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1 Introduction 
Understanding the dynamical and physical processes responsible for rainfall is the main objective of 

this deliverable. One specific focus was on the processes that control the development of warm rain. 

It was planned to make some case studies of precipitation systems that occurred during the 

DACCIWA field campaign and to use a combination of observations and modelling 

A first step has been to look into all the rainfall events that occurred during the DACCIWA aircraft 

campaign (Flamant et al. 2018) from 29 June to 14 July 2016. Each day, a 24-h simulation was 

performed with the Meso-NH meteorological model with two nests. The inner nest was run in 

convection-permitting mode using a horizontal grid mesh of 5 km. Its domain covers the aircraft 

range, typically over Togo and Benin. The simulations were performed with a prognostic dust 

scheme in case of any dust event over Benin. While dust was observed during one flight, the 

concentration of dust was however too low for having any impact on the cloud development. Note 

also that the aircraft missions were dedicated to pollution. As a consequence, no flight was of interest 

for any precipitation case study. Among the 16 days of the aircraft campaign, 13 were rainy. A 

preliminary analysis of rainfall events based on the simulations shows that three days had 

“orographic rain”, “afternoon convection” occurred on six days and four days were characterized by 

travelling storms. 

Because no warm rain event was found during the aircraft campaign, this leads us to search for other 

rain cases before 29 June and after 14 July 2016. A total of nine cases were subjectively selected 

to have an as wide variety of rainfall types as possible with respect to the climatology of Maranan et 

al. (2018). For each case, the Meso-NH simulations were redone with one model only, and a finer 

mesh of 3 km. In the following, the performance of the model to represent seven cases is presented 

shortly. A deeper analysis is then shown for an orographic case.  

Another rain event outside the aircraft campaign has attracted our interest. It is a coastal extreme 

event that occurred on 11-13 June 2016 with a daily rainfall amount of 224 mm/24 h in the town of 

Abakaliki (Nigeria) and more than 100 mm in Axim (Ghana) and Abidjan (Ivory Coast). A diagnostic 

study on this extreme event was performed. In the following, it will be shown that the event is a 

transition from a squall line to a coastal moist vortex, explained by novel dynamics concepts. The 

event went on at the coast with regenerating convection behind the leading major mesoscale 

convective system. Meso-NH simulations with different initial dates for this case were also 

conducated and will be discussed. 

Outside the aircraft campaign, only one warm rain event was found on 24 July 2016 at the Savè 

supersite which was the only DACCIWA supersite instrumented with rainfall radar. This case was 

analyzed based on the rather limited rain radar information. The Meso-NH model was run in large-

eddy simulation mode with a grid mesh of 200 m and compared with the radar observations. An 

assessment of the large-eddy simulation with other model simulations at coarser resolution has also 

been performed. Results from this warm rain event are presented in Deliverable 6.5. 

The present report provides an overview of several precipitation case studies over south-western 

Africa. First, seven rain cases will be presented. Second, a diagnostic study on extreme precipitation 

along the Guinean coast will be described. 
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2 Precipitation case studies 

Table 1 lists the events that occurred during the DACCIWA field campaign and that were selected. 

All of them have been simulated with the Meso-NH model using the configuration detailed in section 

2.1. The performance of the model is described in section 2.2 for all the cases with the exception of 

the warm rain case. The latter is the subject of Deliverable D6.5.   

    Rainfall type  Date  Phase Comments  

Stationary convection  9 June  1 Accra: 184 mm, 143mm/6h  

Orographic rainfall  6 July  2 
 

Abakaliki extreme event 11 June 2 Nigeria, MCS, > 200 mm/24h 

Locally-induced convection  10 July  2 …. over Benin (in model)  

NW rainfall 12 July  2 
 

Westward thunderstorm  13 July  2 31 mm in 6h, morning  

Eastward squall line  20 July  2 
 

Night-time convection  23 July  3 
 

Warm rain  24 July  3 See Deliverable D6.5 

 Table 1: List of precipitation events with the cases that occurred during the aircraft campaign in bold. The 

phases are the stages of three West African monsoon as defined in Knippertz et al. (2017). 

