td>
</tr>
</tbody>
</table>

Election block: Compulsory Electives Applied Meteorology (between 2 and 3 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109139</td>
<td>Advanced Numerical Weather Prediction</td>
<td>0</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109140</td>
<td>Meteorological Hazards</td>
<td>0</td>
<td>Kunz</td>
</tr>
<tr>
<td>T-PHYS-109141</td>
<td>Energy Meteorology</td>
<td>0</td>
<td>Emeis, Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-108610</td>
<td>Turbulent Diffusion</td>
<td>0</td>
<td>Hoose, Hoshyaripour</td>
</tr>
</tbody>
</table>

Competence Certificate
Prerequisite: Coursework (“Studienleistung”)
For type of Coursework see Course description (“Teilleistungsbeschreibung”)

→ successful completion of the prerequisites entitles to exam

Examination: Assessment (“Prüfungsleistung”)

T-PHYS-109143 Applied Meteorology (Module Exam)
Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal
The students can professionally explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and are able to predict potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable to derive the impact on air pollution and generating regenerative energy from weather information. They are capable of analyzing meteorological data using statistical and computer-based methods.

Module grade calculation
Grade of the oral exam.
Content
This module aims to give students an overview of important applications of meteorology in areas such as weather forecasting and warning, insurance and energy industry, air quality and data analysis. In particular, the module deals with the following aspects:

- **Methods of data analysis** that are widely used in the Geosciences and particularly in meteorology / climate research are presented (e.g., statistical methods, correlation analyzies, least-squares (linear, multi-linear, and nonlinear regression), principal component analysis, Fourier analysis)

- **Methods of numerical weather prediction** (hydrodynamic equation systems, spectral approximation methods, differential approximation on irregular lattices, statistical data assimilation methods, operational aspects of weather forecasting) (not offered in SS2020)

- **Meteorological natural hazards** (extreme events, extra tropical and tropical cyclones, convection, thunderstorms, super cells, tornadoes, convective storm gusts, derechos, hail, climate change and extreme events) (not offered in SS2020)

- **Energy meteorology** (fundamentals of the energy system, application of meteorological expertise in the energy industry, in particular for the integration of renewable energies wind power, solar energy and hydro power, deepening of individual meteorological aspects of particular relevance)

- **Dispersion of atmospheric constituents** (relevant trace gases, diurnal cycles of emissions and concentrations, temperature and flow evolution in the lower atmosphere, turbulent diffusion, turbulence parameterization, chemical conversion processes, numerical models)

Recommendation
Basic knowledge in statistics are helpful.

Workload
Presence time in lectures, exercises: 90 hours
Preparation / follow-up: 90 hours
Exam preparation: 120 hours
5.2 Module: Atmospheric Processes (Met-AtPr1-1) [M-PHYS-100952]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Atmospheric and Climate Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107694</td>
<td>Cloud Physics</td>
<td>0</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-107695</td>
<td>Energetics</td>
<td>0</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-108938</td>
<td>Atmospheric Aerosols</td>
<td>0</td>
<td>Möhler</td>
</tr>
<tr>
<td>T-PHYS-107696</td>
<td>Atmospheric Radiation</td>
<td>0</td>
<td>Höffner</td>
</tr>
<tr>
<td>T-PHYS-108939</td>
<td>Atmospheric Processes (Module Exam)</td>
<td>12</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: Coursework ("Studienleistung")

For type of Coursework see Course description ("Teilleistungsbeschreibung")

→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")

T-PHYS-108939 Atmospheric Processes (Module Exam)

Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, they are capable of explaining structure and dynamics of different cloud systems and estimating the micro physical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and describe the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere on the basis of the atmospheric physico-chemical processes and transformations. The students are able to understand the chemical and physical causes of stratospheric ozone hole and its future development, know the main aerosol-cloud processes and are familiar with the Köhler theory and the classical nucleation theory.

Module grade calculation

Grade of the oral exam

Content

This module aims to give students an overview of important convey physical and chemical processes in the atmosphere. In the special includes:

- Cloud Physics (phenomenology, cloud dynamics of stratiform and convective clouds, microphysics of warm and cold clouds, collision and coalescence, primary and secondary ice formation, condesational and depositional growth)
- Energetics (mean meridional circulation, stationary and transient eddies; basic forms, budget equations and transport processes of energy in the atmosphere; principle of available potential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors))
- Atmospheric aerosols (Gas particle processes (kinetics, diffusion, condensation), Aerosol properties (diffusion, coagulation, sedimentation, impaction), Aerosol thermodynamics (chemical potential, solubility, Crystallization), aerosol cloud processes (Köhler theory, Einukleation))
- Atmospheric radiation (basic quantities of electromagnetic radiation, atmospheric radiative transfer, boundary conditions, reflection, emission, molecular spectroscopy, line broadening, scattering, optical phenomena, radiation parametrization in atmospheric models, radiation budget, climate change, remote sensing)

Workload

Presence time in lectures, exercises: 113 hours

Preparation / follow-up: 87 hours

Exam preparation: 160 hours

Responsible: Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106821</td>
<td>Basics of Estimation Theory, Prerequisite</td>
<td>1 CR</td>
<td>Hinz</td>
</tr>
<tr>
<td>T-BGU-106633</td>
<td>Data Analysis in Geoscience Remote Sensing Projects, Prerequisite</td>
<td>2 CR</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Competence Certificate:
oral exam of about 30 min

Competence Goal:
Students explain the theoretical basics and important aspects of detection, classification and parameter estimation. They apply the concepts and methods of estimation theory, deformation and statistical analysis to data recorded by geodetic, geophysical or remote sensing systems. An even deeper understanding of the subjects is reached by home and project work. The students process the collected project data and evaluate the obtained results critically. By working self-organized and reflectively the students deepen their knowledge in soft skills, e.g., organization, collaboration and communication.

Prerequisites: None

Content:
Contents of the module include

- an introduction into stochastic modelling (starting with the Bayes-Theorem),
- theoretical models and applied methods of detection of events in signals,
- theoretical models and applied methods of classification of events in signals,
- a variety of methods for parameter estimation, e.g. least-squares estimation, transformation of probability density and integration of a-priori knowledge about parameters and observations,
- an introduction into the different statistical based methods of deformation analysis,
- statistical approaches to the analysis of remote sensing data in a geosciences context.

Workload:
210 h total, thereof 45 h contact hours
Module: Components of the Climate System (Met-KKli1-1) [M-PHYS-100951]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: Atmospheric and Climate Processes

Credits 12
Recurrence Each winter term
Language English
Level 4
Version 6

Mandatory
T-PHYS-108933 Components of the Climate System (Module Exam) 12 CR Fink

Election block: Compulsory Electives (between 3 and 5 items)
T-PHYS-107692 Seminar on IPCC Assessment Report 0 CR Ginete Werner Pinto, Hoose, Ludwig
T-PHYS-107693 Tropical Meteorology 0 CR Knippertz
T-PHYS-108928 Climate Modeling & Dynamics with ICON 0 CR Ginete Werner Pinto, Voigt
T-PHYS-108931 Middle Atmosphere in the Climate System 0 CR Höpfner, Sinnhuber
T-PHYS-108932 Ocean-Atmosphere Interactions 0 CR Fink

Competence Certificate
Prerequisite: Coursework ("Studienleistung")
For type of Coursework see Course description ("Teilleistungsbeschreibung")
→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")
T-PHYS-108933 Components of the Climate System (Module Exam)
Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal
The students can explain essential components of the climate system and their physical properties. They are capable of explaining causes of climate change competently, present them and discuss them critically. Students can name and explain climate monitoring systems and explain the basic principles of climate models.

The students can designate essential processes in the atmosphere and ocean and explain them with physical and chemical laws. They are able to analyze and interpret climate and weather data on the basis of diagnostic methods. In addition, they can competently present and discuss learned or self-developed scientific findings.

Module grade calculation
Grade of the oral exam.

Content
This module aims to give students an overview of important components of the climate system, their physical and chemical backgrounds and their temporal and spatial changes.

This includes lectures, course work, computer and modelling classes on individual components of the climate system (e.g. tropics, polar regions, ocean, middle atmosphere) and on climate dynamics and change.

Recommendation
Basic knowledge about the climate system is helpful.

Annotation
In the module Components of the climate system courses (C) are offered with lectures (L) and exercises (2L1E) and lectures without exercises (2L). Registration for this examination is only possible if courseworks have been made in a sufficient amount. There are different ways to do this:
- 2C with 2L1E and 2C with 2L

Workload
Presence time in lectures, exercises: 120 hours
Preparation / follow-up: 120 hours
Exam preparation: 120 hours

Master of Science Meteorology (M.Sc.)
Module Handbook as of 30/09/2020
5.5 Module: Computer Vision and GIS [M-BGU-102757]

Responsible: Prof. Dr.-Ing. Stefan Hinz
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101732</td>
<td>Image Processing and Computer Vision</td>
<td>4 CR</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Competence Certificate

- online test, written exam (90 min., oral exam (30 min.)

Competence Goal

Die Studierenden sind mit der Erfassung, Analyse und Präsentation von Daten mit Raumbezug vertraut. Darüber hinaus kennen sie die unterschiedlichen Aspekte geometrischer und topologischer Modellierung und beherrschen die Sachdatenverwaltung.

Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezugs vertraut. Sie sind in der Lage, einfache projektbezogene Fragestellungen selbstständig zu bearbeiten. Darüber hinaus können sie ausgewählte Grundlagen der Bildverarbeitung und Computer Vision beschreiben, anwenden und auf andere Anwendungsgebiete übertragen.

Prerequisites

None

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Image Processing and Computer Vision: This course provides an overview of basic approaches of image processing and computer vision, starting from image filters like linear and non-linear filters, gradient and curvature operators and leading to concepts of object extraction based on point, line and segment extraction and their applications. The module consists of lectures and labs.

Recommendation

None

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Image Processing and Computer Vision: 90 h total, thereof 32 h contact hours
Module: Computer Vision and Remote Sensing [M-BGU-102759]

Responsible: Prof. Dr. Jan Cermak
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-105725</td>
<td>Introduction into Classification Methods of Remote Sensing</td>
<td>4</td>
<td>Weidner</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Computer Vision and Remote Sensing (between 1 and 2 items as well as 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101732</td>
<td>Image Processing and Computer Vision</td>
<td>4</td>
<td>Weidner</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106333</td>
<td>Remote Sensing of a Changing Climate, Prerequisite</td>
<td>1</td>
<td>Cermak</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106334</td>
<td>Remote Sensing of a Changing Climate, Examination</td>
<td>3</td>
<td>Cermak</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108283</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108284</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108285</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108286</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate:
oral exams, for more details please check the "Teilleistungen"

Competence Goal:
Einführung in Klassifizierungsverfahren der Fernerkundung (Pflicht): Studierende können die Grundlagen der Fernerkundung erklären sowie grundlegende Klassifizierungsverfahren benennen, erläutern und selbstständig anwenden.

Satellite climatology – remote sensing of a changing climate: Students explain the contribution of remote sensing to the assessment of climate change and its consequences in time and space. They relate how remote sensing assessments help further in understanding of processes driving global change. Students independently choose and apply methods and data sets suited for the analysis of specific aspects of global change.

Image Processing and Computer Vision: Students are able to explain the fundamentals of image processing and Computer Vision. They describe the basic approaches and concepts including robust techniques and are able to use their knowledge and transfer it to other fields of applications.

