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Abstract

Warm conveyor belts (WCBs) are responsible for most of the precipitation in the extratropical

storm track region and also influence the large-scale midlatitude dynamics. Moreover, they serve

as a major factor in shaping the cloud radiative effects across midlatitude regions. However,

accurate model representation of WCBs is limited, for example, due to uncertainties in cloud

microphysical parameterizations. This can lead to downstream error growth in numerical weather

prediction and limited predictability. That is why this thesis investigates the influence of five

uncertain model parameters on the cloud structure of a WCB case that occurred in the North

Atlantic during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX)

campaign. For that, uncertain cloud microphysical processes, as well as environmental conditions

relevant for WCB ascent, are systematically perturbed and a perturbed parameter ensemble (PPE)

is built using the ICOsahedral Nonhydrostatic (ICON) modeling framework. Specifically, the

uncertain model parameters are cloud condensation nucleus (CCN) concentration, ice nucleating

particle (INP) concentration, capacitance (CAP) of ice and snow, sea surface temperature (SST),

and maximum supersaturation with respect to liquid (SAT). The PPE simulations are evaluated by

combining Eulerian and Lagrangian perspectives of the WCB cloud band. For further quantification

of the relative importance of the perturbed parameters for the WCB cloud structure, variance

decomposition is performed based on the output of random forest regression (RFR) surrogate

models that are built for various target variables, such as mass and number concentrations of

different hydrometeors. The results indicate that the liquid phase of the vertically extended WCB

cloud is predominantly influenced by CCN concentrations, while the ice phase is primarily affected

by CAP perturbations. More specifically, increased CCN concentrations systematically increase

cloud water mass and number concentrations through enhanced CCN activation and coincident

smaller mean cloud droplet radii. This goes along with a decrease in rain mass and number

concentration due to a reduced conversion of cloud water to rain. Reducing CAP of ice and

snow substantially increases graupel mass concentrations due to a larger depositional growth rate

of graupel. Furthermore, graupel number concentrations increase through higher riming rates

caused by higher ice and snow number concentrations. Additionally, lower CAP values reduce

the net longwave radiation at the top of the atmosphere because the cloud top is shifted to lower

temperatures. Although INPs markedly influence heterogeneous freezing rates, only a small overall

impact is found on ice and snow number concentrations, which are more strongly influenced by

homogeneous freezing dominated by CAP. Furthermore, SAT perturbations do not show major

influences, and SSTs appear to slightly influence the net shortwave radiation at the top of the

atmosphere. Variance decomposition further highlights the contributions of CCNs and CAP to the

variance in mass and number concentrations of cloud water, rain, ice, snow, and graupel, as well

as their effects on the radiation balance at the top of the atmosphere. The findings of this thesis

underscore the importance of accurately representing cloud microphysical processes, in particular

CCN concentrations and CAP, in numerical weather prediction models to improve precipitation

forecasts as well as the characteristics of the large-scale WCB cloud band.
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Zusammenfassung

Warm conveyor belts (WCBs) sind für den Großteil des Niederschlags in der außertropischen

Sturmregion verantwortlich und beeinflussen die großskalige Dynamik der mittleren Breiten. Dar-

über hinaus stellen sie einen entscheidenden Faktor für die Ausprägung der Strahlungseffekte von

Wolken in den mittleren Breiten dar. Allerdings ist die akkurate Darstellung von WCBs in Modellen

beispielweise durch Unsicherheiten in den Parametrisierungen der Wolkenmikrophysik begrenzt.

Das kann in der numerischen Wettervorhersage zu einer Fehlerfortpflanzung führen und die Vorher-

sagbarkeit einschränken. In dieser Thesis wird daher der Einfluss von fünf unsicherheitsbehafteten

Modellparametern auf die Wolkenstruktur eines WCBs, der im Nordatlantik während der North At-

lantic Waveguide and Downstream Impact Experiment (NAWDEX) Kampagne auftrat, untersucht.

Dafür werden wolkenmikrophysikalische Prozesse, sowie Umweltbedingungen, die von Unsicher-

heiten behaftet und für den WCB-Aufstieg relevant sind, systematisch variiert und ein Ensemble

von gestörten Parametern (PPE) mithilfe des ICOsahedral Nonhydrostatic (ICON) Modellsystems

erstellt. Die betrachteten unsicheren Modellparameter sind die Konzentration von Wolkenkon-

densationskernen (CCNs), die Konzentration von Eiskeimen (INPs), die Kapazität (CAP) von Eis

und Schnee, die Meeresoberflächentemperatur (SST) und die maximale Übersättigung in Bezug

auf Flüssigwasser (SAT). Die PPE-Simulationen werden durch eine Kombination aus Eulerscher

und Lagrangescher Betrachtungweise des WCB-Wolkenbandes ausgewertet. Zur weiteren Quan-

tifizierung der relativen Bedeutung der gestörten Parameter für die WCB-Wolkenstruktur wird

eine Varianzzerlegung durchgeführt. Diese basiert auf Random Forest Regressionsmodellen (RFR-

Modelle), die zur Vorhersage verschiedener Zielgrößen, wie Massen- und Anzahlkonzentrationen

unterschiedlicher Hydrometeore, verwendet werden. Die Ergebnisse zeigen, dass die Flüssigphase

der vertikal ausgedehnten WCB-Wolke hauptsächlich durch die CCN-Konzentrationen beeinflusst

wird, während die Eisphase in erster Linie von CAP-Störungen geprägt ist. Konkret führen erhöhte

CCN-Konzentrationen systematisch zu höheren Massen- und Anzahlkonzentrationen von Wolken-

wasser, bedingt durch verstärkte CCN-Aktivierung und kleinere mittlere Wolkentropfenradien. Dies

geht einher mit einer Abnahme der Regenmassen- und -anzahlkonzentrationen, da weniger Wol-

kenwasser zu Regen umgewandelt wird. Eine Reduktion der CAP von Eis und Schnee erhöht die

Graupelmassenkonzentration erheblich, da dadurch die Depositionswachstumsrate von Graupel zu-

nimmt. Zudem steigen die Graupelanzahlkonzentrationen aufgrund höherer Raten der Anlagerung

unterkühlter Wassertröpfchen an Eiskristallen, welche auf höhere Anzahlkonzentrationen von Eis

und Schnee zurückzuführen sind. Niedrigere CAP-Werte verringern darüber hinaus die langwellige

Nettostrahlung am oberen Rand der Atmosphäre, da die Wolkenobergrenze zu kälteren Höhenlagen

verschoben wird. Obwohl INPs die heterogene Eisnukleation deutlich beeinflussen, zeigt sich

insgesamt nur ein geringer Effekt auf die Anzahlkonzentrationen von Eis und Schnee. Dies liegt

daran, dass diese stärker durch die homogene Eisbildung beeinflusst werden, welche wiederum

hauptsächlich von CAP-Störungen dominiert wird. SAT-Störungen haben keinen signifikanten

Einfluss, während für SST-Störungen ein geringer Einfluss auf die kurzwellige Nettostrahlung am

oberen Rand der Atmosphäre zu beobachten ist. Die Varianzzerlegung verdeutlicht darüber hinaus

die Beiträge von CCNs und CAP zur Varianz in den Massen- und Anzahlkonzentrationen von
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Wolkenwasser, Regen, Eis, Schnee und Graupel, sowie deren Einfluss auf die Strahlungsbilanz am

oberen Rand der Atmosphäre. Die Ergebnisse dieser Arbeit heben die Bedeutung einer präzisen Re-

präsentation wolkenmikrophysikalischer Prozesse, insbesondere der CCN-Konzentrationen und der

Kapazität, in numerischen Wettervorhersagemodellen hervor, um sowohl Niederschlagsvorhersagen

als auch die Darstellung des großskaligen WCB-Wolkenbands zu verbessern.
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Preface

ChatGPT (https://www.chatgpt.com) was used for translations, spelling improvements, and

stylistic improvements of figures. Spell and grammar checks were performed with Writeful

(https://www.writefull.com/) and Grammarly (https://grammarly.com/).

The perturbed parameter ensemble data were produced in the subproject B8 of the Transregional Col-

laborative Research Center SFB/TRR 165 “Waves to Weather” (https://www.wavestoweather.

de) and are presented in Oertel et al. (2025b). The warm conveyor belt trajectory data are publicly

available in RADAR4KIT (https://dx.doi.org/10.35097/ecgs4f56mp3ymjmt; Oertel et al.,

2025a).
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1 Introduction

Warm conveyor belts (WCBs) influence the daily weather in mid-latitudes and are responsible for

most of the total and extreme precipitation in that region (Pfahl et al., 2014). In fact, WCBs give

rise to more than 70% of the extreme precipitation events in the southeastern United States, Japan,

eastern China, and parts of South America according to Pfahl et al. (2014). A WCB is a coherent

moist airstream that ascends from the warm sector of an extratropical cyclone (ETC) while forming

a long cloud shield (Eckhardt et al., 2004; Madonna et al., 2014). In addition, WCBs influence the

radiation balance in the extratropics with their cloud band (Joos, 2019) and alter upper-tropospheric

potential vorticity (PV) anomalies by latent heat release within the WCB, which impacts large-scale

dynamics (Joos and Wernli, 2012; Madonna et al., 2014; Christ et al., 2025).

Recent studies have focused on PV modification and associated effects such as the amplification of

downstream ridges (Grams et al., 2011), the intensification of the cyclone itself (Binder et al., 2016),

or the microphysical processes in the cloud (Oertel et al., 2023). Moreover, several studies have

investigated the impact of sea surface temperature (SST; Christ et al., 2025) and initial moisture

(Schäfler and Harnisch, 2015; Berman and Torn, 2022) in the lower-tropospheric inflow region

of WCBs on the WCB ascent and found implications for the large-scale atmospheric flow, i.e.,

potential downstream ridge amplification. Furthermore, Mazoyer et al. (2021) have studied the

impact of two different microphysics schemes on a WCB and downstream ridge building, whereas

Mazoyer et al. (2023) have investigated the influences of two different parameterizations of mixed

phase cloud processes. The former study shows that upper-level dynamics strongly depend on

the representation of ice-related processes, while the latter highlights the impact of mixed-phase

cloud processes on upper-level dynamics. Both point out the need for a better understanding

of cloud microphysical processes to improve the forecasts of upper-tropospheric dynamics. In

addition, precipitation efficiency related to WCB activity is highly sensitive to cloud condensation

nucleus (CCN) concentrations (Oertel et al., 2025b). Although CCNs are crucial for initial cloud

formation and studies have also demonstrated their relevance to modeling convective systems

and associated precipitation, their numbers are still poorly constrained by observations, and the

precipitation response is case dependent (Schneider et al., 2019; Barthlott et al., 2022). Because of

these uncertainties in CCN concentrations, correct precipitation forecasting poses a challenge.

To this day, it is still unclear how cloud microphysical parameterizations affect the cloud structure

of WCBs in detail, which is relevant for precipitation and cloud radiative effects (CREs). In order to

gain a better understanding of this and contribute to model improvement in the future, the following

research questions are investigated:

1. How do varying CCN concentrations influence the WCB cloud structure?
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1 Introduction

2. To which cloud microphysical processes can the observed changes be attributed?

3. How does the influence of CCN perturbations compare to other cloud microphysical parame-

ters and environmental perturbations?

4. How is the radiation balance at the top of the atmosphere affected by these perturbations?

To this end, sensitivity experiments are conducted in which, in addition to CCNs, four additional

model parameters are systematically perturbed. For this, a so-called perturbed parameter ensemble

(PPE) of a WCB case study is built using the ICOsahedral Nonhydrostatic (ICON) model.

The thesis is structured as follows: First, an overview of meteorological background information

on cloud microphysical processes (Section 2.1) and WCBs (Section 2.2) is given. Second, the

ICON model (Section 3.1) and PPE simulations (Section 3.2) are introduced, followed by a

description of the applied Eulerian and Lagrangian diagnostics (Section 3.3), as well as the

surrogate models (Section 3.4) and variance decomposition (Section 3.5) used to further quantify

the relative importance of the perturbed parameters. After that, the case study is presented in

Chapter 4. Next, the qualitative parameter impacts (Chapter 5) and quantification of uncertainty

contributions (Chapter 6) are shown. Lastly, a discussion (Chapter 7) and a conclusion (Chapter 8)

of the results are provided.
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2 Meteorological Background

This Chapter introduces the meteorological background knowledge relevant to analyzing the WCB

cloud structure. This includes cloud microphysics (Section 2.1) and WCBs (Section 2.2). For more

details on cloud microphysics, see Lamb and Verlinde (2011) Chapters 11 and 12.