2.1 Model configuration and data 

The simulations were run with the non-hydrostatic mesoscale atmospheric Meso-NH model (Lac et 

al. 2018), over a 384 × 432 km2 domain centred over Togo and Benin (Figure 1). They were run with 

a 3-km horizontal grid that permits the convection to be represented explicitly. They started from 

ECMWF operational analysis at 00 UTC each day. The observational data sets used are the 

radiosounding from Savè at 05 UTC (available from 13 June onwards), the 24-h accumulated rainfall 

from rain gauges, the Tropical Rainfall Measuring Mission (TRMM) 3B42 product and the Integrated 

Multi-satellitE Retrievals for GPM (IMERG) product. The time and spatial resolution of TRMM and 

IMERG is 3 h and 0.25° and 30 min and 0.1°, respectively. 

 

 

 

 

 Figure 1: Meso-NH simulation domain. 

Colour-shaded is the terrain height. The 

location of the Savè supersite is indicated. The 

white line shows the location of the cross 

section in Figure.10. The locations of the rain 

gauges used in this study are shown with red 

circles. 
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2.2 Results 

On 9 June 2016, stationary convection developed along the Guinean coast (Figure 2). Wind is 

southerly at low levels and north-easterly at mid-levels. The simulation predicted a storm too far east 

and inland. 

   

Figure 2: 24-h accumulated rain for (left) TRMM, (middle) IMERG and (right) Meso-NH on 9 June 2016. The 

red line shows the 400 m altitude. The rain-gauge values are reported within the coloured circles. 

On 6 July 2016, rain fell over the Atacora Mountains as retrieved from TRMM and IMERG (Figure 

3). This event occurred around 15 UTC. The low-level wind was south-westerly while at mid-levels, 

the wind blew from the east. The simulation shows good skill in predicting rain in the right place at 

the right time. This case is further investigated in Section 2.3. 

   

Figure 3: As in Fig. 2, but on 6 July 2016. 

On 10 July 2016, locally-induced thunderstorm occurred over Benin around 18 UTC (Figure 4). The 

wind was south-westerly at low level and north-easterly at mid-levels. The simulation produced 

rainfall in the direction of the mid-level wind correctly, but too far south. 

   

Figure 4: As in Fig. 2, but on 10 July 2016. 
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On 12 July 2016, rainfall was coming from the northwest (Figure 5). It is due to thunderstorms that 

developed in the afternoon and organized by low-level wind shear. The two satellite retrievals agree 

on the location and intensity of rain. They also found a spot of rain over the Atacora Mountains. The 

simulation produced precipitation with a larger intensity and too far west. It also missed the isolated 

storm over the mountains.  

   

Figure 5: As in Fig. 2, but on 12 July 2016. 

On 13 July 2016, rainfall occurred in the morning due to a thunderstorm coming from Nigeria (Figure 

6). This event was missed out by the simulation whose domain does not cover Nigeria. Further, the 

mid-level wind is very weak in the morning, which does not fit with the observed eastward 

propagation of the Nigerian thunderstorm.  

   

Figure 6: As in Fig. 2, but on 13 July 2016. 

On 20 July 2016, an westward-propagating squall line led to intense rainfall (Figure 7). It developed 

in a typical south-westerly monsoon flow with a very weak mid-level wind. The two satellite retrievals 

differ in the location of the rainfall spots while the simulation run at higher resolution produced various 

rain structures at finer scale and partly much farther south. 

   

Figure 7: As in Fig. 2, but on 20 July 2016. 
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On 23 July 2016, convection developed during night time with large accumulated rain in northern 

Togo and Benin (Figure 8). The simulation missed this event completely. Indeed, convection was 

wrongly simulated along the border between Benin and Nigeria where the wind was weak both at 

low and mid levels.  

   

Figure 8: As in Fig. 2, but on 23 July 2016. 

Overall, the precipitation events occurred in the presence of low-level moist monsoon flow (Figure 
9). They differ in their environment mostly by the direction and intensity of the wind at mid-
tropospheric levels, with a few cases showing a westerly flow. The latter synoptic-scale perturbations 
of the climatological easterly flow above 2 km have been described in Knippertz et al. (2017) and 
are not well represented by the model simulations (e.g. 12 and 13 July 2016 in Fig. 9). On these two 
days and on 23 July 2016, the model also show a too deep southwesterly monsoon flow. The two 
satellite products generally agree in the location and intensity of rain. They can however strongly 
differ in case of long duration of convection. Even though the 24-h accumulation period between the 
rain gauges (06 -06 UTC) do not exactly overlap with the model and satellite accumulation periods 
(00 – 00 UTC) and error in some gauges on certain days are likely, comparison to the rather dense 
surface gauge network suggest that both, the satellite rainfall estimations and the model do show to 
widespread rainfall.  Yet, the simulations show a certain degree of realism. They can however miss 
the rain event, because of night-time development or propagation across the simulation domain, for 
example. Among the 7 cases, the orographic rain event of 6 July was selected for further 
investigation because of the ability of the model to reproduce the case with sufficient realism. 
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Figure 9: Vertical profile of relative humidity and wind speed and direction at Savè taken from (black) 