Prerequisites: None

Content:

Satellite climatology – remote sensing of a changing climate:
- Basics of global change: Mechanisms and patterns
- Remote sensing approaches to analysing patterns of global change:
 - Land and ocean surface
 - Atmosphere
- Remote sensing approaches to analysing mechanisms of global change
- Links between remote sensing and other methods in global change research

Image Processing and Computer Vision: This lecture provides an overview of basic approaches of image processing and computer vision, starting from image filters like linear and non-linear filters, gradient and curvature operators and leading to concepts of object extraction based on point, line and segment extraction and their applications. The teaching concept consists of lectures and labs.

Workload:
Einführung in Klassifizierungsverfahren der Fernerkundung (Pflicht): 120 h gesamt, davon 32 h Präsenz

Satellite climatology – remote sensing of a changing climate: 120 h total, thereof 32 contact hours

Image Processing and Computer Vision: 120 h total, thereof 32 h contact hours

Master of Science Meteorology (M.Sc.)
Module Handbook as of 30/09/2020
5.7 Module: Experimental Meteorology (Met-ExpM2-1) [M-PHYS-100953]

Responsible: Prof. Dr. Christoph Kottmeier
Organisation: KIT Department of Physics
Part of: Applied and Experimental Meteorology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109133</td>
<td>Remote Sensing of Atmospheric State Variables</td>
<td>0</td>
<td>Orphal, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-109135</td>
<td>Advanced Practical Courses</td>
<td>0</td>
<td>Kottmeier</td>
</tr>
<tr>
<td>T-PHYS-109136</td>
<td>Field Trip</td>
<td>0</td>
<td>Kottmeier</td>
</tr>
<tr>
<td>T-PHYS-109137</td>
<td>Experimental Meteorology (Module Exam)</td>
<td>14</td>
<td>Kottmeier</td>
</tr>
<tr>
<td>T-PHYS-109902</td>
<td>Integrated Atmospheric Measurements</td>
<td>0</td>
<td>Kottmeier</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: Coursework (“Studienleistung”)

For type of Coursework see Course description (“Teilleistungsbeschreibung”)

→ successful completion of the prerequisites entitles to exam

Examination: Assessment (“Prüfungsleistung”)

T-PHYS-109137 Experimental Meteorology (Module Exam)

Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students are able to build and execute experiments in the lab or in the field according to instructions, to record and evaluate data scientifically founded and then interpret and present the results.

Module grade calculation

Grade of the oral exam

Content

This module is intended to provide students with an overview of modern measurement methods in meteorology and practical aspects of application. In particular, this includes:

- **remote sensing** (physical basics, radiation transfer, inverse methods, basics of satellite remote sensing, techniques and applications).
- radar techniques (scattering and absorption of electromagnetic waves, radar equation, radar reflectivity factor and rain rate, technical aspects, radar beams in a stratified medium, wind information from Doppler radar data) and laser processes (properties and propagation of light, basics of the laser, functional principles of laser remote sensing, technical structure of lidar systems, overview of common lidar measuring methods, space-based lidar systems) as **integrated atmospheric measurements**.
- In addition, the module provides the students with an insight into and **practical experience** with modern measuring methods, such as those used in research at KIT and other institutions, on the basis of the internship and the excursion.

Workload

Presence time in lectures, exercises: 57 hours

Attendance time in excursion and practicals: 100 hours

Preparation / follow-up: 143 hours

Exam preparation: 120 hours
5.8 Module: Fluid Mechanics and Turbulence (bauiEX217-FMTURB) [M-BGU-105504]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Required Electives (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Electives 1 (1 item as well as 6 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106612</td>
<td>Advanced Fluid Mechanics</td>
<td>6 CR</td>
<td>Eiff</td>
</tr>
<tr>
<td>T-BGU-110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>6 CR</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Election block: Electives 2 (1 item as well as 3 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110411</td>
<td>Flow Measurement Techniques</td>
<td>3 CR</td>
<td>Gromke</td>
</tr>
<tr>
<td>T-BGU-111060</td>
<td>Building and Environmental Aerodynamics</td>
<td>3 CR</td>
<td>Gromke</td>
</tr>
</tbody>
</table>

Competence Certificate

One examination has to be taken in one of the ‘Teilleistungen’ ‘Fluid Mechanics of Turbulent Flows’ or ‘Advanced Fluid Mechanics’ and one other examination in one of the ‘Teilleistungen’ ‘Flow Measurement Technique’ or ‘Building- and Environmental Aerodynamics’. The learning controls depend on the selected ‘Teilleistungen’ (s. ‘Teilleistungen’).

- ‘Teilleistung’ T-BGU-106612 with written examination according to § 4 Par. 2 No. 1
- ‘Teilleistung’ T-BGU-110841 with oral examination according to § 4 Par. 2 No. 2
- ‘Teilleistung’ T-BGU-110411 with oral examination according to § 4 Par. 2 No. 2
- ‘Teilleistung’ T-BGU-111060 with oral examination according to § 4 Par. 2 No. 1

Details about the learning controls see at the respective ‘Teilleistung’

Competence Goal

The studierenden are able to explain basic terms and concepts in the field of fluid mechanics with appropriate terminology and attribute them to physical laws. They are familiar with examples of application, modelling and measurement.

Module grade calculation

grade of the module is the weighted average of the partial examinations from compulsory elective block 1 (75%), Advanced Fluid Mechanics or Fluid Mechanics of Turbulent Flows, and compulsory elective block 2 (25%), Flow Measurement Techniques or Building and Environmental Aerodynamics.

Prerequisites

none

Content

1. Advanced Fluid Mechanics teaches the advanced fundamentals of fluid mechanics and forms the basis for environmental fluid mechanics. Starting from the underlying local conservation laws, the phenomena of the different classes of flow and their possible analytical solutions are treated. This includes the general and special forms of the basic equations, flow kinematics, incompressible viscous flows, ideal fluid flows, shallow water flows and buoyancy effects in flows. Furthermore, waves and turbulence are addressed and different analysis methods such as scaling are treated.
2. Fluid Mechanics of Turbulent Flows provides the mathematical description of the physics of turbulence is successively developed. The module presents the phenomenology of turbulent flows, introduces the statistical description of turbulent flow processes, discusses the characteristics of free and wall-bounded shear flows, and presents an analysis of the turbulent energy cascade.
3. Flow Measurement Techniques teaches the basics of flow velocity measurement, with a focus on laser-optical measurement techniques such as those used in wind tunnels.
4. Building- and Environmental Aerodynamics gives an introduction to the natural wind and its interaction with the built and natural environment. In the focus are wind load on buildings and wind induced vibrations as well as flow processes in the natural environment regarding natural wind shelter, fresh air ventilation to urban areas and wind comfort.

Recommendation

basics in Mathematics and Hydromechanics;
prior knowledge in programming with Matlab is helpful for the course “Fluid Mechanics of Turbulent Flows”
start of the module in summer term
Annotation
none

Workload
contact hours (1 HpW = 1 h x 15 weeks):
depending on the selected courses or examinations, respectively:

- Advanced Fluid Mechanics lecture/exercise: 60 h
- Fluid Mechanics of Turbulent Flows lecture/exercise: 60 h
- Flow Measurement Techniques lecture/exercise: 30 h
- Building and Environmental Aerodynamics lecture/exercise: 30 hrs.

independent study:
depending on the selected courses or examinations, respectively:

- preparation and follow-up lecture/exercises Advanced Fluid Mechanics: 30 h
- working on exercises Advanced Fluid Mechanics: 30 h
- examination preparation Advanced Fluid Mechanics: 60 h
- preparation and follow-up lecture/exercises Fluid Mechanics of Turbulent Flows: 60 h
- examination preparation Advanced Fluid Mechanics: 60 h
- preparation and follow-up lecture/exercises Flow Measurement Techniques: 30 h
- examination preparation Flow Measurement Techniques: 30 h
- preparation and follow-up lecture/exercises Building and Environmental Aerodynamics: 30 h
- examination preparation Building and Environmental Aerodynamics: 30 h

total: 270 h
5.9 Module: Geoecology [M-BGU-103398]

Responsible: Prof. Dr. Wolfgang Wilcke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107487</td>
<td>Geomorphology and Soil Science</td>
<td>7 CR</td>
<td>Wilcke</td>
</tr>
<tr>
<td>T-BGU-107486</td>
<td>Field Course Soil Science</td>
<td>1 CR</td>
<td>Wilcke</td>
</tr>
</tbody>
</table>

Competence Certificate
- Brick T-BGU-107487 with a written examination with 90 minutes according to § 4 Par. 2 No. 1 of the study and examination regulations (SPO) master meteorology
- Brick T-BGU-107486 with with not graded accomplishment (soil profile in small groups with approximately 2 pages) according to § 4 Par. 3 of the study and examination regulations (SPO) master meteorology

Details about the learning control see at the bricks

Competence Goal
The students know the basic terms, concepts and theories of the disciplines Geomorphology and Soil Science. They are able to recognize important land surface forms and to interpret them in a knowledgeable way. They know the composition, structure, properties and functions of soils.

Module grade calculation
Grade of the module is grade of the written examination

Prerequisites
None

Content
The module teaches the fundamental principles of Soil Science and Geomorphology. It consists of three courses with the following contents:

- **Geomorphology and Soil Science**: This brick treats the most important exogenic processes (weathering including karst, gravitational mass self-displacements, glacial and periglacial dynamics, eolic, fluviatile and litoral dynamics, peneplains and escarpments). The soil is introduced as three-phases system and the individual phases (solid, liquid and gaseous) are discussed. Subject of this brick are the soil-forming factors and processes and the resulting suite of horizons of soils. Important physical properties of soils are introduced (color, texture, structure, mechanical stability, water retention and transport, heat budget). Important physico-chemical soil properties are treated (humus properties, soil acidity, redox potential, cation exchange). Ecological soil functions are presented. This brick moreover introduces the minerals of soils. The most important mineral formation processes are presented with a focus on silicates, oxides and sulfides. The interactions between microorganisms and soil minerals are discussed.

- **Soils of Europe**: This brick introduces the German soil classification and uses it as structure. The World Reference Base of Soil Resources and the US Keys to Soil Taxonomy are presented. The most important diagnostic properties of soils (surface and subsoil Horizons, specific properties) are taught. This brick puts all soil types of the German Soil Classification in their pedogenetic context. The brick treats the property-forming processes and the ecological soil properties resulting from these processes.

- **Soil scientific field exercise**: This brick consists of a one-day exercise in the surroundings of Karlsruhe, during which important local landscape features and soils are introduced and during which the students train the Interpretation of geomorphiclog forms and properties of soil horizons.

Recommendation
The first attendance of the course "geomorphology and soil science" is recommended. The participation of the exercise "geomorphology and soil science" is optionally.

Annotation
None
Workload
1. Contact hours in lecture and exercises: 67.5 h
2. Preparation and follow-up: 142.5 h
3. Examination and exam preparation: 30 h
5.10 Module: Geological Hazards and Risk [M-PHYS-101833]

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103525</td>
<td>Geological Hazards and Risk</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Active and regular attendance of lecture and practicals. Project work (graded).

Competence Goal
The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Module grade calculation
Project work will be graded.

Prerequisites
none

Content

- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Workload

- 60 h: active attendance during lectures and exercises
- 90 h: review, preparation and weekly assignments
- 90 h: project work

Learning type
4060121 Geological Hazards and Risk (V2)
4060122 Übungen zu Geological Hazards and Risk (Ü2)
Literature
Literature will be provided by the lecturer.
5.11 Module: Geophysical analysis of natural hazards [M-PHYS-103336]

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each summer term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

- T-PHYS-103553 Introduction to Volcanology, Prerequisite
 - 3 CR
 - Gottschämmer
- T-PHYS-103644 Introduction to Volcanology, Exam
 - 1 CR
 - Gottschämmer
- T-PHYS-107673 Seminar on Recent Topics of Risk Science
 - 4 CR
 - Gottschämmer

Competence Certificate

Introduction to Vulcanology

Active and regular attendance of lecture and practicals, presentation of a volcano in a short (10 - 15 minute) talk with slides, submission of a scientific essay about their presentation, approx. 8-10 pages, which will be graded.