2.1 Cloud Microphysical Processes

Clouds consist of liquid and solid particles, the so-called hydrometeors, namely liquid droplets, ice

crystals, aggregates, and rimed particles. In cloud models, these hydrometeors need to be artificially

categorized to represent them, which will be discussed in more detail later. Cloud microphysical

processes describe how these individual hydrometeors form, grow, change between the gas, liquid,

and solid phases, and dissipate. These processes are active at nanometer and micrometer scales.

Furthermore, the processes are divided into those that occur in warm clouds, mixed-phase regions

of clouds, and those that take place solely in cold clouds. Warm clouds only contain water in the

liquid phase and have temperatures above 0 ◦C. In contrast, cold clouds are termed “cold” as their

temperatures are below 0 ◦C. However, between 0 ◦C and −38 ◦C, clouds can contain supercooled

liquid water that coexists with the ice phase. This region is called the "mixed-phase" region.

Figure 2.1 of Lamb and Verlinde (2011) shows the phase diagram of water that illustrates in which

phase water occurs depending on its temperature T and partial pressure e. The solid lines are the

phase boundaries that indicate at which temperatures and partial pressures of water vapor two

water phases coexist in equilibrium. At the triple point (273.16K, 6.117hPa), all three phases

coexist in equilibrium. The dashed line of metastable liquid is relevant for mixed-phase clouds,

as it indicates the conditions under which supercooled liquid water can occur. Furthermore, the

Clausius-Clapeyron equation
des

dT
=

lves

R∗T 2
(2.1)

represents an essential concept in cloud physics, and describes the saturation water vapor pressure es

at which liquid water and water vapor coexist in equilibrium. In other words, es indicates saturation

with respect to liquid. It depends on the temperature T , latent heat of vaporization lv, and universal

gas constant R∗. If e > es, supersaturation w.r.t. liquid is present, which is also expressed by the

saturation ratio

S =
e

es
(2.2)

being greater than 1. Analogously, a saturation ratio w.r.t. to ice can be defined as Si =
e
ei

with ei

being the partial pressure at which water vapor and ice are in equilibrium, i.e., the saturation water
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2 Meteorological Background

Figure 2.1: Phase diagram of water (modified from Lamb and Verlinde, 2011). Solid lines denote the lines
of equilibrium where two phases coexist in equilibrium: es is the saturation vapor pressure w.r.t.
liquid and ei w.r.t. ice. At the melting curve em, liquid water and ice are in equilibrium. All three
phases coexist at the triple point (273.16K, 6.117hPa). The dashed line (Metastable liquid) is
the extension of es and represents the conditions for supercooled liquid water.

vapor pressure w.r.t. ice. ei can also be calculated with the Clausius-Clapeyron equation (2.1) when

lv is replaced by the latent heat of sublimation ls. Moreover, es > ei applies, which is important for

mixed-phase cloud processes and will be discussed later.

2.1.1 Warm Clouds

In general, the processes of warm clouds also occur in the mixed-phase regions of cold clouds,

however, frozen hydrometeors do not influence them.

CCN Activation For the initial formation of a liquid cloud droplet in the atmosphere, a so-called

cloud condensation nucleus is needed for water vapor to condense onto it. Generally, not all aerosol

particles act as CCNs. The most efficient ones are hygroscopic, which means they absorb water

and can dissolve completely in water, such as sea salt. A CCN is required to be already solved in

water. For cloud droplet formation, enough water vapor has to condense onto this liquid solution

droplet for it to reach its critical radius rc. Once this critical radius is reached, the CCN is activated,

which means the droplet begins to grow to the size of a cloud droplet. If the critical radius is not

reached, the droplet is classified as a haze particle. The Köhler equation

4



2.1 Cloud Microphysical Processes

S =

(

1+
A

rd

)(

1−
B

r3
d

)

≈ 1+
A

rd
−

B

r3
d

(2.3)

describes this process in detail, and includes two important factors, the so-called Kelvin 1+A/rd

and Raoult term 1−B/r3
d. In Eq. 2.3, S (Eq. 2.2) is the saturation ratio in equilibrium at the surface

of the growing droplet with the water vapor pressure of the droplet e = ed(rd) and the droplet radius

rd. The Kelvin term (1+A/rd) considers the effect that the curvature 1
rd

of the liquid droplet has on

ed:

A =
2Mwσw

R∗T ρw
, (2.4)

where Mw denotes the molar mass of water, σw the surface tension of water and ρw the density

of water. For smaller rd, a higher ed is needed to maintain a dynamic equilibrium, otherwise the

droplet would evaporate. The effect the solute has on ed is described by the Raoult term (1−B/r3
d)

with

B =
3Mwins

4πρw
, (2.5)

where i is the Van’t Hoff factor, which takes the dissociation of the solute into account, and ns the

number of moles of the solute. A lower ed is needed to maintain the equilibrium, as the solute

impedes evaporation of the droplet. Besides, both A and B are weakly temperature-dependent due

to their dependence on the density of water.

Figure 2.2 outlines the so-called Köhler curve described by the Köhler equation (2.3). It illustrates

the need for a sufficiently high supersaturation (S > 1) so that the maximum of the curve, which is

the critical supersaturation Sc, is reached and the droplet radius subsequently exceeds the critical

radius rc to become a cloud droplet. When rd< rc applies, a haze droplet is present instead.

Condensational Growth After CCNs are activated and cloud droplets are formed, they can

grow by condensation of water vapor onto them, when supersaturation w.r.t. liquid is given at

the droplets’ surfaces, i.e. ed > es. For this, a cloud droplet is required to be in an environment

with sufficient water vapor, so that a diffusional flux of water vapor to the droplet surface can be

established. The condensational growth of a cloud droplet is described by the time derivative of its

mass
dmd

dt
= 4πrdρwGs, (2.6)

with G as the effective diffusivity and s = S−1 as the supersaturation w.r.t. liquid. Furthermore,

the temporal evolution of the droplet radius is proportional to its reciprocal r−1
d , or, in other words,

rd(t) ∼
√

t, causing the smallest droplets to grow the fastest and condensational growth to slow

down over time. For cloud droplets to be categorized as raindrops, they need to have a diameter of

≥ 100 µm and a larger associated fall velocity. To grow sufficiently in size, additional processes

5



2 Meteorological Background

Figure 2.2: Example of a Köhler curve (blue) and its Kelvin (orange) and Raoult (green) term. The red
circle indicates the maximum of this Köhler curve, i.e., the critical supersaturation Sc with the
corresponding critical radius rc. For the calculations, the following values are assumed: molar
mass of water Mw = 18.015gmol−1, surface tension of water σw = 0.0769Nm−1, universal
gas constant R∗ = 8.314J(molK)−1, temperature T = 253K, density of water ρw = 997kgm−3,
Van’t Hoff factor i = 2 and number of moles of solute ns = 1.7×10−15 mol.

are required, as condensational growth alone does not suffice. Those processes are collision and

coalescence.

Continuous Collection For cloud droplets to grow significantly in size, they need to first

collide with each other and then remain attached afterward, i.e., coalesce, to form raindrops. This

subsequently decreases the liquid water droplet number concentration. However, the water mass

concentration remains the same, since when two droplets collide and coalesce, the mass of one

droplet increases by the mass of the other, whereas the other droplet is extinguished. Collisions of

droplets can occur due to differences in their fall velocities, which result from variations in their

sizes. It is assumed that a larger drop continuously "collects" smaller droplets by collision and

subsequent coalescence as it falls. This process is called continuous collection. Note that cloud

droplets can also grow via stochastic collection, where collisions are caused by turbulent movement

instead of the difference in fall velocities.

Yet, not every collision may lead to coalescence. Larger drops can become unstable and shatter by

collision, increasing the drop number concentration. In addition, smaller droplets might bounce off

larger ones because the latter can deform and create air cushions between the drops. In this case,

the number concentration remains unchanged. Besides, very small droplets have low inertia and

tend to follow the air flow around larger drops. As a result, they are harder to collect, which is

why the collision efficiency decreases for smaller droplets. In general, raindrop sizes are often not

reached in warm clouds, and thus, warm clouds are only able to produce light precipitation, if any.
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2.1 Cloud Microphysical Processes

2.1.2 Cold Clouds

The following provides a brief theoretical introduction to the microphysical processes of cold

clouds (see Lamb and Verlinde, 2011, Chapter 12). Note that processes involving liquid water

droplets occur only in mixed-phase regions of cold clouds.

Primary Ice Formation Primary ice formation depicts the initial formation of ice crystals.

Thus, the ice mass and number concentration of a cloud increase. Primary ice formation occurs by

either homogeneous or heterogeneous ice nucleation (Fig. 2.3). According to Vali et al. (2015), ice

nucleation is a process by which liquid water or water vapor is transformed into thermodynamically

stable ice for the first time. When ice nucleation occurs homogeneously, only the initial water phase

(liquid or gas) is involved in the phase transition. However, homogeneous ice nucleation occurs

only for liquid water because water vapor would need a very high supersaturation to directly form

ice, which is not observed in the atmosphere (Vali et al., 2015). At temperatures below −38 ◦C,

homogeneous freezing of supercooled cloud droplets and homogeneous freezing of supercooled

solution droplets take place (Hoose and Möhler, 2012). As illustrated in Figure 2.3, several different

pathways for primary ice formation exist, which all occur under specific temperature T and ice

saturation ratio Si conditions. Both homogeneous freezing of supercooled cloud droplets and

homogeneous freezing of supercooled solution droplets require a high Si > 1.3, and homogeneous

freezing of cloud droplets also requires saturation w.r.t. liquid (solid line).

In contrast, heterogeneous ice nucleation involves the initial water phase and the surface of an

external agent (Vali et al., 2015). This external agent is an aerosol particle, which is called

ice nucleating particle (INP) since it supports ice nucleation. Similar to CCNs, not all aerosols

can act as INPs. Efficient INPs are, for example, mineral dust, biological particles, such as

bacteria or fungal spores, or soot (Hoose and Möhler, 2012). Heterogeneous ice nucleation

includes deposition nucleation, immersion freezing, and contact freezing (Vali et al., 2015). All

of these heterogeneous nucleation processes generally occur at higher temperatures compared

to homogeneous ice nucleation and require less supersaturation w.r.t. ice, as shown in Fig. 2.3.

Deposition nucleation refers to the direct formation of ice on an INP from supersaturated water

vapor without going through the liquid phase. Immersion freezing is the freezing of a supercooled

liquid cloud or solution droplet that has an INP immersed in itself. Contact freezing occurs when

an INP touches the surface of a supercooled liquid cloud droplet and triggers freezing.

Depositional Growth Depositional growth describes the deposition of water vapor onto frozen

hydrometeor particles, resulting in the growth of mass and size. Conceptually, it is similar to the

condensational growth (2.6) of cloud droplets. The time derivative of the particle mass mp is given

by
dmp

dt
= 4πCρiG

′
isi, (2.7)
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Figure 2.3: Overview of homogeneous and heterogeneous ice nucleation modes (modified from Hoose and
Möhler, 2012). The solid line indicates the ice saturation ratio Si depending on temperature T at
liquid water saturation. Ice nucleating particles (INPs) are represented as orange cubes, liquid
droplets as dark blue circles, and ice as light blue hexagons.

with the ice density ρi, the growth parameter of ice G′
i, the supersaturation w.r.t. ice si, and the

capacitance C. The latter takes into account the shape and size of different frozen hydrometeors and

influences the depositional growth rate. A lower capacitance results in slower depositional growth.

Aggregation The process of larger ice crystals collecting smaller ones is named aggregation.

It increases the mass while decreasing the number concentration of ice. Snow is formed by

aggregation or depositional growth of ice.