radiosondes and (red) Meso-NH simulations at 05 UTC for each event with the exception of 9 June. 
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2.3 Orographic rain event 

Further investigation was done for one of the better simulated cases, the orographic rain on 6 July 

2016. The development of the boundary layer can be summarized using the observations taken from 

the DACCIWA supersite of Savè (Figure 10). The horizontal wind speed measured by sodar in the 

first 500 m shows maximum values in excess of 10 m/s between 00 and 06 UTC and 18 and 00 UTC 

on the next day (Figure 9, left). These relatively high wind speeds are related to the night-time low-

level jet (NLLJ). The end of the night is also characterized by the presence of low-level clouds (Figure 

10, right). This is explained by the simultaneous radiative cooling of the continental air mass and the 

moisture transported from the sea by the NLLJ (Kalthoff et al. 2018, Adler et al. 2018, Babić et al. 

2018). From 06 UTC onwards, the wind speed decreases with the gradual warming of land. This 

heating induces the vertical development of the atmospheric boundary layer, observable after 09 

UTC when the base of the stratified clouds rises to about 1 km (Figure 10, right).  

 

  

Figure 10: Time evolution of (left) horizontal wind speed from sodar and (right) cloud base height from 
ceilometer on 6 July 2016 at Savè.   

The simulation fits the observations well. The NLLJ is set up in the early evening and enters the land 

up to 190 km. At 07 UTC, the NLLJ is at maximum with a speed of 12 m/s (Figure 11, left). It then 

decreases in intensity and is completely eroded at 13 UTC (Figure 11, right). The turbulent eddies 

associated with the development of the boundary layer set up the dry convection. From 11 UTC 

onwards, the difference between the air temperature at 2 m and the dew point temperature 

increases. This difference is on the order of 4°C; the air is thus not saturated (not shown) and the air 

becomes less humid. The development of dry convection rolls results in the decrease of relative 

humidity at low levels, from 98% in the morning to 70% in the afternoon (not shown). These rolls 

allow the destruction of the low-level jet and thus the dissipation of the stratified layer of clouds. 

 

 

Figure 11: Vertical section of the wind speed along 2°30 E across Savè at (left) 07 and (right) 13 UTC. The 
location of the cross section is shown in Figure 1.    
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The mountain range of Atacora in Togo plays a key role in the formation of clouds and precipitation. 

The relief channels the wind and associated moisture supply and triggers convection. When the 

south-westerly monsoon flow arrives at the Atakora low mountain range, the air parcels are forced 

to rise. They undergo cooling and eventually saturate. The relative humidity at 950 hPa rises from 

about 80% at 12 UTC to 95% - 100% at 15 UTC (not shown). When the air is brought to its level of 

free convection, it condenses and an orographic cloud forms. As a result, at 11 UTC, cumulus clouds 

form with cloud tops up to an altitude of 2 km. At 13 UTC, cumulonimbus clouds develop with tops 

at 12 km altitude which yield precipitation (Figure 12). Once arrived at the downwind side of the 

mountain, they dissipate at 17 UTC.  

 

Figure 12: (left) cloud content and (right) instantaneous rainfall on 6 July at (14 UTC. The vertical section is 
across 1°E. 

Rain appears over the lowlands of Togo and Benin later on. From 11 UTC, stable stratiform clouds 

dissipate and scattered convective clouds develop. The stable layer is then disturbed by the 

development of the atmospheric boundary layer. At 17 UTC, a convective cell is formed about fifty 

kilometres south of Savè. At 18 UTC, it evolves into a deep convective cell (Figure 13, left) and is 

associated with heavy rainfall (Figure 13, right).  