Seminar on recent topics of risk science

Preparation and presentation of a talk based on a scientific publication, critical discussion of the scientific results.

Competence Goal

Introduction to Vulcanology

The students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical moelling tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions.

The students have gained an overview about active volcanoes and recent eruptions and are able to summarize the main characteristics and scientific achievements about one volcano of their choice in a 10-15 minute talk. They are able to discuss and answer questions related to their subject. They can summarize their research about the volcano of their choice in a scientific essay (8-10 pages).

Seminar on recent topics of risk science

The students understand scientific literature regarding current topics of natural hazards and risk. They can summarize a selected topic, describe and explain the main idea to their fellow students in an oral presentation (30-40 minutes). They know how to structure and present a scientific talk. They are able to understand the topics presented by their fellow students, discuss and analyze the content critically. They are able to compare those research results and evaluate the content critically.

Module grade calculation

The grade of the module results from grade of the scientific essay of "Introduction to Vulcanology".
Content

Introduction to Vulcanology

• Introduction, Overview
• Volcanoes and Plate Tectonics
• Magma and Volcanic Deposits
• Eruption types
• Volcanic Edifices
• Volcanic Hazard and Risk
• Volcano Monitoring
• Volcano Seismology
• Numerical Modelling of Volcanic Products
• Historic Eruptions
• Volcanoes and Climate

Seminar on recent topics of risk science

The students will read and discuss current literature about current topics of natural hazards and risk.

Learning type

4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (Ü1)
4060254 Seminar über aktuelle Fragen aus der Risikoforschung (S2)

Literature

Literature will be provided by the lecturer.
5.12 Module: GIS and Geo Data Infrastructures [M-BGU-102760]

Responsible: Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101756</td>
<td>Geo Data Infrastructures and Web Services</td>
<td>1 CR</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101757</td>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td>3 CR</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Competence Certificate

Einführung in GIS: schriftliche Klausur (90 min.); Geodateninfrastrukturen: mündliche Prüfung (20 min.) oder schriftliche Ausarbeitung

Competence Goal

Darüber hinaus können sie standardisierte Geo-Webdienste erklären und diese Dienste auf der Client-Seite nutzen und diese selbst als Service zur Verfügung stellen. Die Studierenden können dabei ihr Wissen über Geodateninfrastrukturen an konkreten, praktischen Fragestellungen anwenden.

Module grade calculation

weighted mean

Prerequisites

None

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Geodateninfrastrukturen und Web-Dienste: 120 h gesamt, davon Präsenzzeit 45 h
5.13 Module: GIS and Remote Sensing [M-BGU-102758]

Responsible: Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-105725</td>
<td>Introduction into Classification Methods of Remote Sensing</td>
<td>4 CR</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
</tbody>
</table>

Competence Certificate

Online test, written exam (90 min.), oral exam (approx. 20 min.)

Competence Goal

Module grade calculation

weighted mean

Prerequisites

None

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z.B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Recommendation

None

Annotation

None

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Einführung in Klassifizierungsverfahren der Fernerkundung: 90 h gesamt, davon Präsenzzeit 32 h
Module: Informatics for Meteorology Students [M-INFO-102980]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Required Electives

Credits: 8 Language: German Level: 4 Version: 2

Election block: Informatics for Meteorology Students (at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>CR</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101345</td>
<td>Parallel Computer Systems and Parallel Programming</td>
<td>4</td>
<td>Streit</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101298</td>
<td>Distributed Computing</td>
<td>4</td>
<td>Streit</td>
<td></td>
</tr>
<tr>
<td>T-INFO-102061</td>
<td>Mobile Computing and Internet of Things</td>
<td>5</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101305</td>
<td>Big Data Analytics</td>
<td>5</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101497</td>
<td>Database Systems</td>
<td>4</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101275</td>
<td>Visualization</td>
<td>5</td>
<td>Dachsbacher</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Die Erfolgskontrollen werden in den jeweiligen Teilleistungen beschrieben.
Competence Goal
T-INFO-101345 Parallelrechner und Parallelprogrammierung

T-INFO-101298 Verteiltes Rechnen

T-INFO-102061 Mobile Computing und Internet der Dinge

T-INFO-101305 Analysetechniken für große Datenbestände

T-INFO-101497 Datenbanksysteme
Qualifikationsziele:• Der/die Studierende• ist in der Lage den Nutzen von Datenbank-Technologie darzustellen,• kennt die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen,• ist in der Lage selbstständig einfache Datenbanken anzulegen und Zugriffe auf diese zu tätigen, kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie

T-INFO-101275 Visualisierung
Content
T-INFO-101345 Parallelrechner und Parallelprogrammierung

T-INFO-101298 Verteiltes Rechnen

T-INFO-102061 Mobile Computing und Internet der Dinge

T-INFO-101305 Analysetechniken für große Datenbestände

T-INFO-101497 Datenbanksysteme

T-INFO-101275 Visualisierung

Annotation
Qualifikationszeile und Inhalt sind der jeweiligen Module der gewählten Teilleistungen zu entnehmen.

Workload
mind. 240 Stunden.
5.15 Module: Master Thesis (Met-MMAr4-1) [M-PHYS-100956]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Master Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109616 | Master`s Thesis | 30 CR | Hoose |

Competence Certificate

Module examination: Assessment ("Prüfungsleistung")

Written report (Master’s thesis) and presentation (SPO §14 (1a)) in accordance with § 14 SPO Master's Meteorology evaluated by at least one professor, one habilitated scientist of the KIT-Faculty of Physics or one leading scientist in accordance with § 14 Abs. 3 para. 1 KITG and one other examiner. The overall assessment will be recorded in a written report.

The evaluation period shall not exceed eight weeks upon submission of the Master's thesis.

Competence Goal

Students can independently develop and carry out a scientific work. To this end, they deal with the latest state of research and apply the knowledge and the methods acquired during studies. They can discuss and evaluate the obtained results and present them in writing as well as defend the work in a presentation.

The students are able to work on a coherent problem from their field of study independently and in a limited time according to scientific methods and then present the knowledge gained in a written paper and in a presentation in an understandable and precise manner and to discuss it competently.

Module grade calculation

The overall grade results from the evaluation of the thesis. This includes the final presentation.

Prerequisites

Students have successfully completed modules with a minimum of 70 ECTS credits, especially the module Specialization Phase must be successfully completed. (SPO §14)

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 40 credits in the following fields:
 - Applied and Experimental Meteorology
 - Atmospheric and Climate Processes
 - Interdisciplinary Qualifications
 - Required Electives
2. The module M-PHYS-100955 - Specialisation Phase must have been passed.

Content

After choosing a subject area and topic at the beginning of the module Specialization Phase and preparing their thesis, the students start their original scientific study. The Master’s Thesis includes the theoretical and/or the experimental work on a complex problem using scientific methods.

It is possible to conduct the project in cooperation with external partners, for example an external research institution or an institution from the professional background.

Recommendation

Attendance of the Karlsruhe Meteorological Colloquium and the departmental seminars (IMK-TRO, IMK-ASF, IMK-AAF).

Annotation

The maximum duration of the Master thesis is six months.

Workload

Presence on Presentations: 20 hours
Preparation of the presentation: 40 hours
Master's Thesis: 840 hours
5.16 Module: Modern Theoretical Physics for Teacher Students [M-PHYS-101664]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103203</td>
<td>Modern Theoretical Physics for Teacher Students - Prerequisite</td>
<td>0 CR</td>
<td>Gieseke</td>
</tr>
<tr>
<td>T-PHYS-103204</td>
<td>Modern Theoretical Physics for Teacher Students</td>
<td>8 CR</td>
<td>Gieseke</td>
</tr>
</tbody>
</table>

Competence Certificate
See components of this module

Competence Goal
The students know the fundamentals of the theory of electric and magnetic fields and the electrical and magnetic properties of matter. Fundamentals of quantum mechanics with simple applications.

Prerequisites
none

Content

- Electrostatics: basic equations, scalar potential, examples.
- Magneto statics: basic equations, vector potential, examples.
- Special relativity theory, relativistic formulation of electrodynamics.
- Time-dependent fields and radiation phenomena: basic equations, Poynting theorem.
- Electromagnetic waves: plane waves, polarization, wave packets, spherical waves, electromagnetic potentials and gauge transformations, Hertzian dipole.

Workload
240 hours composed of active time (90), wrap-up of the lecture incl. preparation of the examination and the exercises (150)
5.17 Module: Modern Theoretical Physics I, Quantum Mechanics I [M-PHYS-101707]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: Required Electives

Credits
- 8

Recurrence
- Each summer term

Language
- German

Level
- 4

Version
- 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102317</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1</td>
<td>4 CR</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>T-PHYS-105134</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1</td>
<td>4 CR</td>
<td>Studiendekan Physik</td>
</tr>
</tbody>
</table>

Competence Certificate
See components of this module

Competence Goal
The student learns the basic concepts of single-particle quantum mechanics and applies them to important questions. He / she lays the foundation for a fundamental understanding of the microscopic world.

Prerequisites
none

Content
- Introduction: Historical Remarks, Limitations of Classical Physics
- Dualism particle and wave: wave mechanics, matter waves, wave packets, uncertainty principle, Schrödinger equation, qualitative understanding of simple cases.
- Mathematical tools: Hilbert space, Bra and Ket, operators, hermiticity, unitarity, eigenvectors and eigenvalues, observable, basis, completeness.
- Postulates of quantum mechanics: measurement process, time evolution, time evolution of expectation values, Ehrenfest theorem and classical borderline case.
- One-dimensional potentials: Potential wells, harmonic oscillator.
- Bound states in a three-dimensional potential: separation of variables, central potential, angular momentum, rotational symmetry and spin, degeneracy, particles in the external electromagnetic field, hydrogen atom.
- Time-independent perturbation theory: Neat and degenerate case, fine structure of the hydrogen spectrum, Stark effect.
- Basics of Scattering Theory: Differential cross section, Born series and Born approximation, partial waves and scattering phases, optical theorem.

Workload
240 hours composed of active time (90), wrap-up of the lecture incl. preparation of the examination and the exercises (150)

Literature
Textbooks on quantum mechanics
5.18 Module: Module Wildcard Electives [M-PHYS-103403]

Organisation: University
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Wildcard (at least 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106794</td>
<td>Wildcard</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-106795</td>
<td>Wildcard</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-PHYS-106796</td>
<td>Wildcard</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-106797</td>
<td>Wildcard</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Prerequisites
None
Module: Numerical Methods [M-MATH-100536]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Required Electives (Usage from 10/1/2020)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100803</td>
<td>Numerical Methods - Exam</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) nach § 4 Abs. 2 Nr.1 SPO-MA2015-016.

Competence Goal

Module grade calculation

Die Modulnote ist die Note der schriftlichen Prüfung.