Wegener-Bergeron-Findeisen Process In general, the saturation vapor pressure w.r.t. ice

ei is lower than the one w.r.t. liquid es (Fig. 2.1), leading to three scenarios in mixed-phase

clouds: (i) If supercooled liquid water droplets and ice particles are in an environment with a partial

water vapor pressure of es > ei > e, then both evaporate as the environment is subsaturated w.r.t.

liquid and w.r.t. ice. (ii) If es > e > ei applies, the supercooled liquid water droplets evaporate

because the environment is subsaturated w.r.t. liquid. Simultaneously, because of the environmental

supersaturation w.r.t. ice, the water vapor deposits onto nearby ice particles. Thus, ice particles

grow at the expense of liquid droplets. This is the so-called Wegener-Bergeron-Findeisen (WBF)

process. (iii) If e > es > ei is the case, then both liquid droplets and ice particles grow through

condensation and deposition, respectively, as the environment is supersaturated w.r.t. liquid and

w.r.t. ice.
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2.1 Cloud Microphysical Processes

Riming In mixed-phase clouds, riming is the process of supercooled liquid water colliding with

frozen hydrometeors and freezing onto them. This increases the ice mass concentration, whereas

the ice number concentration is not affected. A heavily rimed ice crystal is called graupel when it is

so obscured that the initial ice crystal is no longer recognizable. Graupel that exceeds a diameter of

5mm is termed hail.

Secondary Ice Production The observed number concentrations of ice particles are larger than

the number concentrations of INPs due to secondary ice production (SIP). SIP is the formation of

new ice particles from pre-existing ice. Therefore, it increases the ice number concentration, while

the ice mass concentration remains unchanged. According to Korolev and Leisner (2020), there

are six different SIP mechanisms: splintering during riming, the so-called Hallett-Mossop process

or rime-splintering, shattering during freezing of large supercooled drops, activation of INPs in

transient supersaturation around freezing drops, and fragmentation caused by ice-ice collisions,

thermal shock, or fragmentation of sublimating ice. All mechanisms require certain sizes of the

hydrometeors involved and temperatures. For example, rime-splintering occurs between −8 ◦C

and −3 ◦C, the graupel particles have to be ≥ 0.5mm in diameter and the accreted cloud droplets

≥ 25 µm in diameter.

2.1.3 Numerical Weather Prediction Models

To predict the formation and occurrence of clouds, particularly on larger scales, numerical weather

prediction (NWP) models are used. NWP models are computer models that simulate the at-

mospheric state to predict future weather based on an initial state derived from meteorological

observations and equations. The latter includes fundamental physical principles, such as the conser-

vation of momentum, which is described by the Navier-Stokes equation, the conservation of mass

represented by the continuity equation, the conservation of energy described by the thermodynamic

energy equation, and the ideal gas law. Except for the ideal gas law, these equations form a set

of coupled nonlinear partial differential equations that cannot be solved analytically. Therefore,

numerical methods are applied to approximate, discretize, and solve them (Durran, 2010; Warner,

2010).

The discretization of the equations requires a grid on which the equations are solved at each grid

point. Thus, only processes that occur on the scale of the grid can be resolved. However, so-called

subgrid-scale processes exist and can influence grid-scale processes. That is why unresolved

subgrid-scale processes, such as diabatic heating from radiative transfer or cloud microphysics, are

parameterized in NWP models. With parameterizations, subgrid-scale processes are represented

using prognostic variables resolved by the model. To account for the influence of subgrid-scale

processes on the grid-scale processes, parameterizations feed back into the prognostic variables

through, e.g., latent heating during phase changes of water. According to Straka (2009), the

parameterizations of precipitation and cloud microphysical processes are not only relevant for NWP

models on the scale of individual clouds, but also on mesoscales, synoptic, global, and climate

scales.
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Because the cloud microphysical processes described in Sections 2.1.1 and 2.1.2 cannot explicitly

be represented due to differences in scale, several approaches have been developed to parameterize

them. The two most commonly used types of cloud microphysical parameterizations are bin

schemes and bulk schemes (Warner, 2010; Straka, 2009), but there are also newer methods, such as

Lagrangian particle-based schemes (Morrison et al., 2020). Bin schemes work with hydrometeor

particle size distribution (PSD) functions f that depend on the radius of the particles, and are divided

into intervals or bins. Distribution functions can also depend on the mass of the particles instead

of the radius. Bin schemes are computationally expensive because they predict the hydrometeor

concentrations of every hydrometeor type for each bin. That is why in operational NWP, the

computationally less expensive bulk schemes are used. Bulk schemes do not use complete PSDs

but instead work with statistical moments of the PSD functions f to predict the number or mass

concentrations of hydrometeors. According to Khain et al. (2015), the k-th statistical moment of

the PSD f is given by

M(k) =
∫ ∞

0
mk f (m)dm, (2.8)

with particle mass m and integer k. For the PSD f of each hydrometeor type, prescribed functions

are used, most commonly exponential or gamma functions (Khain et al., 2015). The zeroth moment

(k = 0) of f corresponds to the hydrometeor number concentration and the first moment (k = 1) to

the hydrometeor mass concentration. Furthermore, bulk schemes are specified according to the

number of moments used. A one-moment or single-moment scheme predicts only one moment,

typically the mass concentration. In contrast, two-moment or double-moment schemes predict the

mass and number concentration. Note that the prescribed functions pose a challenge for accurate

weather forecasting, as they contain uncertain parameters and are themselves uncertain (Khain

et al., 2015), especially when not well-understood processes like SIP are involved (Field et al.,

2017).

The modified version (Oertel et al., 2023) of the scheme by Hande et al. (2016) is used to illustrate

CCN activation in the following. The number concentration of activated cloud droplets M0
c ≡ Nc

depends on the grid-scale vertical velocity w and the pressure p and is described by

Nc(w, p) = Na(p) ·
(

1+ e−B(p)·ln(w)−C(p)
)−1

, (2.9)

with the aerosol number concentration

Na(p) =







(250+7)cm−3, if p ≥ 800hPa
(

250 · e
p−800hPa

150hPa +7 · e
p−800hPa

400hPa

)

cm−3, else,
(2.10)
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that is assumed to be constant in the boundary layer for p ≥ 800hPa and to decrease above. For the

accumulation mode, a scale height of 150hPa is assumed, and for the coarse mode, a scale height

of 400hPa. The pressure-dependent coefficients are

B(p) = b1 · e−b2·p+b3 ,

C(p) = c1 · e−c2·p+c3 ,

b1 = 3.46281429×100, b2 = 1.74926665×10−4, b3 =−2.85967514×10−1,

c1 = 2.72664755×100, c2 = 1.12852352×10−3, c3 = 1.50069026×100.

2.2 Warm Conveyor Belt

Aside from being responsible for most of the precipitation in the mid-latitudes (Pfahl et al., 2014),

WCBs transport pollution from the lower to the upper troposphere (Stohl, 2001; Joos et al., 2017).

A WCB is a slantwise ascending moist airstream associated with an ETC (Madonna et al., 2014).

It is located in the ETC’s warm sector ahead of the surface cold front. In particular, WCBs are

characterized by Lagrangian air parcels that ascend poleward, begin in the boundary layer, and

rise to the upper troposphere, while surmounting at least 600hPa within two days (Wernli and

Davies, 1997; Madonna et al., 2014). Furthermore, WCBs occur more frequently in winter than in

summer, have a more pronounced seasonal cycle in the Northern Hemisphere and usually begin to

ascend over the oceans between 20◦ and 47 ◦N, as well as within 17◦-42 ◦S (Madonna et al., 2014).

Other features are the formation of an elongated cloud band (Madonna et al., 2014; Eckhardt et al.,

2004), alteration of the extratropical cloud radiative forcing or CRE (Joos, 2019), and potential

modification of the large-scale atmospheric circulation (Joos and Wernli, 2012; Madonna et al.,

2014). The latter is related to the modification of PV through diabatic heating within the WCB,

leading to a negative PV anomaly in the upper and a positive PV anomaly in the lower troposphere

(Madonna et al., 2014; Joos and Wernli, 2012). According to Binder et al. (2016), the WCB’s

positive low-level PV anomaly can lead to ETC intensification and Grams et al. (2011) state, that

the negative upper-level PV anomaly can enhance upper-level ridges downstream of ETCs.

2.2.1 Cloud Microphysical Processes

Acents of WCBs are closely linked to a variety of cloud microphysical processes, which are

described in Section 2.1.1 and 2.1.2 in detail. During the ascent, warm-, mixed-, and ice-phase

processes occur as WCB air parcels experience a large temperature range. According to Madonna

et al. (2014), the WCB initially takes up water vapor in the boundary layer, which then decreases

during the ascent due to an increase in liquid water mass concentration caused by condensational

growth of cloud droplets in the warm phase. As air parcels rise to higher altitudes, ice starts to form

by freezing liquid cloud water in the mixed-phase, leading to an increase in ice water content (IWC)

while decreasing liquid water content (LWC). Simultaneously, depositional growth of ice in the

mixed- and ice phase causes the water vapor to decline further. All of these microphysical processes
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are important because they contribute to diabatic heating, which influences the PV and subsequently

large-scale dynamics (Joos and Wernli, 2012; Madonna et al., 2014). Especially condensation of

water vapor and depositional growth of snow are highly relevant, since each process is responsible

for approximately 10K of the total latent heating, which makes them the largest contributors to

the total latent heating (Joos and Wernli, 2012). In addition, Joos and Wernli (2012) stress that

the WCB not only gives rise to a region of pronounced heating due to cloud formation, but is also

responsible for strong cooling beneath it due to the evaporation of rain and sublimation or melting

of snow. Furthermore, other studies found that fast WCB ascents occur with stronger latent heating

(Oertel et al., 2021; Mazoyer et al., 2021).

Because microphysical processes determine the cloud structure and therefore have an impact on the

radiation balance and because they also play a crucial role in precipitation formation and diabatic

heating, a detailed description of microphysical processes in models is essential. However, there

are still uncertainties in the representation of cloud microphysics. For example, uncertainties in

diabatic heating arise from uncertainties in vapor deposition (Forbes and Clark, 2003; Mazoyer

et al., 2021, 2023) which influence ice, snow, and graupel mass concentrations. In particular, the

values of the normalized capacitance are not well constrained (Westbrook and Heymsfield, 2011).

Besides, Oertel et al. (2020, 2021) highlight the importance of convection embedded in WCBs for

precipitation formation, which has the potential to cause particularly strong surface precipitation.

In addition, the WCB precipitation efficiency is highly sensitive to CCN concentrations (Oertel

et al., 2025b).

2.2.2 Cloud Condensation Nucleus Impacts

The impact of aerosol particle number concentrations on WCBs, i.e., varying CCN concentrations,

is not sufficiently studied. Joos et al. (2017) found in their climatological model study on WCB

precipitation in the North Pacific that polluted WCB trajectories show a slight delay and reduction

in precipitation formation compared to clean trajectories. However, all WCBs contain both clean

and polluted trajectories at the beginning of their ascent. Typically, more clean trajectories are

present, which strongly diminish the aerosol influence from the polluted ones.

Recent studies (Barthlott et al., 2022; Schneider et al., 2019) investigated the impact of aerosols on

convective clouds for different weather regimes. Both studies performed sensitivity simulations with

varying CCN concentrations over Germany, including parts of neighboring countries. Barthlott et al.

(2022) found that with an increase in CCN concentrations, the total cloud water mass concentration

increases systematically, however, the total rain water mass concentration decreases. Additionally,

their results showed that higher CCN concentrations lead to a shift of the cloud droplet size

distribution’s maximum to smaller values, as well as a decrease of the effective radius and an

increase of the cloud optical depth. Schneider et al. (2019) also concluded that especially the CCN

concentrations heavily influence the cloud and precipitation structures. Nevertheless, they found

the CCN concentrations’ impact to be dependent on environmental conditions and contributions

of cold- and warm-rain processes, resulting in either a decrease or an increase in precipitation. In

fact, Schneider et al. (2019) showed that for weaker updrafts, warm-phase processes dominate,
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leading to a precipitation reduction with increasing CCN concentrations. In contrast, cold-phase

processes dominate in stronger updrafts, causing precipitation to increase with higher CCN amounts.

However, the results of both studies are not directly applicable to WCBs since they are heavily

influenced by synoptic conditions and their vertical velocities are considerably lower compared to

convective systems (Oertel et al., 2023).

2.2.3 Cloud Radiative Effects

WCBs affect extratropical cloud radiative effects (Joos, 2019). CRE is defined as the net radiation

at the top of atmosphere (TOA) with clouds minus the net radiation at TOA without clouds. It can

be distinguished between shortwave cloud radiative effect (SWCRE) and longwave cloud radiative

effect (LWCRE). A positive CRE means that clouds have a warming effect, whereas a negative

CRE indicates a cooling effect. Generally, on a global average, clouds cool the Earth with their

negative SWCRE and warm it with their positive LWCRE.