 

 

Figure 13: As in Fig. 5, but at 18 UTC and across 2°30 E for the vertical section. The location of the cross 
section is shown in Figure 1. 
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3 Extreme precipitation along the Guinea Coast 

3.1 Overview of the case 

Between 11 and 13 June 2016, the Guinea Coast region was affected by a series of intense 

convective systems. One of these was a long-lived and intense mesoscale convective system (MCS) 

and caused one of the highest recorded daily rainfall amounts over all near-coastal stations with 

223.5 mm on 12 June 2016 at the southern Nigerian station Abakaliki. On the following day, the 

stations in Axim (Ghana) and Abidjan (Ivory Coast) each reported more than 100 mm. Overall, the 

abovementioned period marked the wettest spell along the Guinea Coast during the DACCIWA field 

campaign in June and July 2016 (Knippertz, et al., 2017).  

The following description of this case is based on the study by Maranan et al. (2019, submitted to 

Monthly Weather Review). Figure 14 illustrates six key stages in the development of the MCS, which 

eventually caused the extreme rainfall amount over Abakaliki, Axim and Abidjan. It formed in the 

afternoon of 10 June over the Sudanese Darfur Mountains (stage 1; 13°N, 24°E) as a consequence 

of diurnal heating and quickly moved south-westward over southern Chad until it reached the eastern 

border of Nigeria around noon on 11 June. During this period, the MCS gradually grew in area and 

intensity (stage 2) and ultimately developed into classical West African squall line (stage 3), as 

indicated by its sharp western flank and an elongated band of cold cloud-top temperatures, which 

mark the convective region of the squall line. Over Nigeria (stage 4), the squall line started to deform 

and intensify and featured three distinct convective cores. Here, the extreme rainfall at the Abakaliki 

station in the late evening of 11 June was caused by the southernmost core (black circle), which 

remained stationary over the region for several hours (not shown). The proposed reasons for the 

deformation and stationarity of the squall line are given in Section 3.3. Eventually, the MCS moved 

over open waters in the morning of 12 June (stage 5), where a more pronounced bending of the 

cloud system is visible. In the early morning of 13 June (stage 6), the MCS fragmented and started 

to dissipate. At the same time, new convective cells developed in the vicinity of the decaying MCS, 

which further intensified as they moved farther westward and caused the high rainfall amount at 

Abidjan. Eventually, this newly generated convective system went on to move towards the eastern 

Atlantic Ocean in the course of 13 June. 

 

Figure 14: Spaceborne, microwave-based cloud brightness temperatures (colour-shaded) at successive 
stages of the MCS, measured by the Microwave humidity sounder (MHS) and the Sounder for Probing Vertical 
Profiles of Humidity (SAPHIR). The legend refers to the stage numbers at the bottom of the panel and indicates 
the day and time of overpass of MHS and SAPHIR, respectively. The black circle indicates the Abakaliki region 
centred on the Abakaliki rain gauge station. 
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3.2 Rainfall distribution 
Because of the intensity and longevity of the MCS, paired with its distance travelled, the region-wide 

wettest spell during the DACCIWA field campaign can largely be attributed to this single event. In 

Figure 15, the total rainfall amount along the MCS path is shown. Here, both spaceborne rainfall 

estimates from the Integrated Multi-Satellite Retrievals for GPM (IMERG) and daily rain gauge 

information collected by the DACCIWA project from several national weather services. Several 

streaks of higher rainfall amounts clearly visualise the south-westward movement of the MCS (or at 

these stages of the squall line) at the beginning of its lifetime. Particularly because of the high 

translation velocity as a squall line, local rainfall accumulations between the stages 1 and 3 were not 

as high as closer to the coast during later stages, where the translation velocity is significantly 

reduced (not shown). Over southern Nigeria, an area of close to 200 mm in IMERG is visible, which 

agrees relatively well with the 223.5 mm measured at Abakaliki. Recalling stage 4 in Figure 14, this 

area of high precipitation coincides with the position of the intense southernmost convective core. 

Based on the substantially lower rain gauge values at surrounding stations, it becomes apparent 

how localised this extreme event in the Abakaliki region was. After stage 4, further high rainfall 

amounts over land are comprised to the immediate coastal area due to the fact that the MCS was 

most active over ocean. As mentioned in the previous section, it culminated in more than 100 mm at 

Axim and Abidjan. 