Prerequisites

none

Content

In der Vorlesung werden grundlegende Ideen und numerische Verfahren zu den nachfolgend aufgeführten Themenbereichen vorgestellt:

- Lineare Gleichungssysteme, Gauß-Algorithmus, LR-Zerlegung, Cholesky-Zerlegung
- Eigenwertprobleme, von-Mises Iteration
- Lineare Optimierung
- Fehleranalyse
- Newton-Verfahren
- Quadratur, Newton-Cotes Formeln
- Numerische Lösung von Anfangswertproblemen, Runge-Kutta Verfahren
- Finite Differenzen Verfahren zur Lösung von Randwertproblemen
- Finite Elemente

Workload

Gesamter Arbeitsaufwand: 150 Stunden

- Präsenzzeit: 45 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
- Selbststudium: 105 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 - Vorbereitung auf die studienbegleitende Modulprüfung
5.20 Module: Physics of Planetary Atmospheres [M-PHYS-104488]

Responsible: Prof. Dr. Thomas Leisner
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109177</td>
<td>Physics of Planetary Atmospheres</td>
<td>8</td>
<td>Leisner</td>
</tr>
<tr>
<td>T-PHYS-109180</td>
<td>Exam on Physics of Planetary Atmospheres</td>
<td>2</td>
<td>Leisner</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: Coursework ("Studienleistung")
For type of Coursework see Course description ("Teilleistungsbeschreibung")
→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")
T-PHYS-109180 Exam on Physics of Planetary Atmospheres
Exam (approx. 60 minutes, oral, written or otherwise) in accordance with § 4 (2) SPO Master's Meteorology

Competence Goal

The students acquire the basic knowledge of atmospheric physics.
On the basis of concrete case studies from current research, the students learn to understand the concepts and are empowered to apply the learned methods independently.
Emphasis is placed on the basic physical and chemical principles, so that knowledge can be generally applied to planetary atmospheres and not limited to the earth. This is supported by correspondingly created exercises.
One focus is the experimental methods of atmospheric remote sensing.

Methods Learning:

- Understanding the basics of atmospheric physics
- Acquisition of the ability to present a current research topic independently as well as in a team
- Acquisition of the ability to apply the concepts and experimental methods in an experimental
 To implement a master's thesis

Module grade calculation

Grade is earned through the associated exam (oral, written or otherwise).

Prerequisites

None

Content

The topics covered include a general introduction to the field of work with its fundamental questions, theoretical concepts and experimental methods.
One of the focal points is radiation transport in atmospheres, which is of central importance for the energy budget as well as for remote sensing. Clouds and aerosols are a central factor in many planetary atmospheres, their nucleation and their properties are treated in generalized form.

Recommendation

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level

Workload

240 hours consisting of attendance times (60 hours), follow-up of the lecture incl.
Exam preparation and editing exercises (180 hours).

Learning type

Lectures (2 Ch) and Exercises (2Ch)

Literature

Raymond T. Pierrehumpert: Principles of Planetary Climate, Cambridge Univ. Press, 2010
Augustin Sanchez-Lavega: An Introduction to Planetary Atmospheres, Taylor&Francis, 2010
Frédéric J. Pont: Alien Skies: Planetary Atmospheres from Earth to Exoplanets, Springer, 2014

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Each winter term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Exam Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-110305</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Examination</td>
<td>3 CR</td>
<td>Cermak</td>
</tr>
<tr>
<td>T-BGU-110304</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite</td>
<td>1 CR</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Competence Certificate

- T-BGU-110304 Satellite climatology: Remote Sensing of a Changing Climate, Prerequisite

For details on the individual performance reviews, see the respective "Teilleistungen".

Competence Goal
Students explain the contribution of remote sensing to the assessment of climate change and its consequences in time and space. They relate how remote sensing assessments help further the understanding of processes driving global change. Students independently choose and apply methods and data sets suited for the analysis of specific aspects of global change.

Module grade calculation
The grade of the module is the grade of the exam in T-BGU-110305 Satellite climatology: Remote Sensing of a Changing Climate

Prerequisites
M-BGU-103313 Remote Sensing of a Changing Climate must not have started

Content
- Basics of global change: Mechanisms and patterns
- Remote sensing approaches to analysing patterns of global change:
 - Land and ocean surface
 - Atmosphere
- Remote sensing approaches to analysing mechanisms of global change
 - Land and ocean surface
 - Atmosphere
- Links between remote sensing and other methods in global-change research

Annotation
Knowledge in geosciences/climate and statistics are helpful.

Workload
Total workload: 120 hours
Contact hours: 30 hours
- courses plus course-related examination
Self-study: 90 hours
- consolidation of subject by recapitulation of lectures
- consolidation of subject by use of references and by own inquiry – preparation of the monitoring project
- data analysis and data processing
- preparations for exam
Module: Specialisation Phase (Met-Spph3-1) [M-PHYS-100955]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Corinna Hoose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Physics</td>
</tr>
<tr>
<td>Part of:</td>
<td>Research Work</td>
</tr>
</tbody>
</table>

Credits 30
Recurrence Each term
Language German/English
Level 4
Version 4

Competence Certificate

Module examination: Coursework ("Studienleistung")

Examination of other type in accordance to §4(2) No. 3 SPO Master’s Meteorology:

Final presentation (20-25 minutes) in the Seminar on Specialization Phase, followed by a short discussion with the audience (15 minutes). Afterwards, a short feedback meeting with the examiners and the supervisor about the progress and next steps will take place.

Please notice that the seminar only takes place within the semester on Wednesday (15:45 – 17:15 pm) in Bldg. 30.23, Room 13-2. To get a seminar slot, please contact Kathi Maurer (student advisor) via E-Mail.

Competence Goal

Students are able to work on a meteorological or interdisciplinary research project using scientific methods. They can, with guidance, plan, structure, prepare, conduct, and document a study. They can select appropriate methods for the solution of the given problem. Students are able to work self-organized and structured. They possess skills in the field of project management and presentation, both orally and in writing.

Prerequisites

Students need to have successfully completed all four module exams in the subjects *Atmospheric and Climate Processes* and *Applied and Experimental Meteorology*.

Soft skills and complementary elective can still be incomplete.

Content

Conducting a meteorological, interdisciplinary project work. This may be of a theoretical and/or experimental nature. The focus is on the development of conclusions using scientific methods, project management and presentation of the results. Students are invited to make suggestions for topics. It is possible to conduct the project in cooperation with external partners.

Workload

Independent scientific work: 820 hours
Preparation Lecture and presence in the accompanying seminar: 80 hours
6.1 Course: Advanced Fluid Mechanics [T-BGU-106612]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture / Practice (VU)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6221701</td>
<td>Advanced Fluid Mechanics</td>
<td>4 SWS</td>
<td>Eiff</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Prüfung (PR)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8244106612</td>
<td>Advanced Fluid Mechanics</td>
<td>Eiff</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 90 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.2 Course: Advanced Numerical Weather Prediction [T-PHYS-109139]

Responsible: Prof. Dr. Peter Knippertz
Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
6.3 Course: Advanced Practical Courses [T-PHYS-109135]

Responsible: Prof. Dr. Christoph Kottmeier
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 4052103</td>
<td>Advanced Meteorological Practical Course</td>
<td>5 SWS</td>
<td>Practical course (P)</td>
<td>Kottmeier, Wagner, Höpfner, Kohler</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 7800026</td>
<td>Advanced Meteorological Practical Course</td>
<td>Prüfung (PR)</td>
<td>Kottmeier</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Timely delivery and confirmation of the internship evaluation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Advanced Meteorological Practical Course
4052103, SS 2020, 5 SWS, Language: English, Open in study portal

Content
Available experiments include:
• atmospheric measurements with gliders (IMK-TRO)
• surface energy balance (IMK-TRO)
• infrared spectroscopy (IMK-ASF)
• AIDA cloud and aerosol chamber (IMK-AAF)

Organizational issues

• AIDA: Seminar at the end of May/beginning of June, to be held as soon as possible (at best 20.07. - 24.07.2020)
• Energy balance: Depending on the current situation: 06.07. - 10.07.2020 (Müglitztal) or end of September/beginning of October
6.4 Course: Applied Meteorology (Module Exam) [T-PHYS-109143]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| Exams | SS 2020 | 7800023 | Examination on Applied Meteorology (Module Exam) | Prüfung (PR) | Ginete Werner Pinto |

Competence Certificate
The awarding of 10 credits will take place after passing the oral exam (see module description).

Prerequisites
It is only possible to register for the examination if the academic achievement "methods of data analysis" and further study achievements have been achieved to a sufficient degree.

Modeled Conditions
The following conditions have to be fulfilled:

1. You have to fulfill one of 2 conditions:
 1. The course T-PHYS-109141 - Energy Meteorology must have been passed.
 2. The course T-PHYS-109139 - Advanced Numerical Weather Prediction must have been passed.
2. The course T-PHYS-109142 - Methods of Data Analysis must have been passed.
3. The course T-PHYS-108610 - Turbulent Diffusion must have been passed.
6.5 Course: Atmospheric Aerosols [T-PHYS-108938]

Responsible: Dr. Ottmar Möhler
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4052041</td>
<td>Atmospheric Aerosols</td>
<td>Lecture (V) / 🗣️</td>
<td>2 SWS</td>
<td>Möhler</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4052042</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>Practice (Ü) / 🖥️</td>
<td>1 SWS</td>
<td>Möhler, Vogel</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None

Below you will find excerpts from events related to this course:

Atmospheric Aerosols

4052041, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
Gas particle processes (kinetics, diffusion, condensation), aerosol properties (diffusion, coagulation, sedimentation, impaction), aerosol thermodynamics (chemical potential, solubility, crystallization), aerosol cloud processes (Köhler theory, ice nucleation).
6.6 Course: Atmospheric Processes (Module Exam) [T-PHYS-108939]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>12</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>7800016</th>
<th>Examination on Atmospheric Processes (Module Exam)</th>
<th>Prüfung (PR)</th>
<th>Hoose</th>
</tr>
</thead>
</table>

Prerequisites
All module courses must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-PHYS-107694 - Cloud Physics must have been passed.
2. The course T-PHYS-107696 - Atmospheric Radiation must have been passed.
3. The course T-PHYS-107695 - Energetics must have been passed.
4. The course T-PHYS-108938 - Atmospheric Aerosols must have been passed.
6.7 Course: Atmospheric Radiation [T-PHYS-107696]

Responsible: Dr. Michael Höpfner
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Atmospheric Radiation</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥️</td>
<td>Höpfner</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none

Below you will find excerpts from events related to this course:

Atmospheric Radiation

4052071, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)

Content

- Relevance: Weather/Climate, Chemistry, Remote Sensing
- Short history of light
- Properties of electromagnetic radiation
- Radiometric quantities
- The electromagnetic spectrum
- Boundary conditions: Sun, Earth's surface; reflection and emission
- Radiative transfer in the thermal infrared region: black body radiation, local/non-local thermodynamic equilibrium, transmission, radiative transfer, application in remote sensing
- Radiative transfer in the UV/Visible: absorption and scattering by particles
- Single scattering properties: Rayleigh, Mie-approximations
- Optical phenomena: rainbows, halos
- Radiative transfer with multiple scattering: why are clouds white?, two-stream approximation
- Radiative budget, climate engineering

Responsible: Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-106821 - Basics of Estimation Theory, Prerequisite must have been passed.
2. The course T-BGU-106633 - Data Analysis in Geoscience Remote Sensing Projects, Prerequisite must have been passed.
6 COURSES

Course: Basics of Estimation Theory, Prerequisite [T-BGU-106821]

6.9 Course: Basics of Estimation Theory, Prerequisite [T-BGU-106821]

Responsible: Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Master of Science Meteorology (M.Sc.)
Module Handbook as of 30/09/2020
6.10 Course: Big Data Analytics [T-INFO-101305]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>24114</td>
<td>Big Data Analytics</td>
<td>3 SWS</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500078</td>
<td>Big Data Analytics</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500149</td>
<td>Big Data Analytics</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), ☑ On-Site, ☑ Cancelled

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (i.d.R. 25min) nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
keine

Empfehlungen
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Analysetechniken für große Datenbestände
24114, WS 19/20, 3 SWS, Sprache: Deutsch, im Studienendenportal anzeigen

Inhalt

Literaturhinweise
- Data Mining: Concepts and Techniques (3rd edition): Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann Publishers 2011
- Knowledge Discovery in Databases: Martin Ester, Jörg Sander, Springer 2000
6.11 Course: Building and Environmental Aerodynamics [T-BGU-111060]

Responsible: Dr.-Ing. Christof-Bernhard Gromke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6221905</td>
<td>Building and Environmental Aerodynamics</td>
<td>2 SWS Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.12 Course: Climate Modeling & Dynamics with ICON [T-PHYS-108928]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Dr. Aiko Voigt

Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
<th>Type</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4052151</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>2 SWS</td>
<td>Lecture (V) / 🧩</td>
<td>Ginete Werner Pinto, Voigt</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4052152</td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1 SWS</td>
<td>Practice (Ü) / 🗣</td>
<td>Ginete Werner Pinto, Lemburg, Ludwig</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Successful participation in the exercises.