Joos (2019) states that the net CRE is highly variable along the WCB ascent in the winter hemisphere

because the inflow region exhibits a negative net CRE due to prevailing SWCRE. In contrast,

LWCRE dominates in the outflow region, which is attributed to the absence of incoming solar

radiation caused by the WCB’s poleward movement. Another finding of Joos (2019) is a pronounced

negative net CRE in the summer hemisphere because of available solar radiation and high cloud

albedo.

Furthermore, McCoy et al. (2018) show with observations and idealized simulations that an increase

in cloud droplet number concentration leads to a higher cloud liquid water path in WCBs and alters

the cloud albedo that affects CRE.
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This Chapter gives an introduction to the applied methods, starting with the ICON model (Section

3.1), which is used to conduct perturbed parameter ensemble (PPE) simulations (Section 3.2)

with five uncertain input parameters. Those simulations are then analyzed with the Eulerian

and Lagrangian diagnostics (Section 3.3). In addition, a variance decomposition (Section 3.5)

is performed to quantify the individual influences of the five perturbed parameters on the WCB

cloud structure. For this sensitivity analysis, a huge number of simulations with different parameter

combinations is needed to cover the combined parameter space. As it would be computationally

expensive and not feasible to run such simulations with a full NWP model, surrogate models

(Section 3.4) are needed.

3.1 ICOsahedral Nonhydrostatic Model

The PPE simulations are performed with the ICON model (version 2.6.2.2; Zängl et al., 2015) for a

WCB that was observed over the North Atlantic in October 2016 during the NAWDEX campaign

(intensive observation period 7; Schäfler et al., 2018). For this, the simulations by Oertel et al.

(2025b) are used, comprising a global simulation with approximately 13km effective grid spacing

(R03B07 grid) and 120s time steps, and two high-resolution nests with approximately 6.5km

(R03B08 grid) and 3.3km (R03B09 grid) effective grid spacing. Their respective time steps are 60

and 30s. The refined nests are coupled by two-way nesting, i.e., the global domain provides lateral

boundary conditions for the first high-resolution nest, whereas the high-resolution nest nudges the

prognostic fields of the global domain towards their solution. Analogously, the first high-resolution

nest provides lateral boundary conditions for the second high-resolution nest, which in turn gives

information back to the former. The simulations are initialized from the European Centre for

Medium-Range Weather Forecasts analysis at 18 UTC 3 October 2016 and run freely for the next

72 hours.

To represent cloud microphysical processes, the two-moment microphysics scheme of Seifert

and Beheng (2006) is applied with six hydrometeor types: cloud, rain, ice, snow, graupel, and

hail. The two-moment scheme predicts the mass concentrations (cloud water qc, rain qr, ice

qi, snow qs, graupel qg, and hail qh) of the different hydrometeors and their respective number

concentrations, denoted by nk. Other processes such as CCN activation, heterogeneous and

homogeneous ice nucleation, depositional growth of ice phase hydrometeors, and saturation

adjustment are represented following Oertel et al. (2023).
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Table 3.1: Uncertain parameters of the PPE with their respective ranges, units and affected processes (Oertel
et al., 2025b).

Parameter Min Max Unit Affected process

CCN 0.4 20 scaling factor cloud droplet activation

INP 0.01 20 scaling factor ice nucleation

CAP 0.2 1 scaling factor depositional growth of ice and snow

SST −2 2 K latent and sensible heat fluxes over ocean surface

SAT 0 0.1 scaling factor condensation from saturation adjustment scheme

   

Figure 3.1: Example of a PPE with combined perturbations. The cube represents a three-dimensional phase
space. It is spanned by the ranges of CAP, INP, and CCN perturbations. Each red circle
depicts an PPE member with its respective parameter values. Figure created with Excalidraw
(https://excalidraw.com, last accessed: 01.12.2024).

3.2 Perturbed Parameter Ensemble Simulations

For the sensitivity analysis, the approach of Oertel et al. (2025b) is followed by utilizing their

ICON model simulations of the PPE of 70 members with Np = 5 uncertain model parameters. In

the PPE, each member contains combined perturbations of these uncertain parameters, which are

CCN and INP concentrations, capacitance (CAP), SST, and maximum supersaturation with respect

to liquid (SAT). They are chosen because they influence the WCB ascent and corresponding cloud

formation (Oertel et al., 2025b). Table 3.1 shows the ranges of parameters as well as the processes

affected by the perturbations. Using Latin hypercube sampling (Morris and Mitchell, 1995), ideal

parameter perturbation combinations are determined to optimally cover the five-dimensional phase

space spanned by the parameter ranges (Oertel et al., 2025b). To better understand the concept of

combined perturbations, Figure 3.1 illustrates, as an example, a three-dimensional phase space as a

cube. It is spanned by the ranges of CAP, INP, and CCN perturbations. Each red circle depicts

a PPE member with its respective parameter perturbations. In addition, a unperturbed reference

simulation (REF) is performed with scaling factors of fCCN = 1, fINP = 1, fCAP = 1, fSAT = 0 and

constant offset fSST = 0 (Oertel et al., 2025b). More information on all perturbed parameters and

their minimum and maximum values is provided in the following. The selection of the parameter

ranges follows Oertel et al. (2025b).

16

https://excalidraw.com


3.2 Perturbed Parameter Ensemble Simulations

Figure 3.2: (a) Vertical profiles of parameterized cloud condensation nucleus (CCN) concentrations of the
unperturbed reference simulation (REF) for different vertical velocities (colors, in ms−1) together
with CCN concentration ranges obtained by perturbations with the scaling factor fCCN (shading).
(b) Vertical profiles of parameterized ice nucleating particle (INP) concentrations of REF for
a super saturation w.r.t. ice of 1.1 for immersion freezing (IMFRZ; green) and deposition
nucleation (DEPNUC; orange) together with INP concentration ranges obtained by perturbations
with the scaling factor fINP (shading).

CCN CCN concentrations influence the amount of activated cloud droplets. In the ICON model,

CCN activation is prescribed as a vertical profile, thus, it represents an uncertain parameter. Besides,

cloud droplet activation has an impact on cloud microphysical process rates (Barthlott et al., 2022;

Wellmann et al., 2018). The modified version (Oertel et al., 2023) of the scheme by Hande et al.

(2016) is used to account for cloud droplet activation, which is scaled by the grid-scale vertical

velocity and air pressure. Furthermore, a height-dependent CCN profile that is time-independent is

assumed. The number of activated cloud droplets per time step is perturbed by a scaling factor fCCN

ranging between 0.4 and 20, leading to CCN concentrations between 100cm−3 and 5000cm−3.

Figure 3.2a shows vertical profiles of the parameterized CCN concentrations of REF for two vertical

velocities calculated with equation (2.10). Smallest and largest CCN concentrations made possible

by perturbations with fCCN are also shown as shading.

INP INP concentrations modify the ice number concentration produced by heterogeneous ice

nucleation, and they are also prescribed in the ICON model, which is why they introduce parametric

uncertainty as well. They are represented by the temperature-dependent functions of Hande et al.

(2015). The rates of freezing of raindrops (Bigg, 1953), immersion freezing of cloud droplets, and

deposition nucleation of cloud ice Hande et al. (2015) all depend on INP concentrations and are thus

perturbed by a logarithmic scaling factor fINP ranging from 0.01 to 20. Figure 3.2b shows vertical

profiles of the parameterized INP concentrations of REF for immersion freezing and deposition

nucleation. The shading indicates the range of the smallest and largest INP concentrations enabled

by perturbations with the scaling factor fINP.

CAP Generally, the CAP is a scaling parameter for the vapor deposition onto frozen hydrometeors

while taking their habits and surfaces into account. Perturbing it, therefore, alters the depositional

growth rate of frozen hydrometeors. For the sensitivity experiments, CAP of ice and snow is varied
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simultaneously with the same scaling factor fCAP between 0.2 and 1, leading to normalized CAP

values between 0.1 and 0.5. CAP of graupel and hail remain unchanged, i.e., they match their

respective radius, as they are assumed to be approaching the shape of a sphere.

SST The sea surface temperature refers to uncertainty in thermodynamic boundary conditions

as modifying SST impacts the temperature and specific humidity of the WCB inflow in the lower

troposphere (Christ et al., 2025). A constant offset fSST between −2K and 2K is introduced to

perturb SST.

SAT To establish a thermodynamic equilibrium between cloud droplets and water vapor, either

by evaporation or condensation of cloud droplets, a saturation adjustment scheme is implemented

in the ICON model. It is called twice, namely once before and after the explicit microphysical

processes. No supersaturation w.r.t liquid is possible if cloud droplets are present, since the scheme

assumes that a thermodynamic equilibrium is instantly reached, as it directly removes any sub- or

supersaturation. The saturation adjustment is perturbed by extending the possible maximum of the

saturation ratio to values above 1. This is done by using a scaling factor fSAT, ranging between 0

and 0.1, for the temperature- and pressure-dependent critical saturation specific humidity.

3.3 Eulerian and Lagrangian Diagnostics

Two perspectives are applied to analyze the impact of parameter perturbations on the WCB’s cloud

structure, as illustrated in Oertel et al. (2023). The first is the Eulerian approach, focusing on a

fixed space relative to the cyclone’s cold front where air parcels move through, and the second is

the Lagrangian approach, which follows WCB air parcel trajectories.

3.3.1 Eulerian Perspective

In the Eulerian perspective, the focus lies on the cloud structure relative to the cyclone’s cold front.

Following the approach of Oertel et al. (2023), multiple west-east-oriented vertical cross-sections

are placed through the WCB ascent region for several time steps. For every cross-section, new

coordinates are defined relative to the cold front, i.e., 0◦ rel. lon. marks the western edge of

the WCB ascent region ahead of the cold front. Subsequently, vertical cross-section composites

are created by averaging over all cross-sections of October 4 and 5 when the WCB ascent is

strongest. These cross-sections are calculated for the hydrometeor mass concentrations, number

concentrations, as well as diabatic heating rates for all PPE members. An example of the composite

cloud structure is shown in Fig. 4.2b.

To compare the cloud structure between different PPE members, the composites are averaged over

the cyclone’s warm sector (0◦-8◦ rel. lon.) to produce comparable vertical profiles. The PPE

members are divided into three subsets sorted by a perturbed parameter, e.g., CCN concentration.
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The first subset contains the 23 PPE members which have the lowest perturbed parameter values or

scaling, the second subset the 24 PPE members with moderate perturbed parameter values and the

third subset, also consisting of 23 PPE members, includes the highest perturbed parameter values.

With that, it is possible to discern a potential systematic impact of this perturbed parameter on

the vertical profiles of the variables of interest. This approach is repeated for the remaining four

perturbed parameters. Table A.1 shows the means of all parameter perturbations per subset in the

Appendix. In Section 3.5, a more sophisticated diagnostic is introduced, i.e., the so-called variance

decomposition, to better quantify the individual impacts of the perturbed parameters.

3.3.2 Lagrangian Perspective

In contrast, the Lagrangian perspective allows for a different kind of analysis. The same routine

as in Oertel et al. (2023) is applied to calculate the online trajectories, which have an ascent

rate of at least 600hPa within 48h. Moreover, the beginning of the fastest 600hPa ascent along

each trajectory marks the start of the WCB ascent. Each PPE member possesses several tens

of thousands of trajectories, ranging from 28311 to 53802 WCB trajectories per simulation. To

compare the PPE members with each other, an average trajectory is calculated for all hydrometeor

mass concentrations and diabatic heating rates for each PPE member. With that, the averaged

temporal evolution of the variables of the PPE members can be compared. However, the ascent

speed of the individual trajectories in each simulation varies substantially and ranges, for example,

from 2 to 48 hours to ascent 600hPa. Hence, in addition, the trajectories are also divided into

2K temperature bins along the ascent (Oertel et al., 2025b) to better analyze cloud microphysical

processes which are strongly temperature-dependent, such as immersion freezing. Following the

analysis approach of the Eulerian perspective, the trajectories are sorted by perturbed parameter,

and variance decomposition is performed as well.

3.4 Surrogate Models

To generate sufficient data for the variance decomposition of different variables, surrogate models

are used to approximate the values of these target variables, based on any combination of the

perturbed parameters, instead of explicitly calculating them with the ICON model. In the following,

the tests of different models are presented, and RFR models are introduced.