 

Figure 15: Comparison of total rainfall along the MCS path between IMERG (colour-shaded) and a collection 
of daily rain gauge data (scatters) from several national weather services. The stations Abakaliki, Abidjan and 
Axim are highlighted with individual markers indicated in the legend. 

3.3 Important dynamical aspects 
From initiation to dissipation, the MCS underwent several changes with respect to shape, intensity 

and its overall character. The development into a squall line is a typical feature during the rainy 

season of the West African monsoon from April to October. Favourable environmental conditions 

leading to it, such as strong vertical wind shear, mid-tropospheric dryness and midlevel disturbances, 

are relatively well known (e.g. Fink and Reiner, 2003; Laing et al., 2008) and were also present in 

this case study. However, the intensification of the MCS, resulting in the extreme rainfall amount at 

Abakaliki, involves dynamical aspects that have never been investigated in detail for this part of the 

world and are summarised in this section. 
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Prior to the arrival of the squall line in the afternoon of 11 June, the Abakaliki region experienced a 

strong local increase in precipitable water (PW, Figure 16a), a measure for the liquid water in the 

atmospheric column if all water were collected as rain. Maranan et al. (2019) describe the proposed 

dynamical mechanisms leading to this increase in more detail. In brief, this PW increase resulted 

from the formation of a local and short-lived heat low in the Abakaliki region. Its development was 

primarily driven by insolation and column subsidence due to upper-level convergence forced by the 

upper-level outflow of the MCS, which overall led to a warming of the tropospheric column and thus 

a net surface pressure fall. The Abakaliki region was in the center of low-level convergent motions, 

leading to the aforementioned high PW values. In Figure 16a, regions of high PW are indicated in 

greenish colours. Furthermore, red contours denote areas of moisture flux convergence larger than 

100 mm/day, which eventually resulted to a further increase of PW. Both factors were present over 

the Abakaliki region and ensured favourable conditions for MCS intensification. This intensification 

is reflected in the development of the intense convective core, which was presented in Figure 14 at 

stage 4. Figure 16b illustrates the situation during the overpass of the MCS on early 12 June. The 

further increase in ambient PW as well as constant moisture flux convergence in the Abakaliki region 

becomes apparent, which in turn led to a constant moisture supply for the MCS. This environmental 

setting was strongly supported by the development of a mid- to low-tropospheric vortex, as 

suggested by the rotational signature in the blue streamlines. Aside from trapping moisture, the 

emergence of the vortex also led to an overall deceleration of the MCS, allowing for locally higher 

rainfall accumulations during its movement along the coast. Again, this deceleration of the MCS was 

a key ingredient for extreme rainfall over Abakaliki. 

 
Figure 16: Precipitable water (PW, colour-shaded), moisture flux convergence (MFC) > 100 mm/day (red 
contours), the mass-weighted wind in the 600-950 hPa layer (barotropic flow, blue streamlines) and moisture 
flux (grey vectors) on (a) 11 June 2016, 15 UTC prior to MCS arrival, and on (b) 12 June 2016, 02 UTC, during 
the MCS passage. The black x-mark indicates the center of mass of the MCS at the respective timesteps. 
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During its subsequent westward movement along the West African coast on 12 June onwards, the 

MCS was further accompanied by a lower-tropospheric vortex structure, which developed out of the 

aforementioned main vortex. This is highlighted in the Hovmoeller diagram in Figure 17, showing the 

meridional wind (colour-shaded), the MCS track (solid black line) and the positive portion of relative 

vorticity (black contours) and zonal windspeed (green contours). While the main vortex remained 

east of 5°E over the course of 12 June, a separate vortex structure almost parallel to the MCS track 

is visible during 12 and 13 June. This structure likely ensured the sustainment of the MCS by 

maintaining low-level convergence and thus the supply of moisture. It is also suggested that the 

vortex structure led to the development of new convective systems in the vicinity of the decaying 

MCS on early 13 June, which eventually resulted in the high rainfall amount over Abidjan (not 

shown). 

 

Figure 17: Hovmoller diagram showing the meridional wind (colour-shaded), the MCS track (solid black line) 
and the positive portion of relative vorticity (black contours) and zonal windspeed (green contours). The 
numbers refer to the MCS stages, which are also presented in Figure 14.. 