Prerequisites
None

Below you will find excerpts from events related to this course:

Climate Modeling & Dynamics with ICON
4052151, WS 20/21, 2 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
Introduction to the ICON model, baroclinic life cycles, cloud impact on large-scale circulation of the atmosphere, climate change response of extra tropical jet stream, aerosol impact on tropical rain belts.
Numerical modeling and analysis of climate and climate change (climate system, conceptual models for processes and feedback, chaotic dynamic systems, numerical climate models (EMICS, Global models, regional models), (statistical) analysis methods.

Exercises to Climate Modeling & Dynamics with ICON
4052152, WS 20/21, 1 SWS, Language: English, Open in study portal
Practice (Ü)
On-Site

Content
Following the lecture.
6.13 Course: Cloud Physics [T-PHYS-107694]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 4052081</td>
<td>Cloud Physics</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥</td>
<td></td>
</tr>
<tr>
<td>WS 20/21 4052082</td>
<td>Exercises to Cloud Physics</td>
<td>2 SWS</td>
<td>Practice (Ü) / 🗣</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none

Below you will find excerpts from events related to this course:

Cloud Physics
4052081, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
Phenomenology, cloud dynamics of stratiform and convective clouds, micro physics of warm and cold clouds, collision and coalescence, primary and secondary ice formation, condesational and depositional growth.

Exercises to Cloud Physics
4052082, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
Following the lecture.
6.14 Course: Components of the Climate System (Module Exam) [T-PHYS-108933]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| SS 2020 | 7800015 | Examination on Components of the Climate System (Module Exam) | Prüfung (PR) | Fink |

Competence Certificate

The allocation of 12 credits takes place after passing the oral exam (see module description).

Modeled Conditions

The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:
 1. You have to fulfill 2 of 3 conditions:
 1. The course T-PHYS-108931 - Middle Atmosphere in the Climate System must have been passed.
 2. The course T-PHYS-108932 - Ocean-Atmosphere Interactions must have been passed.
 3. The course T-PHYS-107692 - Seminar on IPCC Assessment Report must have been passed.
 2. The course T-PHYS-107693 - Tropical Meteorology must have been passed.
 3. The course T-PHYS-108928 - Climate Modeling & Dynamics with ICON must have been passed.
6.15 Course: Data Analysis in Geoscience Remote Sensing Projects, Prerequisite [T-BGU-106633]

Responsibility: Prof. Dr. Jan Cermak

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

Competence Certificate

Successfully completed exercises in Data Analysis in Geoscience Remote Sensing Projects; the assessment consists of a coursework according § 4 para. 3 SPO M.Sc. Geodäsie und Geoinformatik. The detailed conditions will be announced in the lecture.

Prerequisites

none

6.16 Course: Database Systems [T-INFO-101497]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 24516 Datenbanksysteme 2 SWS Lecture (V) Böhm, Mülle</td>
</tr>
<tr>
<td>SS 2020 24522 Übungen zu Datenbanksysteme 1 SWS Practice (Ü) Böhm, Mülle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 7500166 Database Systems Prüfung (PR) Böhm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO. Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§42(2), 3 SPO 2007) bzw. Studienleistung (§43 SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenbanksysteme

Vorlesung (V)

Der/die Studierende

- ist in der Lage den Nutzen von Datenbank-Technologie darzustellen,
- kennt die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen,
- ist in der Lage selbstständig einfache Datenbanken anzulegen und Zugriffe auf diese zu tätigen,
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie.

Übungen zu Datenbanksysteme

Übung (Ü)

Die Übungstermine sind in der Vorlesung Datenbanksysteme angekündigt.
6 COURSES

6.17 Course: Distributed Computing [T-INFO-101298]

Responsible: Prof. Dr. Achim Streit
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Distributed Computing</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥 Streit, Krauß, Kühn</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Distributed Computing</td>
<td>Prüfung (PR)</td>
<td>Streit</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO stattfindet.

Voraussetzungen

Keine

Empfehlungen

Das Modul: Einführung in Rechnernetze wird vorausgesetzt.

Inhalt

In einem weiteren Themenblock werden Konzepte zum Management großer bzw. verteilter Daten vorgestellt. Dabei wird sowohl auf übliche Werkzeuge und Frameworks eingegangen, als auch auf den Lebenszyklus von Daten, deren Metadaten und die Daten-Speicherung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs
6.18 Course: Energetics [T-PHYS-107695]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Completed coursework</td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Energetics

4052131, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Prerequisites
none

Content
Mean meridional circulation, stationary and transient eddies; basic forms, budget equations and transport processes of energy in the atmosphere; principle of available potential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors).

Table of content:
• Literature & Learning goals
• The Climate System
• Basic Equations of the Climate System
• Decomposition of the general circulation
• Radiation budget and energy transports
• Consequences of the radiation and surface energy budgets
• Atmospheric water budget
• Atmospheric and oceanic energy budget
• Concept of „Available Potential Energy (APE)”
6.19 Course: Energy Meteorology [T-PHYS-109141]

Responsible: apl. Prof. Dr. Stefan Emeis
Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
</table>
| SS 2020 | 4052191 | Energy Meteorology | 2 SWS | Lecture (V)
Emeis, Schroedter-Homscheidt, Ginete Werner Pinto |

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
</table>
| SS 2020 | 7800021 | Energy Meteorology | Prüfung (PR)
Ginete Werner Pinto |

Prerequisites

None

Below you will find excerpts from events related to this course:

Energy Meteorology

4052191, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)

Content

- Overview Energy Meteorology
- Physical basics – Wind energy
- Physical basics of energy supply
- Economic basics of energy supply
- Onshore and offshore wind parks
- Wind energy siting – complex terrain
- Physical basics – Solar energy
- Tracking and concentrating solar systems
- Wind measurements
- Radiation forecasts
- Wind energy – yield forecasts
- Climate change & energy system
- Community energy meteorology and where to work

Organizational issues

- Blockvorlesung
- Please register for the ILIAS course to receive further information
6.20 Course: Exam on Physics of Planetary Atmospheres [T-PHYS-109180]

Responsible: Prof. Dr. Thomas Leisner
Organisation: KIT Department of Physics
Part of: M-PHYS-104488 - Physics of Planetary Atmospheres

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-PHYS-109177 - Physics of Planetary Atmospheres must have been passed.
6.21 Course: Experimental Meteorology (Module Exam) [T-PHYS-109137]

Responsible: Prof. Dr. Christoph Kottmeier
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>14</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| SS 2020 | 7800038 | Examination on Experimental Meteorology (Module Exam) | Prüfung (PR) | Kottmeier |

Competence Certificate
The allocation of 12 credits takes place after passing the oral exam (see module description).

Prerequisites
In the Module "Experimental Meteorology" all offered courses must be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-PHYS-109133 - Remote Sensing of Atmospheric State Variables must have been passed.
2. The course T-PHYS-109135 - Advanced Practical Courses must have been passed.
3. The course T-PHYS-109136 - Field Trip must have been passed.
4. The course T-PHYS-109902 - Integrated Atmospheric Measurements must have been passed.
6.22 Course: Field Course Soil Science [T-BGU-107486]

Responsible: Prof. Dr. Wolfgang Wilcke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-103398 - Geocology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6111077</td>
<td>Bodenkundliche Geländeübung</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8262101508</td>
<td>Field Course Soil Science</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.23 Course: Field Trip [T-PHYS-109136]

Responsible: Prof. Dr. Christoph Kottmeier

Organisation: KIT Department of Physics

Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th>2 SWS</th>
<th>Excursion (EXK)</th>
<th>Mohr, Kunz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4052263</td>
<td>Field Trip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th>Prüfung (PR)</th>
<th>Kottmeier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7800037</td>
<td>Field Trip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Lectures on specific topics about the excursion

Prerequisites
None

Below you will find excerpts from events related to this course:

Field Trip

4052263, SS 2020, 2 SWS, Language: English, Open in study portal

Content
The course comprises a one-week excursion to research institutes and observatories in Germany and neighbouring countries.

Organizational issues
The date for the field trip will be arranged in the semester opening on April 20th, 11:30 - 12:30.
Course: Flow Measurement Techniques [T-BGU-110411]

Responsible: Dr.-Ing. Christof-Bernhard Gromke

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>6221907</th>
<th>Flow Measurement Techniques</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ) /</th>
<th>Gromke</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6221806</td>
<td>Fluid Mechanics of Turbulent Flows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8244110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 45 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Geo Data Infrastructures and Web Services [T-BGU-101756]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6026204</td>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>1 SWS</td>
<td>Lecture (V)</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8296101756</td>
<td>Geo Data Infrastructures and Web Services</td>
<td>Prüfung (PR)</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Prerequisites

The part T-BGU-101757 Geodateninfrastrukturen und Web-Dienste, Vorleistung has to be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-101757 - Geodata Infrastructures and Web-Services, Prerequisite must have been passed.
6.27 Course: Geodata Infrastructures and Web-Services, Prerequisite [T-BGU-101757]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6026204</td>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>1</td>
<td>Lecture (V)</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Prüfung (PR)</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8296101757</td>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td></td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Prerequisites

none
6.28 Course: Geological Hazards and Risk [T-PHYS-103525]

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: M-PHYS-101833 - Geological Hazards and Risk

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Lecture (V) / 📜</td>
<td>Gottschämmer, Daniell</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Practice (Ü) / 📜</td>
<td>Gottschämmer, Daniell</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>7800114</td>
<td>Geological Hazards and Risk</td>
<td>Prüfung (PR)</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📜 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled
Course: Geomorphology and Soil Science [T-BGU-107487]

Responsible: Prof. Dr. Wolfgang Wilcke
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-103398 - Geocology

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Weekly Sessions</th>
<th>Type</th>
<th>Module Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6111071</td>
<td>Böden Europas</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Wilcke</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6111061</td>
<td>Geomorphologie und Bodenkunde</td>
<td>2 SWS</td>
<td>Lecture (V) / Online</td>
<td>Norra, Wilcke</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6111066</td>
<td>Geomorphologie und Bodenkunde</td>
<td>1 SWS</td>
<td>Practice (Ü) / On-Site</td>
<td>Velescu</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Module Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8262101507</td>
<td>Geomorphology and Soil Science</td>
<td>Prüfung (PR)</td>
<td>Wilcke</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Prerequisites

None

Recommendation

None

Annotation

None
Course: Image Processing and Computer Vision [T-BGU-101732]

Responsible: Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-102757 - Computer Vision and GIS
- M-BGU-102759 - Computer Vision and Remote Sensing

Type
- Oral examination

Credits
- 4

Recurrence
- Each winter term

Version
- 1

Competence Certificate
The assessment consists of an oral exam (ca. 30 min). according § 4 para. 2 No. 2 SPO M.Sc. Geodäsie und Geoinformatik.