3.4.1 Model Tests

Multiple linear regression (MLR), Gaussian process emulation (GPE; Rasmussen, 2004) and

random forest regression (Breiman, 2001) are tested as surrogate models for the mean vertically

integrated hydrometeor mass concentrations qx,t of the six hydrometeor types using their respective

Scikit-learn python library (Pedregosa et al., 2011). For MLR and GPE, the default Scikit-learn

models are used, and for the RFR, models are tested with Ntree= 250 decision trees and all 5
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Table 3.2: Mean absolute error (MAE; in kg m−2), mean squared error (MSE), root mean squared error
(RMSE; in kg m−2) and R2 score of multiple linear regression (MLR), random forest regres-
sion (RFR) and Gaussian process emulation (GPE) models for the mean vertically integrated
hydrometeor mass concentrations of cloud water (qc,t), rain (qr,t), ice (qi,t), snow (qs,t), graupel
(qg,t) and hail (qh,t).

Metric Model qc,t qr,t qi,t qs,t qg,t qh,t

MAE MLR 2.14×10−2 5.30×10−3 3.29×10−3 9.66×10−3 5.50×10−3 3.58×10−4

MAE RFR 4.81×10−2 4.20×10−3 2.01×10−3 1.05×10−2 4.49×10−3 2.76×10−4

MAE GPE 2.19×10−2 4.00×10−3 4.53×10−3 8.25×10−3 1.59×10−2 1.97×10−4

MSE MLR 9.56×10−4 5.03×10−5 1.49×10−5 1.46×10−4 4.66×10−5 2.13×10−7

MSE RFR 3.44×10−3 2.87×10−5 6.65×10−6 1.47×10−4 4.32×10−5 1.55×10−7

MSE GPE 8.85×10−4 2.50×10−5 2.93×10−5 1.04×10−4 4.25×10−4 1.24×10−7

RMSE MLR 3.09×10−2 7.10×10−3 3.86×10−3 1.21×10−2 6.83×10−3 4.62×10−4

RMSE RFR 5.86×10−2 5.36×10−3 2.58×10−3 1.21×10−2 6.58×10−3 3.94×10−4

RMSE GPE 2.98×10−2 5.00×10−3 5.41×10−3 1.02×10−2 2.06×10−2 3.52×10−4

R2 MLR 0.967 0.748 0.570 0.632 0.941 0.933

R2 RFR 0.883 0.857 0.808 0.629 0.945 0.951

R2 GPE 0.970 0.875 0.157 0.738 0.462 0.961

perturbed parameters are considered per internal node. More details on RFR follow later. The mean

qx,t is calculated by averaging over 0◦−8◦ rel. lon., whereas the models are trained with 50 of the

70 PPE members and validated with the remaining 20. The parameter perturbations of the training

dataset are selected by using the Latin hypercube sampling to optimally fill the five-dimensional

parameter space. For the validation dataset, the parameter perturbations are also selected with Latin

hypercube sampling to fill the gaps in the training dataset optimally. Thus, the splitting of the 70

PPE members into training and validation sets is not random. To assess the performance of the

models, scatter diagrams of the ICON model runs and model predictions (Fig. 3.3) are presented,

as well as their respective mean absolute error (MAE), mean squared error (MSE), root mean

squared error (RMSE) and coefficient of determination R2 (Table 3.2). Equations (A.1)-(A.4) in

Appendix A.1 are used to calculate these metrics. In general, the different model types perform

quite similarly for the respective qx,t considering the scatter diagrams (Fig. 3.3). However, RFR

performs overall best in terms of R2 values, particularly for predicting the mean vertically integrated

ice mass concentration qi,t. That is why RFR is the method of choice for this thesis.

3.4.2 Random Forest Regression

As RFR is selected to build surrogate models, the underlying principle is explained in the following

in more detail. RFR is a machine learning algorithm that “grows” N decision trees based on random

subsamples of the training dataset. In this case, the training dataset contains 50 combinations of the

five perturbed parameters, the so-called features, and their respective ICON model output of a target
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3.4 Surrogate Models

Figure 3.3: Scatter diagrams of multiple linear regression (MLR), random forest regression (RFR), and
Gaussian process emulation (GPE) model performance of mean vertically integrated mass
concentrations for (a)-(c) cloud water (qc,t, in kgm−2), (d)-(f) rain (qr,t), (g)-(i) ice (qi,t), (j)-(l)

snow (qs,t), (m)-(o) graupel (qg,t), and (p)-(r) hail (qh,t). For all panels, validation PPE members
are colored blue and training PPE members red. Mean vertically integrated hydrometeor mass
concentrations of the ICON model runs are shown on the x-axis, and the mean vertically
integrated hydrometeor mass concentrations of the respective model are on the y-axis. Errors of
the validation dataset are listed in Table 3.2.
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Figure 3.4: Example of random forest regression decision trees with arbitrary values and tree complexities.
The internal nodes are colored yellow, whereas the leaf nodes are green. The final result in red
represents the prediction of the model for one parameter combination. Diagram created with
Excalidraw (https://excalidraw.com, last accessed: 01.12.2024).

variable, e.g., hydrometeor mass concentration, number concentration, or diabatic heating rate.

Figure 3.4 visualizes the concept of decision trees with arbitrary values. A decision tree consists of

logical rules, the so-called internal nodes (yellow), and results, the so-called leaf nodes (green).

When growing a tree with a random subsample, a perturbed parameter is randomly chosen for every

internal node to split the subsample according to a threshold value of this perturbed parameter. In

Scikit-Learn, the default is that the tree is fully grown when every leaf node contains only one

value.

After the N trees are grown, the RFR model is trained and can be validated with the validation

dataset consisting of 20 perturbed parameter combinations. For this, the RFR model predicts the

target variable by averaging the results of all decision trees. In Figure 3.4, the prediction for one

parameter combination is depicted in red as the final result. To evaluate the model’s performance,

the predictions are compared with the output of the ICON model runs in scatter diagrams. In

addition, RMSE and R2 scores are calculated.

The RFR model performance can be improved by altering the hyperparameters of the model. Hyper-

parameters are parameters that are prescribed, and the algorithm does not learn them independently.

Examples of hyperparameters are the number of decision trees Ntree, the number of features consid-

ered per internal node Nfeat, and the minimum number of samples needed to split an internal node

Ns. To determine the best hyperparameter combination for every model, hyperparameter tuning

is performed using the Grid Search algorithm. This means that for every chosen hyperparameter,

values are preselected, and every possible combination of hyperparameters is tested for each model.

Subsequently, the combination yielding the smallest RMSE on the validation dataset is chosen

for the respective model. The hyperparameter values tested are listed in Table 3.3. The range of
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3.5 Variance Decomposition

Table 3.3: Hyperparameter values used to determine the best combination via Grid Search. Tested are the
number of decision trees Ntree, the minimum number of samples needed to split an internal node
Ns, and the number of features considered per internal node Nfeat.

Ntree Nfeat Ns

100 1 2

150 2 3

200 3 4

250 4 5

500 5

Table 3.4: Grid Search of the best hyperparameter combinations for the RFR models of the mean vertically
integrated hydrometeor mass concentrations of cloud water (qc,t), rain (qr,t), ice (qi,t), snow (qs,t),
graupel (qg,t), and hail (qh,t). The hyperparameters are the number of decision trees Ntree, the
minimum number of samples needed to split an internal node Ns, and the number of features
considered per internal node Nfeat. Model performance is indicated by the root mean squared error
(RMSE; in kg m−2) and R2 score.

qx,t Ntree Ns Nfeat RMSE R2

qc,t 200 2 4 5.28×10−2 0.905

qr,t 150 3 4 5.03×10−3 0.874

qi,t 500 2 4 2.44×10−3 0.828

qs,t 500 3 5 1.18×10−2 0.650

qg,t 150 2 4 6.34×10−3 0.949

qh,t 100 2 5 3.80×10−4 0.955

the number of trees is rather small because the sample size of the training and validation datasets

is quite limited, so too many trees would lead to overfitting. Naturally, the number of features

considered per internal node is limited by the total number of perturbed parameters. Since the

datasets are small, Ns should not be too large, as too many samples needed to split an internal node

would lead to imprecise predictions. The hyperparameter values of the RFR qx,t models after the

Grid Search was performed are listed in Table 3.4 together with their RMSE and R2 score.

3.5 Variance Decomposition

For quantifying the individual impacts of the Np perturbed parameters on the cloud structure, vari-

ance decomposition is performed for several variables. According to Oakley and O’Hagan (2004),

the total variance V of a target variable with Np independent input parameters is decomposable into

V =
Np

∑
i=1

Vi +∑
i< j

Vi j + ...+V1,...,p (3.1)
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with the individual contributions Vi of the Np perturbed parameters, contributions of two interacting

parameters Vi j and the contribution of all parameters interacting with each other V1,...,p. The Fourier

amplitude sensitivity test (FAST; Saltelli et al., 1999) is applied to do the decomposition, using

the SALib Python library (Iwanaga et al., 2022; Herman and Usher, 2017). FAST offers a global

sensitivity analysis which needs a large sample size of O(104). The generation of such a sample is

explained in Section 3.4.2. Subsequently, the so-called first-order sensitivity index, or main effect,

Si =
Vi

V
(3.2)

is calculated. It describes the contribution of the perturbed parameter i to the target variable’s

variance, and therefore indicates by how much percent this variance could be reduced if the

parameter i had no uncertainty (Wellmann et al., 2018).
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4 Case Study

The WCB considered in this thesis is associated with a cyclone in the North Atlantic occurring

at the beginning of October 2016 during the North Atlantic Waveguide and Downstream Impact

Experiment (NAWDEX) campaign (intensive observation period (IOP) 7; Schäfler et al. (2018)).

According to Oertel et al. (2023), on October 2, 2016 a weak sea level pressure depression initially

forms east of 60 ◦W at around 45 ◦N in a strong baroclinic zone (Oertel et al., 2023). The resulting

surface cyclone occurs in conjunction with a local positive low-level PV anomaly, which travels

along this baroclinic zone over the North Atlantic and features traits of a diabatic Rossby wave

(Boettcher and Wernli, 2013). On the following day, the cyclone intensifies further, interacts with

the nearing upper-level trough, and exhibits a distinguishable cold and warm front (Oertel et al.,

2023). Besides, an extensive cloud band is established, which is linked to the northward WCB

ascent, and the cyclone moves poleward in front of the upper-level trough.

From October 4th to October 5th, the WCB ascent is strongest, and a vast, large-scale cloud band

is formed. That is why this period is the focus of this thesis. To investigate the evolution of the

WCB, three time steps are chosen, namely 12 and 18UTC on October 4th and 0UTC on October

5th. Figure 4.1 depicts the temperature field in 850hPa (a-c) and the total water path (TWP, d-f)

of the unperturbed reference simulation (REF) for those time steps. On 4 October at 12UTC,

the center of the cyclone is located at 32 ◦W, 52 ◦N and the poleward WCB ascent mainly takes

place in the warm sector of the cyclone, in front of the surface cold front and upper-level trough

(red contour), between 40 ◦N-50 ◦N and 30 ◦W-40 ◦W (Fig. 4.1a). However, the WCB ascent also

occurs in proximity to the center of the cyclone (Oertel et al., 2023). Figure 4.1d shows the total

water path (TWP) of the widespread cloud shield, which forms due to rising air parcels. It starts

south of the cold front, covers the warm sector, and curls cyclonically around the center of the

cyclone but does not encircle it entirely.

In the next six hours, the center of the cyclone and upper-level ridge move northward (Fig. 4.1b).

Besides, the amount of cloud band parts with high TWP decreases and the cloud band moves

northward and eastward (Fig. 4.1e). Another six hours later, the system has traveled even closer to

the pole (Fig. 4.1c,f). Furthermore, the northern cloud component stretches further west and curls

around the center of the cyclone, whereas the cloud band becomes thinner in general.

To gain an understanding of the vertical WCB cloud structure, two vertical cross-sections of the

total hydrometeor mass concentration qt are placed through the WCB ascent region ahead of the

cold front (Fig. 4.2). Both panels include contours of the five different hydrometeor classes (cloud

water, rain, ice, snow, and graupel, which also contains hail), isentropes, and isotherms of REF.