3.4 Summary 
A manuscript investigating the (thermo-) dynamical aspects of this extreme rainfall event at the 

Guinea Coast has been submitted (Maranan et al. 2019). The documented formation of a mid- to 

low-level vortex associated with the passage of a MCS and an extreme rainfall event has never been 

investigated for southern West Africa to the best of our knowledge. It provides new insights into MCS 

maintenance in the Guinea Coast region, where the classical model of self-sustainable squall lines 

is considered to be less effective due to a much moister environment compared to the Savannah or 

Sahelian region. In general, such vortices are known to produce long-lasting rainfall (Fink, et al., 

2006) due to continuous low-level convergence (e.g. Buckle, 1996). However, they have rarely been 

reported in association with extreme rainfall events in the Guinea Coast region, if at all. Although 

favourable environmental conditions for the extreme nature of rainfall over Abakaliki and the MCS 

maintenance are strongly proposed to be achieved by the vortex structures, the exact mechanisms 

remain uncertain. Further insights may be gained through high-resolution model runs, which are 

capable of capturing the physical processes that lead to the extreme event.  
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3.5 Meso-NH simulations of the Abakaliki case 

The Meso-NH model was run over a large domain covering the entire path of the thunderstorm 

(Figure 18). This was done in a convection-permitting mode using a horizontal grid spacing of 2.5 

km. The model was initialized with ECMWF operational analysis and assessed against satellite 

Meteosat Second Generation (MSG) images in the thermal infrared. 

The first simulation was started at 00 UTC 10 June 2016. It is not able to produce the extreme event. 

Convection forms correctly in the afternoon of 10 June over the Sudanese Darfur Mountains and 

survives into the night. At 12 UTC 11 June 2016, the simulated convection however remains 

scattered without developing into squall line as observed at the eastern border of Nigeria. 

The second simulation was started at 00 UTC 11 June 2016. After the spin-up time, it produces 

intense convection with mid-tropospheric cyclonic circulation in the afternoon of 11 June over 

southern Chad. At 04 UTC 12 June 2016, a squall line is simulated, but over central Nigeria instead 

of western Nigeria (Figure 18, top). It presents strong vorticity of equal intensity for both the 

northernmost and the southernmost convective cores (Figure 18, bottom left). This differs from the 

observed squall line that starts to deform and intensify and features three distinct convective cores. 

As a consequence, the simulated southernmost core does not remains stationary over southern 

Nigeria and misses the extreme rainfall recorded at the Abakaliki station in the late evening of 11 

June. In the simulation, the accumulated rain over the 2-day period is large, above 180 mm, but 

located too far south (Figure 18, bottom right).  

  

 
 

Figure 18: snapshot at 0400 UTC 12 June 2016 showing (top) simulated and observed satellite infrared image 
from (left) the Meso-NH simulation and (right )MSG observation and (bottom left) 600-950 density-weighted 
vorticity; (bottom right) accumulated rainfall since 00 UTC 11 June. 
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4 Conclusion 

Nine precipitation cases were investigated. The selected cases show various characteristic in space 

and time. None of them developed in the presence of dust in contrast to the AMMA case studied in 

the course of the DACCIWA project (Reinares Martínez and Chaboureau 2018a, b). Among them, 

only one was a case of rainfall of warm processes during the field campaign in Savè (see Deliverable 

6.5). The role of shear is seen to be important, as the biggest systems were those for which the wind 

shear is important. For the extreme case along the Guinean Coast region, further ingredients 

implying novel dynamics concepts are needed for transforming a squall line into a coastal moist 

vortex. 

Model skill in rainfall and cloud prediction is overall low. This is consistent with results presented in 

Kniffka et al. (2019, in preparation). Even if a convection-permitting simulation can capture the 

degree of organization better than parameterized convection and improves the diurnal cycle of 

precipitation, it fails to represent the triggering of MCSs over SWA (Reinares Martínez and 

Chaboureau 2018a). This failure was attributed to the initial conditions because of a mid-level wet 

bias in the model in the study by Reinares Martínez and Chaboureau (2018a). This could also be 

the case for some rainfall events investigated here for which the wind direction at mid-levels greatly 

differs from radiosondes at Savè. The representation of the convective organization is also thought 

to be sensitive to the subgrid scale turbulence scheme (e.g., Machado and Chaboureau 

2015).Overall, simulations of rainfall events over West Africa remain a challenge. 
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