Prerequisites
The parts T-BGU-106333 und T-BGU-106334 must not have started.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must not have been started.
2. The course T-BGU-106334 - Remote Sensing of a Changing Climate, Examination must not have been started.
6.31 Course: Integrated Atmospheric Measurements [T-PHYS-109902]

Responsible: Prof. Dr. Christoph Kottmeier
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 4052131 | Integrated Atmospheric Measurements | 2 SWS | Lecture (V) | Kottmeier, Maurer |

Exams

| SS 2020 | 7800110 | Integrated Atmospheric Measurements (Prerequisite) | Prüfung (PR) | Kottmeier |

Competence Certificate
Short presentation on selected contents must be held.

Prerequisites
None

Below you will find excerpts from events related to this course:

Integrated Atmospheric Measurements
4052131, SS 2020, 2 SWS, Open in study portal

Content

Organizational issues

- The lecture takes place online
- First meeting: 21.4. at 11:30 on MSTeams
- Please register for the ILIAS course to receive further information
6.32 Course: Introduction into Classification Methods of Remote Sensing [T-BGU-105725]

Responsible: Dr.-Ing. Uwe Weidner
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-102758 - GIS and Remote Sensing
- M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.33 Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences [T-BGU-101681]

Responsible: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-102757 - Computer Vision and GIS
- M-BGU-102758 - GIS and Remote Sensing
- M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8280101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>Prüfung (PR)</td>
<td>Wursthorn, Rösch</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-103541 - Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite must have been passed.
6.34 Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite [T-BGU-103541]

Responsible: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
M-BGU-102757 - Computer Vision and GIS
M-BGU-102758 - GIS and Remote Sensing
M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>3</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/U</td>
<td>4 SWS</td>
<td>Lecture / Practice (V/U)</td>
<td>Wursthorn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course: Introduction to Volcanology, Exam [T-PHYS-103644]

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4060251</td>
<td>Introduction to Volcanology</td>
<td>1</td>
<td>Lecture (V)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4060252</td>
<td>Exercises to Introduction to Volcanology</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7800044</td>
<td>Introduction to Volcanology, exam</td>
<td>Prüfung (PR)</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-103553 - Introduction to Volcanology, Prerequisite must have been passed.
Course: Introduction to Volcanology, Prerequisite [T-PHYS-103553]

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Event Code</th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4060251</td>
<td>Introduction to Volcanology</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4060252</td>
<td>Exercises to Introduction to Volcanology</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Exam Code</th>
<th>Event</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7800043</td>
<td>Introduction to Volcanology, Studienleistung</td>
<td>Prüfung (PR)</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>
6.37 Course: Master`s Thesis [T-PHYS-109616]

Responsible: Prof. Dr. Corinna Hoose

Organisation: KIT Department of Physics

Part of: M-PHYS-100956 - Master Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
see module information or module handbook

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 3 months
- **Correction period**: 8 weeks

This thesis requires confirmation by the examination office.
6.38 Course: Meteorological Hazards [T-PHYS-109140]

Responsible: apl. Prof. Dr. Michael Kunz
Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Participation in a course as a preliminary examination.

Prerequisites
None

Annotation
None
6.39 Course: Methods of Data Analysis [T-PHYS-109142]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 4052171</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 4052172</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

| SS 2020 7800022 | Prüfung (PR) | |

Competence Certificate

Successful participation in the exercises.

Prerequisites

None

Below you will find excerpts from events related to this course:

Methods of Data Analysis

4052171, SS 2020, 2 SWS, Language: English, Open in study portal

Lecture (V)

Content

1. Basics
2. Significance testings
3. Regression
4. Time series
5. Fourier wavelet analysis
6. Spatial analysis
7. Clustering
8. Machine Learning
9. Summary

Organizational issues

Organisatorisches:

- The lecture takes place online
- First meeting: 21.4. at 9:45 via zoom
- Please register for the ILIAS course to receive further information

Exercises to Methods of Data Analysis

4052172, SS 2020, 1 SWS, Language: English, Open in study portal

Practice (Ü)

Content

Following the lecture.
6.40 Course: Middle Atmosphere in the Climate System [T-PHYS-108931]

Responsible: Dr. Michael Höpfner
Dr. Miriam Sinnhuber

Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4052061</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2 SWS</td>
<td>Lecture (V) / 🖥️</td>
<td>Höpfner, Sinnhuber</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗓️ On-Site, ✗ Cancelled

Prerequisites

None

Below you will find excerpts from events related to this course:

Middle Atmosphere in the Climate System

4052061, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V) Online

Content

- History of science of the middle atmosphere (MA)
- Mean state of the MA: temperature, wind, chemical composition
- Radiation: sun, radiative transfer, energy budget, photolysis
- Measurements: in-situ/remote sounding, ground-based, airborne/balloon, satellite
- Aerosols: stratospheric background aerosol layer, volcanic enhancement, polar stratospheric clouds, polar mesospheric clouds, meteoric dust
- Chemistry: general concepts, global ozone layer, polar ozone chemistry
- Dynamics: fundamental description, meridional circulation, equatorial circulation, waves and tides, stratospheric warmings, tracer and age-of-air, upper troposphere/lower stratosphere, cross-tropopause transport
- Coupling and climate: chemistry-climate coupling, trends,
6.41 Course: Mobile Computing and Internet of Things [T-INFO-102061]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

Type
- Oral examination
- Credits: 5
- Recurrence: Each winter term
- Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credit</th>
<th>Course: Mobile Computing and Internet of Things</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 2400051</td>
<td>2+1 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture / Practice (VÜ) / 🖥️ | Beigl, Exler |

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credit</th>
<th>Course: Mobile Computing and Internet of Things</th>
<th>Recurrence</th>
</tr>
</thead>
</table>
| SS 2020 7500107 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |
| SS 2020 7500107_02-06 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |
| SS 2020 7500107_14-09 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |
| SS 2020 7500107_15-09 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |
| SS 2020 7500107_16-06 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |
| SS 2020 7500107_19-05 | | Mobile Computing and Internet of Things | Prüfung (PR)
| | | | Beigl |

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Inhalt

- Mobile Computing:
 - Plattformen: SmartPhones, Tablets, Glasses
 - Mensch-Maschine-Interaktion für Mobile Computing
 - Software Engineering - Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
 - Sensoren und deren Einsatz
 - Internet der Dinge:
 - Plattformen für das Internet der Dinge: Raspberry Pi und Arduino
 - Personal Area Networks: Bluetooth (4.0)
 - Home Networks: Zigbee/IEEE 802.15.4
 - Technologien des Internet der Dinge
 - Anwendungen in der Industrie 4.0

Lehreinheit

 - Mobile Computing:
 - Plattformen: SmartPhones, Tablets, Glasses
 - Mensch-Maschine-Interaktion für Mobile Computing
 - Software Engineering - Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
 - Sensoren und deren Einsatz
 - Internet der Dinge:
 - Plattformen für das Internet der Dinge: Raspberry Pi und Arduino
 - Personal Area Networks: Bluetooth (4.0)
 - Home Networks: Zigbee/IEEE 802.15.4
 - Technologien des Internet der Dinge

Arbeitsaufwand

- Der Gesamtarbeitsaufwand für diese Lehreinheit beträgt ca. 150 Stunden (3.0 Credits).

Aktivität

Präsenzzeit: Besuch der Vorlesung

<table>
<thead>
<tr>
<th>15 x 90 min</th>
<th>22 h 30 min</th>
<th>24 h 00 min</th>
<th>Prüfung vorbereiten</th>
</tr>
</thead>
</table>

Präsenzzeit: Besuch der Übung

<table>
<thead>
<tr>
<th>15 x 45 min</th>
<th>11 h 15 min</th>
<th>15 h 00 min</th>
<th>150 h 00 min</th>
</tr>
</thead>
</table>

Vor- / Nachbereitung der Vorlesung und Übung

<table>
<thead>
<tr>
<th>15 x 90 min</th>
<th>22 h 30 min</th>
<th>33 h 45 min</th>
<th>1 x 3 h</th>
</tr>
</thead>
</table>

Entwicklung einer adaptiven Webseite und einer mobilen App

Literaturhinweise

Werden in der Vorlesung bekannt gegeben
6.42 Course: Modern Theoretical Physics for Teacher Students [T-PHYS-103204]

Responsible: Dr. Stefan Gieseke
Organisation: KIT Department of Physics
Part of: M-PHYS-101664 - Modern Theoretical Physics for Teacher Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4012131</td>
<td>Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Gieseke</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4012132</td>
<td>Übungen zu Moderne theoretische Physik für Lehramtskandidaten</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Gieseke, NN</td>
</tr>
</tbody>
</table>

Legend:

- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
Oral exam, approx. 45 min

Prerequisites
Successful completion of the exercises

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-PHYS-103203 - Modern Theoretical Physics for Teacher Students - Prerequisite must have been passed.
Course: Modern Theoretical Physics for Teacher Students - Prerequisite [T-PHYS-103203]

Responsible: Dr. Stefan Gieseke
Organisation: KIT Department of Physics
Part of: M-PHYS-101664 - Modern Theoretical Physics for Teacher Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type (V) / 🖥</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4012131</td>
<td>Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>4</td>
<td>Lecture (V) / 🖥</td>
<td>Gieseke</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>4012132</td>
<td>Übungen zu Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>2</td>
<td>Practice (Ü) / 🖥</td>
<td>Gieseke, NN</td>
</tr>
</tbody>
</table>

Legend: 🔶 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate
Course achievement, successful completion of the exercises

Prerequisites
none
6.44 Course: Modern Theoretical Physics I, Quantum Mechanics 1 [T-PHYS-105134]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: M-PHYS-101707 - Modern Theoretical Physics I, Quantum Mechanics I

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4010141</td>
<td>Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)</td>
<td>4</td>
<td>Lecture (V)</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4010142</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exam, approx. 45 min

Prerequisites
successful completion of the exercises
6.45 Course: Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1
[T-PHYS-102317]

Responsible: Prof. Dr. Milada Margarete Mühlleitner
Organisation: KIT Department of Physics
Part of: M-PHYS-101707 - Modern Theoretical Physics I, Quantum Mechanics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Modern Theoretische Physik I (Theorie D, Quantenmechanik I)</td>
<td>4 SWS</td>
<td>Lecture (V)</td>
<td>Mühlleitner, Gieseke</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Mühlleitner, Liebler, Gieseke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1 - Tutorial</td>
<td>Mühlleitner</td>
</tr>
</tbody>
</table>

Competence Certificate
Course achievement, successful completion of the exercises

Prerequisites
none
Course: Numerical Methods - Exam [T-MATH-100803]

Responsible: apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel

Organisation: KIT Department of Mathematics

Part of: M-MATH-100536 - Numerical Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0180300</td>
<td>Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie, Geoinformatik)</td>
<td>2 SWS Lecture (V) Reichel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0180400</td>
<td>Übungen zu 0180300</td>
<td>1 SWS Practice (Ü) Reichel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0100056</td>
<td>Numerical Methods - Exam</td>
<td>Prüfung (PR) Reichel</td>
</tr>
</tbody>
</table>
6.47 Course: Ocean-Atmosphere Interactions [T-PHYS-108932]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

Type	Completed coursework	Credits	Recurrence	Version

| Events | | | |
| WS 20/21 | 4052121 | Ocean-Atmosphere Interactions | 2 SWS | Lecture (V) |
| Fink, van der Linden |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites
None