For Fig. 4.2a, the latitude of 49 ◦N is chosen for the 4th of October at 12UTC as an example of an
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4 Case Study

Figure 4.1: (a)-(c) Temperature at 850hPa (T, in K; shading) and (d)-(f) total water path (TWP, in kgm−2;
shading) for (a), (d) 12UTC on October 4th, (b), (e) 18UTC on October 4th, and (c), (f) 0UTC
on October 5th. In all panels, grey contours correspond to mean sea level pressure in 5hPa
intervals and red contours to 2PVU line at 300hPa. All panels show the unperturbed reference
simulation (REF) data.

instantaneous cross-section. In contrast, cross-section composites averaged over the 4th and 5th

of October are illustrated in Fig. 4.2b. One difference is that the isentropes and isotherms of the

composites are smoother than the ones of the instantaneous cross-section, because of the averaging

over cross-sections of several latitudes and time steps. Especially, the cold front in Fig. 4.2a is

more sharply pronounced by the step-like form of the 273K isotherm at 34 ◦W.

Overall, the height at which the various hydrometeor types can be found is similar. In both panels,

raindrops reach from the ground up to 3km and cloud droplets are present mainly between 1km

and 6km. Graupel appears mainly between 2km and 4km, but the upper limit can be higher as seen

in Fig. 4.2a. Snow spreads between 2km and 8km in the composites and is shifted 1km upward in

the instantaneous view. The lower boundary of ice is also 1km lower in the composites at 3km,

and the upper boundary is above 10km. In Fig. 4.2a, ice can still be found at 12km altitude.

Furthermore, the individual horizontal hydrometeor distributions differ considerably between

the two panels. Although the contours in Fig. 4.2b suggest that each hydrometeor class occurs

coherently as one cluster, except for the small additional cloud and raindrop clusters, Fig. 4.2a

demonstrates the opposite. In this depiction, there is not a single hydrometeor type with only

one cluster. Raindrops are divided into two large areas between 32 ◦W and 27 ◦W and a narrow

vertical band at 26 ◦W composed of several smaller clusters. Cloud droplets tend to form short, slim

clusters higher up instead of a huge cluster spreading over several longitudes. Moreover, graupel is

separated into three narrow groups located at 32 ◦W, 30.5 ◦W, and 26 ◦W. The snow distribution is

characterized by four large parts and one minuscule part. Ice exhibits the biggest coherent cluster,
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Figure 4.2: Total hydrometeor mass concentration (qt, shading) with cloud water (qc, cyan contours at
0.02g/kg), rain (qr, blue contours at 0.02g/kg), snow (qs, purple contours at 0.01g/kg), ice (qi,
grey contours at 0.01g/kg), and graupel (qg, magenta contours at 0.02g/kg) mass concentration;
273 and 233K isotherms (gold); 320K isentrope (blue), and potential temperature (5K intervals,
grey lines) for (a) vertical cross-section through the WCB at 49 ◦N at 12UTC on October 4,
2016; and (b) vertical cross-section composites through the WCB ascent region in front of the
cold front averaged over the 4th and 5th of October 2016. Both panels show the unperturbed
reference simulation (REF) data.

with only a few additional tiny ones. Besides, between 30 ◦W-26 ◦W and 4km-6km, there are

few to none hydrometeors of any kind. Lastly, it should be pointed out that the low-level total

hydrometeor mass concentration of the instantaneous cross-section is significantly higher due to

the amount of cloud droplets. Additionally, the high qt values are spread more widely.
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5 Qualitative Parameter Impacts

In this Chapter, the results of the WCB simulations are presented. First, the unperturbed reference

simulation is compared to the PPE simulations (Section 5.1). Second, more detailed analyses of

the individual parameter perturbations are shown, starting with the impacts of CCNs (Section 5.2),

followed by the impacts of INPs (Section 5.3), CAP (Section 5.4), and SST together with SAT

(Section 5.5).

5.1 Unperturbed versus Perturbed Simulations

First, a brief description of the REF cloud structure in the Eulerian perspective is provided before

comparing it with the PPE simulations. Figure 5.1 shows vertical profiles of different mean

hydrometeor mass concentrations (first column) and mean number concentrations (second column)

in the Eulerian perspective, as well as mean hydrometeor mass concentrations (third column) in

the Lagrangian perspective. The REF is marked in red and the PPE members are colored grey.

The warm phase of the REF cloud, where temperatures higher than the 273K melting level occur,

is located below 3km in the Eulerian perspective. Within this phase, the maximum rain mass

concentration is observed at 1km (Fig. 5.1e) and the maximum cloud water mass concentration at

2km (Fig. 5.1b). Furthermore, the mixed-phase region, which spans temperatures between 273K

and 235K, extends approximately from 3km to 9km. Small amounts of rain mass concentration qr

and cloud water mass concentration qc occur there as well. High graupel mass concentrations qg

are predominantly found in lower parts of the mixed-phase region near the melting level (Fig. 5.1n),

whereas snow occurs throughout the whole mixed-phase region and the snow mass concentration qs

peaks directly above the peak of the graupel mass concentration (compare Fig. 5.1k, 5.1n). Lastly,

ice mass concentrations qi reach from the melting level up to 12km but mainly occur around 7km

in the upper parts of the mixed-phase region (Fig. 5.1h).

When model parameter perturbations are introduced, two main impacts on the cloud structure are

observed. First, a substantial variability is caused as the PPE members spread the hydrometeor mass

and number concentrations. Second, the maxima of some hydrometeor mass concentrations are

vertically displaced. In addition to that, despite the considerable spread, no PPE member appears to

be unphysical. In the following, these impacts will be examined in more detail.

Except for two PPE members, the maximum of qc increases and is shifted upward compared to REF

in the Eulerian perspective (Fig. 5.1b). To be precise, the maximum of 0.07gkg−1 in REF moves

from 2km in the warm phase to almost 4km in the mixed phase in PPE and is up to five times
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5 Qualitative Parameter Impacts

Figure 5.1: WCB cloud characteristics from Eulerian and Lagrangian perspectives. First column shows
vertical profiles of mean number concentrations averaged over the WCB cloud band (i.e., 0−8◦

rel. lon in the respective vertical cross-section composite) for (a) cloud water (nc, in kg−1), (d)

rain (nr), (g) ice (ni), (j) snow (ns), and (m) graupel (ng). Individual PPE members are shown
in grey, the unperturbed reference simulation (REF) is shown in red. Second column as first
column but for mean hydrometeor mass concentrations (qx, in gkg−1). The third column shows
mean hydrometeor mass concentrations along the online WCB trajectories. Hydrometeor mass
concentrations are averaged over 2K bins along the ascent for all WCB trajectories of each
PPE member (grey) and REF (red), respectively. Altitudes of the melting level at 273K and the
homogeneous ice nucleation level at 235K of REF are marked as black horizontal lines.
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5.1 Unperturbed versus Perturbed Simulations

larger, alsmost reaching 0.4gkg−1. As expected, the increase in cloud water mass concentration

is also reflected in the front relative cross-section composites of the vertically integrated cloud

water mass concentration qc,t (Fig. 5.2b) because qc increases at all levels. In contrast to qc, qr has

the fourth-largest maximum in REF with approximately 0.05gkg−1 and the maximum appears to

occur in all PPE members at 1km (Fig. 5.1e). Correspondingly, the vertically integrated rain mass

concentration qr,t decreases in most PPE members (Fig. 5.2d). The maximum qi of REF amounts

to almost 0.06gkg−1 and is located slightly below 7km, which is lower than almost every PPE

member (Fig. 5.1h). Besides, the maximum value of qi is increased in the majority of the PPE

members, reaching up to 0.08gkg−1. It should also be noted that in the PPE, qi is displaced upward

in its entirety. Figure 5.2f shows, however, that the vertically integrated ice mass concentration qi,t

of REF is in the middle of the PPE members in the warm sector close to the front. Further east

of the front, qi,t is for most PPE members higher than in REF. Similarly to qi, the maximum qs

increases in all but two PPE members compared to REF and an upward shift is observed as well

(Fig. 5.1k). In REF, the maximum qs is 0.06gkg−1 at 4km and can exceed 0.08gkg−1 for some

PPE members. The vertically integrated snow mass concentration qs,t increases mostly as well in

the PPE (Fig. 5.2h). Since the observed hail mass concentrations are rather small and hail is defined

as graupel that exceeds a diameter of 5mm, hail is from now on included in the graupel mass

concentration qg. The same applies to the respective number concentration ng. Figure 5.1n shows

that the qg maximum of 0.02gkg−1 in REF is in the lower third of the PPE maxima and is located

at 3km. Consequently, the vertically integrated graupel mass concentration qg also increases for

most of the PPE members (Fig. 5.2j).

Looking at the hydrometeor number concentrations reveals a similar trend. The cloud droplet

number concentration nc increases immensely due to parameter perturbations (Fig. 5.1a), just like

the vertically integrated cloud droplet number concentration nc,t (Fig. 5.2a). The maximum nc can

be over 16 times larger than REF, depending on the PPE member, and peaks around the melting

level. Only a few members reach values of 8×108 kg−1 for nc, and most remain below 4×108 kg−1.

The raindrop number concentration nr, on the other hand, is in REF overall rather large compared

to PPE members, except for one PPE member which is approximately twice as large as REF and is

probably an outlier (Fig. 5.1d). Most of the PPE members tend to peak below 2km and around

3km above the melting level. REF has a maximum nr of roughly 2000kg−1 around 3km. In Fig.

5.2c, the vertically integrated rain number concentration nr,t exhibits the PPE outlier and a decrease

for the majority of the PPE members, as well. On the contrary, number concentrations of ice ni

and snow ns can be up to a few orders of magnitude higher, when the parameters are perturbed,

than in REF (Fig. 5.1g,j). The same applies to the vertically integrated number concentrations

ni,t and ns,t (Fig. 5.2e,g). ni peaks at 9km and does not exceed 1× 106 kg−1 for most members,

whereas ns peaks near 7km and is typically smaller than 6000kg−1. Lastly, ng appears to have

the same structure as qg, meaning that REF lies in the lower third of the PPE spread, having a ng

maximum of approximately 130kg−1 (Fig. 5.1m). In REF, the vertically integrated graupel number

concentration ng,tis in the middle of the PPE members (Fig. 5.2i).

For the Lagrangian perspective, the trajectory data are binned in temperature bins (T -bins; Section

3.3.2). This allows for a comprehensive process-based perspective. In this comparison between
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Figure 5.2: Front relative cross-section composites of vertically integrated number concentrations (first
column) for (a) cloud water (nc,t, in m−2), (c) rain (nr,t), (e) ice (ni,t), (g) snow (ns,t), and (i)

graupel (ng,t) and vertically integrated hydrometeor mass concentrations (qx,t, in gkg−1; (b), (d),

(f), (h), (j)) for the unperturbed reference simulation (REF; red) and all PPE members (grey).
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REF and PPE, the Lagrangian perspective is only applied to the hydrometeor mass concentrations

(Fig. 5.1 third column), since hydrometeor number concentrations are not available in REF and rain

and graupel number concentrations are also not available in the PPE. Qualitatively, the hydrometeor

mass concentrations agree in the Eulerian and Lagrangian perspectives when comparing REF and

PPE. The maximum mean cloud water mass concentration of 0.3gkg−1 is located at the melting

level in REF (Fig. 5.1c). It increases and shifts up to 4K to lower temperatures in most PPE

members. For some PPE members, the maximum of qc exceeds 1gkg−1. Cloud water is observed

between 290K and 240K. On the other hand, qr has a maximum of approximately 0.1gkg−1 below

the melting level at 280K in REF (Fig. 5.1f). In the PPE, the maximum qr decreases to 0.05gkg−1

but stays in the same temperature range. For temperatures lower than 273K, qr strongly decreases

as raindrops begin to freeze. The maximum mean ice mass concentration is located below 250K for

all simulation runs and amounts to approximately 0.06gkg−1 (Fig. 5.1i). As expected, qi occurs

mainly at temperatures lower than 273K and reaches up to 220K. Below 260K, qi is largest in

REF compared to the other PPE members and smallest above 250K. Thus, the qi maximum is

shifted to lower temperature in most of the PPE members, which is consistent with the Eulerian

perspective. Furthermore, snow is observed mainly between 273K and 235K (Fig. 5.1l). REF

has a maximum qs of almost 0.1gkg−1 at around 265K. The PPE exhibits an increase in qs, with

some members exceeding 0.15gkg−1. Like qc, the graupel mass concentration peaks at the melting

level (Fig. 5.1o). It occurs mainly in the mixed-phase region, where qc and qs coincide, and the

highest amounts are found in a temperature range of 275K to 260K. In the warm phase, qg quickly

decreases with increasing temperature as graupel melts. The REF has a maximum qg of almost

0.1gkg−1, whereas the PPE maxima spread around this value with a tendency to higher values.