Below you will find excerpts from events related to this course:

Ocean-Atmosphere Interactions
4052121, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

- Literature
- Learning goals
- Physical and chemical properties of the upper ocean layers
 - Properties of ocean waters
 - Salinity content and density
 - Temperature distribution in the ocean
 - Horizontal salinity distribution in the ocean
 - Vertical salinity distribution
 - Horizontal and vertical density distribution
 - Characteristic water masses in the oceans
 - Dissolved gases in the ocean
 - Molecular transport
 - Properties of humid air
 - Ocean surface and its immediate environment
- Wind-driven ocean surface currents
 - Equation of motion
 - Ekman’s solution of the equation of motion
 - Mass transport associated with the Ekman current
 - Up-welling in the ocean
 - Sverdrup regime
 - Westerly boundary current: Stommel’s contribution
 - Munk’s solution
- Ocean waves
 - Generation of ocean waves by wind
 - Description of ocean waves
 - Global view on ocean wave climates
 - Ocean wave modeling
 - Ocean wave measurements
- Summary
6.48 Course: Parallel Computer Systems and Parallel Programming [T-INFO-101345]

Responsible: Prof. Dr. Achim Streit
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 24617 | Parallel computer systems and parallel programming | 2 SWS | Lecture (V) | Streit, Häfner |

Exams

| SS 2020 | 7500141 | Parallel computer systems and parallel programming | Prüfung (PR) | Streit |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen aus der Lehrveranstaltung Rechnerstrukturen sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Parallelrechner und Parallelprogrammierung
24617, SS 2020, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung gibt eine Einführung in die Welt moderner Parallel- und Höchstleistungsrechner, des Supercomputings bzw. des High-Performance Computing (HPC) und die Programmierung dieser Systeme.

Zunächst werden allgemein und exemplarisch Parallelrechnersysteme vorgestellt und klassifiziert. Im Einzelnen wird auf speichergekoppelte und nachrichtengekoppelte Systeme, Hybrid System und Cluster sowie Vektorrechner eingegangen. Aktuelle Beispiele der leistungsfähigsten Supercomputer der Welt werden ebenso wie die Supercomputer am KIT kurz vorgestellt.

Im zweiten Teil wird auf die Programmierung solcher Parallelrechner, die notwendigen Programmierparadigmen und Synchronisationsmechanismen, die Grundlagen paralleler Software sowie den Entwurf parallelar Programme eingegangen. Eine Einführung in die heute üblichen Methoden der parallelen Programmierung mit OpenMP und MPI runden die Veranstaltung ab.

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert. Dies ist bisher eine mündliche Einzelpflicht.

Der Arbeitsaufwand beträgt 120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs.

Aufgrund der aktuellen Situation durch das Coronavirus wird die Vorlesung voraussichtlich als Online-Lehrveranstaltung zum regulären Termin starten. Weitere Infos kommen immer über ILIAS.
6.49 Course: Physics of Planetary Atmospheres [T-PHYS-109177]

Responsible: Prof. Dr. Thomas Leisner

Organisation: KIT Department of Physics

Part of: M-PHYS-104488 - Physics of Planetary Atmospheres

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 20/21</th>
<th>4052161</th>
<th>Physics of Planetary Atmospheres</th>
<th>2 SWS</th>
<th>/ 📚</th>
<th>Leisner, Sinnhuber, Reddmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4052162</td>
<td>Exercises to Physics of Planetary Atmospheres</td>
<td>2 SWS</td>
<td>Practice (Ü) / 📚</td>
<td>Leisner, Duft</td>
</tr>
</tbody>
</table>

Competence Certificate

- If this module is part of the Specialization or Compulsory Subject, credits are earned through the associated exam (oral, written or otherwise).
- Otherwise, the exercises, computer exercises, internships or, if necessary, graduation lectures must be successfully completed.

Prerequisites

None

Recommendation

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level.

Annotation

240 hours consisting of attendance times (60 hours), follow-up of the lecture incl. Exam preparation and editing exercises (180 hours).

Below you will find excerpts from events related to this course:

Physics of Planetary Atmospheres

4052161, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)

Content

The module gives a broad introduction into the formation and properties of planets and their atmospheres and tries to constrain possible planetary atmospheres by applying fundamental principles of physics. In this respect, the module will focus on the planetary atmospheres in our solar system. Moreover, recently developed methods for the remote sensing of extra solar planets are introduced and the current understanding of their atmospheres is presented. A focus is the energy budget of planetary atmospheres, where clouds play a central role. Their formation and growth will be covered in a generalized fashion.

Exercises to Physics of Planetary Atmospheres

4052162, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)

Content

Following the lecture.
6.50 Course: Remote Sensing of a Changing Climate, Examination [T-BGU-106334]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6043106</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Lecture</td>
<td>2</td>
<td>Lecture (V) / 🖥</td>
<td>Cermak</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1</td>
<td>Practice (Ü) / 🖥</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>8297106334</td>
<td>Remote Sensing of a Changing Climate, Examination</td>
<td>Prüfung (PR)</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Oral exam of about 20 min.

Prerequisites
T-BGU-106333 (Remote Sensing in a Changing Climate, Vorleistung) passed
T-BGU-101732 (Image Processing and Computer Vision) must not have been started.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must have been passed.
2. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.

Recommendation
None

Annotation
None
6.51 Course: Remote Sensing of a Changing Climate, Prerequisite [T-BGU-106333]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Each winter term</td>
<td>Completed coursework</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.
T 6.52 Course: Remote Sensing of Atmospheric State Variables [T-PHYS-109133]

Responsible: Prof. Dr. Johannes Orphal
Dr. Björn-Martin Sinnhuber

Organisation: KIT Department of Physics

Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type of Course</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 4052151</td>
<td>Remote Sensing of Atmospheric State Variables</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Orphal, Sinnhuber</td>
<td></td>
</tr>
<tr>
<td>SS 2020 4052152</td>
<td>Exercises to Remote Sensing of Atmospheric State Variables</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Orphal, Sinnhuber</td>
<td></td>
</tr>
<tr>
<td>SS 2020 7800024</td>
<td>Remote Sensing of Atmospheric State Variables (Prerequisite)</td>
<td>Prüfung (PR)</td>
<td>Kottmeier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

Competence Certificate
More than 50% of the points from the exercises must be achieved.

Prerequisites
None

Below you will find excerpts from events related to this course:

Remote Sensing of Atmospheric State Variables
4052151, SS 2020, 2 SWS, Language: English, Open in study portal

Content
- physical basics
- radiation transfer
- inverse methods
- basics of satellite remote sensing
- techniques and applications

Organizational issues
- The lecture takes place online
- First meeting: 23.4. at 8:00 on MSTeams or zoom
- Please register for the ILIAS course to receive further information

Exercises to Remote Sensing of Atmospheric State Variables
4052152, SS 2020, 1 SWS, Language: English, Open in study portal

Content
Following the lecture.

Responsible: Prof. Dr. Jan Cermak

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105095 - Satellite Climatology: Remote Sensing of a Changing Climate

Type: Oral examination
Credits: 3
Recurrence: Each winter term
Expansion: 1 terms
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Lecture</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
<td>Cermak</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Exams

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Oral exam (about 20 min.) according § 4 para. 2 No. 2 SPO M.Sc. Geodäsie und Geoinformatik.

Prerequisites

The part T-BGU-106334 - Remote Sensing of a Changing Climate, Prüfung must not have started.

The part T-BGU-110304 - Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite must be passed.

Modeled Conditions

You have to fulfill one of 2 conditions:

1. **The course** T-BGU-110304 - Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite **must have been passed.**
2. **The course** T-BGU-101732 - Image Processing and Computer Vision **must not have been started.**
Course: Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite [T-BGU-110304]

Responsible: Prof. Dr. Jan Cermak

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-105095 - Satellite Climatology: Remote Sensing of a Changing Climate

Type
Completed coursework

Credits
1

Recurrence
Each winter term

Expansion
1 terms

Version
1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>Lecture (V) / 🖥</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>Practice (Ü) / 🖥</td>
<td>1 SWS</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
► Online, ☕ Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
Elaboration (data analysis and evaluation) in the form of a commented Jupyter notebook. Success is assessed in the form of a coursework (§ 4 (3) SPO). The detailed conditions will be announced in the lecture.

Prerequisites
The parts T-BGU-106333 - Remote Sensing of a Changing Climate, Vorleistung and T-BGU-101732 - Image Processing and Computer Vision must not have started.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must not have been started.
2. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.
6.55 Course: Scientific Concept Development [T-PHYS-109617]

Organisation: KIT Department of Physics
Part of: M-PHYS-100955 - Specialisation Phase

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>30</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar on Specialization Phase</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kottmeier, Hoose, Ginete Werner Pinto, Fink, Kunz, Orphal, Leisner, Braesicke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Concept Development</td>
<td>Prüfung (PR)</td>
<td>Hoose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
see module information or module handbook

Modeled Conditions
You have to fulfill one of 4 conditions:

1. The module M-PHYS-100951 - Components of the Climate System must have been passed.
2. The module M-PHYS-100952 - Atmospheric Processes must have been passed.
3. The module M-PHYS-100953 - Experimental Meteorology must have been passed.
4. The module M-PHYS-100954 - Applied Meteorology must have been passed.

Below you will find excerpts from events related to this course:

Seminar on Specialization Phase

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar on Specialization Phase</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kottmeier, Hoose, Ginete Werner Pinto, Fink, Kunz, Orphal, Leisner, Braesicke</td>
<td></td>
</tr>
</tbody>
</table>

Content
In the Seminar on Specialization Phase students present their final theses in the context of the TL T-PHYS-109617 "Scientific Concept Development" (Master)

The Seminar on Specialization Phase takes place every Wednesday from 15:45 - 17:15 during the lecture period. The registration takes place by mail to katharina.maurer@kit.edu

Organizational issues

• The seminar takes place online
• Please register for the ILIAS course to receive further information
6.56 Course: Seminar on IPCC Assessment Report [T-PHYS-107692]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Corinna Hoose
Patrick Ludwig

Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Event Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21</td>
<td>4052194</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Advanced seminar (HS) / On-Site</td>
<td>Ginete Werner Pinto, Ludwig</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ✅ Blended (On-Site/Online), ⬆ On-Site, ✗ Cancelled

Competence Certificate

Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min) and submission of a written summary (1 page).

Below you will find excerpts from events related to this course:

Seminar on IPCC Assessment Report

4052194, WS 20/21, 2 SWS, Language: English, Open in study portal

Content

Causes of climate change and paleoclimate (external and internal influence factors on the climate, results and structure of simple climate models with and without feedbacks, radiation effect and importance of greenhouse gases, results of model projections of the global climate, IPCC process structure and importance for the life on earth).
The objectives of this Seminar are to provide an overview of the last IPCC Report (currently 2013) and to develop scientific presentation and discussion skills.
Course: Seminar on Recent Topics of Risk Science [T-PHYS-107673]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>4</th>
<th>Recurrence</th>
<th>Each winter term</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Responsible: Dr. Ellen Gottschämmer
Organisation: KIT Department of Physics
Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

Events

| WS 20/21 | 4060284 | Seminar über aktuelle Themen aus der Risikoforschung (Literaturseminar) | 2 SWS | Seminar (S) / 🧩 | Gottschämmer |

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
</table>

| WS 20/21 | 7800109 | Seminar on recent questions about risk science | Prüfung (PR) | Gottschämmer |

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-PHYS-105113 - Geophysical Risk Seminar must not have been started.
6.58 Course: Tropical Meteorology [T-PHYS-107693]

Responsible: Prof. Dr. Peter Knippertz
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 20/21 4052111 Tropical Meteorology 2 SWS Lecture (V) / Knippertz</td>
</tr>
<tr>
<td>WS 20/21 4052112 Exercises to Tropical Meteorology 1 SWS Practice (Ü)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗹 On-Site, ✗ Cancelled

Competence Certificate
Students must achieve 50% of the points on the exercise sheets.

Below you will find excerpts from events related to this course:

Tropical Meteorology
4052111, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
Dynamics and climate of the Tropics (tropical circulation, Hadley and Walker cells, monsoons, El Niño, equatorial waves, Madden-Julian Oscillation, easterly waves, tropical cyclones, tropical squall lines).

Exercises to Tropical Meteorology
4052112, WS 20/21, 1 SWS, Language: English, Open in study portal

Content
Following the lecture.
6.59 Course: Turbulent Diffusion [T-PHYS-108610]

Responsible: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshyaripour

Organisation: KIT Department of Physics

Part of: M-PHYS-100954 - Applied Meteorology

Type
- Completed coursework

Credits
- 0

Recurrence
- Each summer term

Version
- 4

Events

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent Diffusion</td>
<td>4052081</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Hoshyaripour, Hoose</td>
</tr>
<tr>
<td>Exercises to Turbulent Diffusion</td>
<td>4052082</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Each summer term</td>
<td>Hoshyaripour, Hoose, Bruckert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent Diffusion (Prerequisite)</td>
<td>7800019</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

There are 7 exercises with 100 points in total.

To be admitted for the oral exam the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Prerequisites

none

Below you will find excerpts from events related to this course:

Turbulent Diffusion

4052081, SS 2020, 2 SWS, Language: English, Open in study portal

Content

1. Life cycle of air pollutants
2. Relevant processes and substances
3. Quantification of trace substances
4. Emissions
5. Turbulence and averaging
6. The diffusion equation
7. Chemical Transformations
8. Aerosol processes
9. Atmospheric models: ICON-ART modeling system
10. Parametrisation of turbulent fluxes
11. Aerosol interactions

Organizational issues

- The lecture takes place online.
- First meeting: 20.4. at 14:00 on MS-Teams. Please install the MS-Teams app before the start of the first lecture. Use your KIT account for MS-Teams. If you have problems with installation etc. please contact ali.hoshyaripour@kit.edu
- Please register for the ILIAS course to receive further information

Exercises to Turbulent Diffusion

4052082, SS 2020, 1 SWS, Language: English, Open in study portal
Content
There are 7 exercises with 100 points in total. To be admitted for the oral exam the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.
6.60 Course: Visualization [T-INFO-101275]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2400175</td>
<td>Visualisierung</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Rapp, Dachsbacher</td>
</tr>
<tr>
<td>WS 20/21</td>
<td>24183</td>
<td>Visualisation</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Dachsbacher</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7500193</td>
<td>Visualization</td>
<td>Prüfung (PR)</td>
<td>Dachsbacher</td>
</tr>
</tbody>
</table>

Ergebnistkontrolle(n)

Die Ergebniskontrolle erfolgt in Form einer mündlichen Prüfung über die Vorlesung im Umfang von i.d.R. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

Empfehlungen

Vorkenntnisse aus der Vorlesung "Computergraphik" (24081) werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

![Visualisierung (finde im WS19/20 nicht statt)](24183, WS 19/20, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen)

Inhalt

Themen dieser Vorlesung sind u.a.:

- Einführung, Visualisierungs pipeline
- Datenakquisition und -repräsentation
- Perzeption und Abbildung (Mapping) auf grafische Repräsentationen
- Visualisierung von Skalarfeldern (Isoflächenextraktion, Volumenrendering)
- Visualisierung von Vektorfeldern (Particle Tracing, texturbasierte Methoden)
- Tensorfelder und Daten mit mehreren Attributen
- Informationsvisualisierung

Empfehlungen:

Vorkenntnisse aus der Vorlesung "Computergraphik" (24081) werden vorausgesetzt.

Die Studierenden lernen in dieser Vorlesung wichtige Algorithmen und Verfahren der Visualisierung kennen und können diese unterschiedlichen Anwendungsfeldern zuordnen, sie analysieren und bewerten. Die erworbenen Kenntnisse sind in vielen Bereichen der Forschung in der Computergrafik, und der (Medizin-/Bio-/Ingenieurs-)Informatik wertvoll. Die Studierenden können für ein gestelltes Problem geeignete Visualisierungstechniken auswählen und selbst implementieren.
6.61 Course: Wildcard [T-PHYS-106795]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.62 Course: Wildcard [T-PHYS-106796]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.63 Course: Wildcard [T-PHYS-106794]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
6.64 Course: Wildcard [T-PHYS-108286]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
6.65 Course: Wildcard [T-PHYS-106797]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.66 Course: Wildcard [T-PHYS-108283]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
6.67 Course: Wildcard [T-PHYS-108285]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
6.68 Course: Wildcard [T-PHYS-108284]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-BGU-102759 - Computer Vision and Remote Sensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Guidelines to Master’s Thesis

In the following, the most important steps and necessary formalities related to the compilation and submission of the Master’s thesis are described. The description comprises the closely interlinked modules “Specialization Phase” and “Master’s Thesis”, thus two semesters or a 12-month period. It is a guideline, not a legally binding regulation document. Questions can be directed to Andreas Fink (andreas.fink@kit.edu) or Kathi Maurer (kathi.maurer@kit.edu).

1. Finding a topic and supervisor

The “standard” case is that you will obtain a topic and supervisor from the list at our homepage. Please approach the respective supervisor(s) for more details in case you are interested. Please note that it is possible to chose topics that were not listed under the above-mentioned URL. In this case, approach professors, “Privatdozenten”, and group leaders directly.

In this context, it shall be noted that the Institute of Meteorology and Climate Research (IMK) has three departments: TRO focuses on the troposphere, AAF on aerosols, ASF on atmospheric trace gases and remote sensing. Master theses can be written in all three departments.

2. Registration and Deadlines

Before the start of the module Specialization Phase, students need to personally visit the Examination Office of the KIT Faculty of Physics:

 Prüfungssekretariat, Ms. Anja Müller

 Physics Building 30.21, 9th floor, Room 9-13;

 E-mail: pruefungssekretariat@physik.kit.edu

 Phone 0721 608-43438

If all requirements are met, a signed and stamped form will be issued.

Students use this form to contact their Advisor to discuss and fill in, amongst others, the fields “Advisor/ Co-Advisor”, "Preliminary title of thesis", and “Start of the thesis”.

The Advisor signs the form and sends it back to the Examination Office.

The Examination Office will register the thesis in the Campus Management System with the preliminary working title, the advisors and the start date. The deadline for submission of the thesis is calculated by the system and monitored by the Examination Office (12 months after starting date). These information are visible for the student in the Campus student portal.

The following points are worthy of note:
• The application for the Master’s thesis will be accepted by Ms. Müller, if all four meteorology modules of the 1st and 2nd MSc semester are entered in the Campus Management System. The modules *Soft Skills* and *Complementary Elective* may still be incomplete and should be completed in the course of the *Specialization Phase*.

• If the oral module exam has already been passed in one or more of the meteorological modules but has not yet been entered, an e-mail from the Responsible Lecturer to Ms. Müller, confirming the successful completion of the module, is sufficient.

• **Important**: If one of the four Master modules has not been passed because course components ("Teilleistungen") have not yet been completed and therefore the prerequisites for the oral examination have not yet been met, please speak to the study advisor Prof. Dr. Andreas H. Fink, to prevent an unnecessary delay of the study by one semester.

• Deadline extensions are handled very restrictively and are only possible in justified individual cases.
3. The module **Specialization Phase**

Formally, the first six months of final thesis work belong to the module *Specialization Phase*. In these six months, a seminar will be given in the *Seminar on the Specialization Phase* ("Studierendenseminar") in the context of the *Scientific Concept Development*. It should be noted that this seminar must be given in the “Studierendenseminar” that usually takes place during the lecture period on Wednesdays from 15:45-17:15 o'clock. Suggestions for dates and seminar titles should be sent to Kathi Maurer, ideally before the semester starts. The current seminar-calendar can be found on the website.

Important: Please register in the Campus Management System before the seminar on the *Specialization Phase*. Formally, this is possible when 3 of the 4 master modules in meteorology in the Campus Management System have been passed.

The seminar talk should take 20-25 minutes, followed by a discussion. The total duration should not exceed 45 minutes. After the seminar, there should be a feedback discussion with the Advisors and the Supervisor, in which the progress made so far is evaluated and next steps are discussed.

Advisors or Supervisors sign a form, which documents the presentation of the lecture with date and title.

Please forward the signed form to Mrs. Stenschke or Prof. Knippertz, who will enter the *Specialization Phase* in the Campus Management System.

4. The module **Master’s Thesis**

Within the 12-month period, the Master’s thesis is to be submitted to Ms. Müller as a written scientific paper.

Five bound copies must be made, with three copies being submitted to Ms. Müller, all three signed by the first Examiner with a text like for example:

„Accepted as an examination copy.“

Please note: With this signature the first examiner declares that the work is graded at least with a mark of 4.0! If doubts as to the latter grading exists, the examiner will write on all three copies a text like:

„Inspection copy.“

Ms. Müller confirms the receipt of the copies, which are then submitted to the first and second Examiners and on the basis of which the reports are prepared. This delivery is relevant for the 12-month deadline.

Please give the fourth and fifth bound copy to Frau Schönbein for the library at Campus South and the DWD library. Please send a PDF of the submitted work to Mr. Brückel, the IT administrator at
After submission, a 20-25 minute seminar must be held in the respective seminars of the department TRO, ASF, or AAF (cf. Section 4.1), where the thesis was written. This seminar can be held after the 12-month period and should take place at one of the next possible dates. **Note:** This final seminar can only take place during the lecture period.

After the seminar, a form must be completed, signed by the Advisor and the Co-Advisor or Supervisor and sent to Ms. Stenschke. The reports will be prepared by the Advisors only after the final presentation, as this is part of the assessment and is included in the evaluation.

4. Glossary

- **Advisor (“Berichterstatter or” Gutachter”):** This is usually a professor or a “Privatdozent” who acts as the first examiner.

- **Co-Advisor (“Zweigutachter”):** This is usually a professor or a “Privatdozent” who acts as the second examiner.

- **Supervisor (“Betreuer”):** He/she supervises the Master Student, is often the Advisor or Co-Advisor, but can also be research staff (see also “group leader”).

- **“Privatdozent”:** This is an habilitated staff member. He can act as an Advisor. However, the second examiner must be a full professor in this case. This is also true for so-called “apl. Professor”.

- **Group Leader (“Gruppenleiter”):** Group leaders in Campus North are senior scientists. They can act as Supervisors, but not as Advisors if they are not habilitated or are an “apl. Professor” (please see “Privatdozent”).

- **“Responsible Lecturer”:** This is the “Modulverantwortliche” who enters the final grade of his/her module into the Campus Management System.

- **“Examination Office” (“Prüfungssekretariat”):** This is the “Prüfungssekretariat” of the Faculty of Physics. The Examination Office is currently managed by Ms. Müller.

- **Campus Management System (CAS):** Amongst others, results of modules are entered in CAS.

- **“Course Component”**: This is the so-called “Teilleistung”, often a lecture.

- **“Seminar on the Specialization Phase”:** This is also referred to as “Studierendenseminar”, in which also BSc students give their talks. It is currently scheduled on Wednesdays 15:45-17:15 hours.