In the following, the main findings presented in this Section are summarized. In summary, the

parameter perturbations lead to considerable variability in hydrometeor mass and number concentra-

tions. More specifically, the mass and number concentration of cloud water, ice, snow, and graupel

increase mainly due to the perturbations, whereas the rain mass and number concentration generally

decrease. These asymmetric effects probably originate from the asymmetric perturbations compared

to REF. The same also applies to the vertically integrated hydrometeor mass concentrations and

number concentrations.

5.2 Cloud Condensation Nucleus Impacts

To analyze the impact of varying CCN concentrations, cloud water mass and number concentrations

are examined first. By increasing the CCN concentration, qc and nc increase both in the Eulerian

(Fig. 5.3a,b) and Lagrangian perspective (Fig. 5.3d,e) consistently at all height and temperature

levels. Therefore, qc,t and nc,t are strongly influenced throughout the warm sector (Fig. 5.3g,h)

and increase as well. Besides, the differences between the three subsets are relatively large. The

increases in qc and nc result from the fact that the different CCN concentrations are considered by

systematically perturbing the number of activated cloud droplets, which is reflected in the diabatic

heating rate of cloud droplet activation QCNUC (Fig. 5.3c,f). As expected, when more cloud

droplets are activated, their number concentration increases as a result. Subsequently, the average
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Figure 5.3: Influence of cloud condensation nucleus (CCN) perturbations on WCB cloud characteristics
from Eulerian and Lagrangian perspectives. Shown are the median (dashed), average (solid),
and standard deviation (shading) for three distinct subsets of the PPE, which are stratified in
low (blue), moderate (green), and high (yellow) CCN perturbations (Table A.1). (a), (b), (c),(i)

Vertical profiles are averaged over the WCB cloud (i.e., 0− 8◦ rel. lon. in the respective
vertical cross-section composite) for (a) cloud water mass concentration (qc, in gkg−1), (b) cloud
droplet number concentration (nc, in kg−1), (c) diabatic heating rate of cloud droplet activation
(QCNUC, in Kh−1), and (i) mean cloud droplet mass (qc/nc, in kg). (d-f) as (a-c) but averaged
in temperature bins along ascending WCB trajectories. The altitudes of the melting level at 273K
and the homogeneous ice nucleation level at 235K of the unperturbed reference simulation REF
are marked as black horizontal lines. (g) Vertically integrated cloud water mass concentration
(qc,t, in kgm−2) and (h) vertically integrated cloud droplet number concentration (nc,t, in m−2)
along the WCB cloud.

cloud droplet mass qc/nc decreases (Fig. 5.3i) as the droplets compete for water vapor. However,

qc increases (Fig. 5.3a,e), even though the average droplet is smaller and lighter. More specifically,

the conversion of qc to qr is reduced by the smaller mean cloud droplet mass, which appears to

outweigh the higher nc causing a lower collision efficiency, as, e.g., shown in Barthlott et al. (2022)

for a convective cloud. Because the conversion of qc to qr is reduced, qc increases.

This is directly related to a reduction in qr for higher CCN concentrations in the warm phase in

both perspectives (Fig. 5.4a,c), which affects qr,t in the same way (Fig. 5.4d). Furthermore, nr

is generally lower for higher CCN concentrations in the Eulerian perspective (Fig. 5.4b). Yet, a

clear, systematic relation is not observable, since the highest CCN concentrations do not yield
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Figure 5.4: As Fig. 5.3 but for (a), (c) rain mass concentration (qr, in gkg−1), (b) raindrop number con-
centration (nr, in kg−1), (d) vertically integrated rain mass concentration (qr,t, in kgm−2), (e)

vertically integrated raindrop number concentration (nr,t, in m−2), and (f) mean raindrop mass
(qr/nr, in kg)

the lowest nr. In addition, the mean nr of the subset with the lowest CCN concentrations differs

strongly from its median, indicating the influence of the outlier seen in Fig. 5.2d. This is also

reflected in nr,t (Fig. 5.4e). In contrast to qc/nc, the mean raindrop mass qr/nr is not as much

and as systematically influenced by CCN perturbations above 4km (Fig. 5.4f). Moderate CCN

concentrations appear to yield the largest qr/nr, whereas the highest CCN concentrations produce

the lowest qr/nr. Below 4km, qr/nr is larger for higher CCN concentrations. This could be because

with fewer raindrops, there is less competition for additional droplets, allowing individual raindrops

to grow larger through collision-coalescence processes.

The increase in CCN concentration also affects qs (Fig. 5.5a,d) and qs,t (Fig. 5.5g). In both

perspectives, the maxima of the subsets with moderate and high CCN concentrations increase and

are almost identical. Their increase is related to the higher depositional growth rate of snow QSDEP

(Fig. 5.5b,e), which may be an indication of a stronger WBF process. As more water vapor deposits

on snow, more cloud droplets potentially need to evaporate to provide this water vapor and remove

subsaturation w.r.t. liquid. This increased evaporation of cloud water is indicated by the stronger

negative heating rate of the second saturation adjustment (SATAD2) for higher CCN concentrations

between 4km and 5.5km and between 265K and 250K (Fig. 5.5c,d). More evaporation can occur

because higher CCN concentrations lead to more cloud water.

Furthermore, the mass and number concentrations of graupel are reduced for higher CCN con-

centrations. For qg this occurs between 2km and 5km (Fig. 5.6a) and between 263K and 273K

(Fig. 5.6c), whereas ng is reduced between 2km and 5km (Fig. 5.6b). However, this relation is not

as systematic as it is with qc and nc, which is indicated by the overlap of the standard deviations
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5 Qualitative Parameter Impacts

Figure 5.5: As Fig. 5.3 but for (a), (d) snow mass concentration (qs, in gkg−1), (b), (e) diabatic heating
rate of depositional growth of snow (QSDEP, in Kh−1), (c), (f) diabatic heating rate of the
second saturation adjustment (SATAD2, in Kh−1), (d) vertically integrated raindrop number
concentration (nr,t, in m−2), and (g) vertically integrated snow mass concentration (qs,t, in
kgm−2).

(shading) of the subsets. Nevertheless, the overall decrease of qg and ng is reflected in qg,t and

ng,t (Fig. 5.6d,e). It occurs due to a decrease in the riming process QXRIM between 1km and

5km (Fig. 5.6g) and between 260K and 275K (Fig. 5.6h). Figure 5.6h shows that for higher

CCN concentrations, the maximum of QXRIM occurs at slightly lower temperatures. The riming

efficiency, like the efficiency of any other collision process, depends on the number and size of

the collision partners. In this case, the smaller mean cloud droplet size dominates the higher nc

leading to fewer collisions of cloud droplets with ice, snow, and graupel, resulting in the observed

reduction in riming. That way, less graupel is formed, and the one that is formed is, in fact, slightly

larger but cannot grow as much through additional collisions to increase qg.

For ice and snow, no substantial sensitivities are observed to changes in CCN concentration. Yet,

liquid fraction (Fig. 5.7a,b), vertically integrated total hydrometeor mass concentration qt,t (Fig.

5.7d), and vertically integrated total number concentration nt,t (Fig. 5.7e) are clearly influenced by

varying CCN concentrations. The increases in the liquid fraction and qt,t in the lower mixed-phase

region are caused by a strong increase in qc,t with increasing CCN concentration (Fig. 5.3g),

whereas the liquid fraction is also increased to a lesser extent by the decrease in qg,t (Fig. 5.6d).

36



5.2 Cloud Condensation Nucleus Impacts

Figure 5.6: As Fig. 5.3 but for (a), (d) graupel mass concentration (qg, in gkg−1), (b) graupel number
concentration (ng, in kg−1), (d) vertically integrated graupel mass concentration (qg,t, in kgm−2),
(e) vertically integrated graupel number concentration (ng,t, in m−2), (f) mean graupel mass
(qg/ng, in kg), and (g), (h) diabatic heating rate of riming (QXRIM, in Kh−1).

On the other hand, reduced qg,t negatively affects qt,t, but this influence is so small since qc,t is one

order of magnitude larger than qg,t. In the same way, nt,t is predominantly influenced by nc,t (Fig.

5.3h) instead of ng,t (Fig. 5.6e). Thus, in general, increasing the CCN concentration increases the

vertically integrated total hydrometeor number and mass concentration while adding more liquid

water to the lower part of the mixed-phase region. In addition, the net shortwave radiation at TOA

SW is reduced between 2◦ and 5◦ rel. lon. for moderate and high CCN concentrations (Fig. 5.7c).

This may occur due to more reflection of incoming shortwave solar radiation caused by a higher

cloud optical depth related to the increase in nt,t.

To sum up, the main impacts of increased CCN concentrations on the WCB cloud structure are

a strong increase in qc and nc at all levels, which is consistent in the Eulerian and Lagrangian

perspectives, as well as an increase in qc,t and nc,t for all relative longitudes of the warm sector.

Furthermore, a reduction in the mean cloud droplet size is observed, and in connection with that,

a reduction in the maxima of qr, qr,t, qg, qg,t, ng,t and ng. In contrast, the maximum of qs and qs,t

increases probably due to a stronger WBF process. Besides, the lower levels of the mixed-phase

region contain more liquid water. Overall, the vertically integrated total hydrometeor mass and
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5 Qualitative Parameter Impacts

Figure 5.7: As Fig. 5.3 but for (a), (b) liquid fraction, (c) net shortwave radiation at TOA (SW, in Wm−2),
(d) vertically integrated total hydrometeor mass concentration (qt,t, in kgm−2), and (e) vertically
integrated total hydrometeor number concentration (nt,t, in m−2).

number concentration are increased in the warm sector, and the net shortwave radiation at TOA is

reduced between 2◦ and 5◦ rel. lon.

5.3 Ice Nucleating Particle Impacts

The influence of INP perturbations on the WCB cloud structure is relatively small, especially

compared to CCN perturbations. INP concentrations mainly affect the ice number concentration

and, to a lesser extent, the ice mass concentration. For higher INP concentrations, the maximum

of the median qi increases slightly and its altitude shifts a few hundred meters downward (Fig.

5.8a). In the Lagrangian perspective, the subset maxima of the median qi equal the subset maxima

of the mean qi (Fig. 5.8b). Besides, the maxima also increase consistently and occur at higher

temperatures for high INP concentrations. However, the subset differences are small and qi,t is only

slightly reduced near the cold front for lower INP concentrations (Fig. 5.8c).

Contrary to expectations arising from CCN impacts, more INPs result in lower ni at all levels

and temperatures (Fig. 5.8d,e), as well as lower ni,t throughout the warm sector (Fig. 5.8f). To

investigate this further, the diabatic heating rates of freezing of rain QRFRZ, immersion freezing

IMFRZ, and deposition nucleation DEPNUC are analyzed because these processes are directly

perturbed by the scaling factor fINP to account for different INP concentrations. The latter two are

included in QIHOMHET as heterogeneous ice nucleation (Fig. 5.8g,h). Generally, IMFRZ can

occur at temperatures below the threshold of 261K (green line) and DEPNUC can be active between

220K and 253K (orange lines). As expected, larger INPs concentrations systematically increase
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IMFRZ and DEPNUC. Figure 5.8h shows this particularly well in the Lagrangian perspective in

the temperature range 240− 261K. Homogeneous freezing of solution droplets is also part of

QIHOMHET. It is parameterized as homogeneous ice nucleation of water vapor HOMNUC and sets

in at temperatures lower than 235K (black line), marking the beginning of a competition between

DEPNUC and HOMNUC for water vapor. HOMNUC is lower for higher INP concentrations. This

is probably due to the increase in DEPNUC at lower levels, which removes more water vapor, so

that there is less water vapor available for HOMNUC at higher levels.

On the other hand, Fig. 5.8j shows that the maximum of the mean QRFRZ is larger for higher

INP concentrations and occurs at higher temperatures, as expected. Besides, for lower INP

concentrations, the entire vertical profile appears to be shifted to lower temperatures. This shift

is also discernible in the Eulerian perspective (Fig. 5.8i). In addition, after the maximum mean

QRFRZ is reached in the subset with the most INPs, QRFRZ becomes larger for lower INP

concentrations. However, in both perspectives, the median of the subset with the highest INP

concentrations is much smaller than the mean at all levels, suggesting the influence of outliers.

Therefore, it is reasonable to assume that high INP concentrations do not have a large impact

on QRFRZ. Instead, moderate INP concentrations appear to dominate QRFRZ for temperatures

between 250K and 260K and low INP concentrations between 235K and 250K. This contributes

to the high ni for lower INP concentrations between 235K and 250K. Nevertheless, HOMNUC is

several orders of magnitude larger than QRFRZ, IMFRZ, and DEPNUC, which leads HOMNUC

to dominate ice nucleation. This, along with the fact that ice particles formed by HOMNUC have

smaller mean sizes, causes ni to be highest for low INP concentrations.

In summary, increasing the INP concentration directly influences ice nucleation through an increase

in immersion freezing and deposition nucleation, which is visible in the Eulerian and Lagrangian

perspectives. However, the ice number concentration increases with lower INP concentrations

because deposition nucleation is reduced, which leads to a higher availability of water vapor for

homogeneous ice nucleation of water vapor, which, in turn, forms on average smaller ice particles.

5.4 Capacitance Impacts

The perturbation of the capacitance has several consequences for the ice phase of the cloud band.

When reducing CAP of ice and snow, the graupel mass concentration increases systematically

at all levels in the Lagrangian and Eulerian perspective, and the maximum qg is slightly shifted

above the melting level (Fig. 5.9a,b). Therefore, qg,t is systematically higher as well throughout

the warm sector (Fig. 5.9c). These increases are due to an increase in the depositional growth

rate of graupel QGDEP (Fig. 5.9d,g) as the depositional growth rate of ice QIDEP (Fig. 5.9c,h)

and snow QSDEP (Fig. 5.9f,i) are lowered by the reduction of CAP. Through the reduction of

CAP, the rate of depletion of water vapor is reduced, leading to higher availability of water vapor

for the benefit of graupel growth. The increased riming rate may contribute to an increase in qg

as well (Fig. 5.10c,d). Note that the maxima of QGDEP, QIDEP, and QSDEP are also shifted

upward when CAP of ice and snow is reduced. The consistent increase in QGDEP is much more
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Figure 5.8: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) ice nucleating particle
(INP) perturbations. (a), (b) Ice mass concentration (qi, in gkg−1), (c) vertically integrated
ice mass concentration (qi,t, in kgm−2), (d), (e) ice number concentraion (ni, in gkg−1), (f)

vertically integrated ice number concentration (ni,t, in m−2), and (g), (h) diabatic heating rate
of homogeneous and heterogeneous ice nucleation (QIHOMHET, in Kh−1). For temperatures
below 261K immersion freezing (IMFRZ; green) occurs, deposition nucleation (DEPNUC;
orange) occurs between 220K and 253K, and homogeneous ice nucleation of water vapor
(HOMNUC) occurs below 235K (upper black line). (i), (j) Diabatic heating rate of freezing of
rain (QRFRZ, in Kh−1).
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Figure 5.9: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) capacitance (CAP) perturba-
tions. (a), (b) Graupel mass concentration (qg, in gkg−1), (c) vertically integrated graupel mass
concentration (qi,t, in kgm−2), and diabatic heating rate of depositional growth of (d), (g) graupel
(QGDEP, in Kh−1), (e), (h) ice (QIDEP, in Kh−1), and (f), (i) snow (QSDEP, in Kh−1).

pronounced in the Eulerian perspective, whereas the decreases in QIDEP and QSDEP are more

pronounced in the Lagrangian perspective. These differences can occur because the perspectives

deal with differently post-processed data: the front relative composites are an average of multiple

temporal snapshots of the WCB, which are also spatially averaged, whereas the trajectory data

are averaged over all T -binned trajectories. This distinction becomes apparent when comparing

QGDEP and QSDEP in the Eulerian perspective to their corresponding profiles in the Lagrangian

perspective. In the Eulerian perspective, both QGDEP and QSDEP are negative at lower levels,

which means that sublimation of graupel and snow occurs. This can be the case at the edges of the

cloud, where graupel and snow can fall and sublimate at higher temperatures. However, this is not

shown in the Lagrangian perspective as no sublimation occurs during ascent.

Furthermore, the number concentration of graupel also increases consistently at all levels and its

maximum is slightly shifted upward with decreasing CAP of ice and snow (Fig. 5.10a), causing ng,t

to increase as well (Fig. 5.10b). This can be attributed to a higher riming rate (Fig. 5.10c,d), which

in turn is probably caused by the greater availability of ice and snow particles (Fig. 5.11d,e,j,k). In

both perspectives, the consistently higher ni and ns may originate from increased HOMNUC (Fig.
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Figure 5.10: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) capacitance (CAP) perturba-
tions. (a) Graupel number concentration (ng, in kg−1), (b) vertically integrated graupel number
concentration (ng,t, in m−2), and (c), (d) diabatic heating rate of riming (QXRIM, in Kh−1).

5.12a,b) as more water vapor is available and transported upward when QIDEP and QSDEP are

reduced. In addition, the increased homogeneous freezing of cloud droplets QCFRZ (Fig. 5.12c,d)

also contributes to higher ni and ns, but it is 2-3 orders of magnitude smaller than HOMNUC. Its

increase may be connected to a reduction in the WBF process as less QSDEP occurs when CAP

is reduced. As a result, more cloud water is left to freeze instead of evaporating and depositing

onto snow. Note that HOMNUC leads to smaller mean sizes of ice and snow compared to the other

ice nucleation processes, and qi/ni and qs/ns are generally smaller for lower CAP (Fig. 5.13e,f).

This would speak for a reduction in riming, however, the higher ni and ns prevail, resulting in an

increase in QXRIM in the Eulerian perspective. In contrast, the Lagrangian perspective only shows

an increase in QXRIM at temperatures lower than 270K, and the differences between the subsets

appear to be quite small.

Another notable result is the upward shift of the ice mass concentration (Fig. 5.11a,b) for lower

CAP of ice and snow. This is unexpected since the lowered CAP reduces QIDEP between 3km and

7km or between 270K and 250K and above that, QIDEP is not shifted upward as it is no longer

affected by CAP perturbations (Fig. 5.9e,h). It occurs, however, because more ice is produced by

HOMNUC (Fig. 5.12a,b), which takes place at higher altitudes compared to other ice nucleation

processes. In the Eulerian perspective, the maximum of qi even increases, leading to a small

increase in qi,t between 1◦ and 5◦ rel. lon. Only below 6km can a small decrease of qi be observed.

This reduction is more pronounced in the Lagrangian perspectivefor T > 250K. As stated above,

ni increases so much that the total ice mass has to increase as well, although the individual ice

particles are smaller on average. Similarly to ice, the snow mass concentration is also shifted
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Figure 5.11: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) capacitance (CAP) per-
turbations. (a), (b) Ice mass concentration (qi, in gkg−1), (c) vertically integrated ice mass
concentration (qi,t, in kgm−2), (d), (e) ice number concentraion (ni, in gkg−1), (f) vertically
integrated ice number concentration (ni,t, in m−2), and (g-l) as (a-f) but for snow.
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Figure 5.12: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) capacitance (CAP) per-
turbations. (a), (b) Diabatic heating rate of homogeneous and heterogeneous ice nucleation
(QIHOMHET, in Kh−1). For temperatures below 261K immersion freezing (IMFRZ; green)
occurs, deposition nucleation (DEPNUC; orange) occurs between 220K and 253K, and homo-
geneous ice nucleation of water vapor (HOMNUC) occurs below 235K (upper black line). (c),
(d) Diabatic heating rate of freezing of cloud droplets (QCFRZ, in Kh−1). Freezing of cloud
droplets occurs for temperatures below 243K (blue line).

upward, and the maximum qs is minimally increased for low CAP in the Eulerian perspective (Fig.

5.11c). However, qs,t seems to be unaffected (Fig. 5.11i). In the Lagrangian perspective, only a

shift of qs to lower temperatures is observed, and the maximum of qs actually decreases a bit for

lower CAP (Fig. 5.11h), which is expected based on the decrease in QSDEP (Fig. 5.9i). Again,

similar to ice, the upward shift of qs is related to the increase in ns.

Due to the impacts of CAP on upper-tropospheric cloud characteristics, the radiation balance at

TOA is influenced by CAP. Analysis of CAP perturbations reveals a reduction in absolute net

longwave radiation at TOA LW in the warm sector for low CAP of ice and snow (Fig. 5.13a). This

means that the outgoing longwave radiation (OLR) emitted to space is reduced. The reason for

this is probably the increase in qi near the cloud top (Fig. 5.11a,b) and the increase in qi,t (Fig.

5.11c), which both contribute to an increase in the absorption of OLR emitted from below the

cloud. Besides, more ice crystals occur at lower temperatures near the cloud top (Fig. 5.11d,e),

leading to a reduction in longwave radiation emission, according to the Stefan-Boltzmann law, and

subsequently a reduction in OLR. The net shortwave radiation at TOA SW, on the other hand, is

minimally reduced for lower CAP between 0 and 1◦ rel. lon. (Fig. 5.13b). This may result from

the higher reflectivity of the cloud due to its higher optical depth, which in turn is caused by higher

ni,t, ns,t (Fig. 5.11f,l). Shortwave heating rates RADSW (Fig. 5.13b) are slightly increased for low

CAP in the vicinity of the ni maximum. Moreover, longwave cooling rates RADLW (Fig. 5.13c)

are increased in the same region due to more ice particles.
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Figure 5.13: As Fig. 5.3 but for low (purple), moderate (blue), and high (green) capacitance (CAP) perturba-
tions. (a) Net longwave radiation at TOA (LW, in Wm−2), (b) net shortwave radiation at TOA
(SW, in Wm−2), (c) mean ice particle mass (qi/ni, in kg), (d) longwave cooling rate (RADLW,
in Kh−1), (e) shortwave heating rate (RADSW, in Kh−1), and (f) mean snow particle mass
(qs/ns, in kg).

To sum up, decreasing CAP of ice and snow leads to a systematically higher graupel mass and

number concentration that is consistent at all levels in the Eulerian and Lagrangian perspectives.

It is caused by the consistent increase in water vapor deposition onto graupel as a consequence

of a reduction of QSDEP and QIDEP as well as an increase in riming. In addition, the number

concentrations of ice and snow are higher for lower CAP due to an increase in homogeneous ice

nucleation of water vapor and homogeneous freezing of cloud droplets. Lastly, the net longwave

radiation at TOA is reduced when CAP decreases as the increased mass concentration of ice reduces

OLR. However, the changes in the net longwave radiation at TOA are overall small.

5.5 Sea Surface Temperature and Maximum

Supersaturation Impacts

Perturbations of the sea surface temperature and maximum supersaturation with respect to liquid

exhibit no substantial systematic influence on the WCB cloud structure and are therefore not

discussed in detail. While their overall impact is limited compared to other parameter perturbations,

a slight reduction in net shortwave radiation at TOA is noticeable east of 4◦ rel. lon. for higher

SSTs (Fig. 5.14a). This may result from an increase in cloud optical depth, driven by higher ni,t and

ns,t values (Fig. 5.14c,d) and smaller mean sizes of ice particles (Fig. 5.14b). However, the overlap

of the standard deviations (shading) of ni,t and ns,t indicates that there is no systematic impact of

SST perturbations on ni,t and ns,t. In addition, qi,t and qs,t do not exhibit a substantial systematic

influence of SST perturbations either and are therefore not shown.
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Figure 5.14: As Fig. 5.3 but for low (purple), moderate (magenta), and high (orange) sea surface temperature
(SST) perturbations. (a) Net songwave radiation at TOA (SW, in Wm−2), (b) mean ice particle
mass (qi/ni, in kg), and vertically integrated number concentration of (c) ice (ni,t, in m−2) and
(d) snow (ns,t)).
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Contributions

To determine the contribution of each parameter perturbation to the uncertainty of the WCB

cloud structure, random forest regression models (Section 3.4.2) are built for hydrometeor mass

concentrations, number concentrations, and diabatic heating rates. These RFR models are used to

perform a variance decomposition (Section 3.5) of those variables with their respective RFR model

predictions. Table A.2 shows the different mean altitudes, temperatures, and relative longitudes

for which RFR models are trained using the training dataset averaged over specified ranges for the

mean vertical profiles of the cross-section composites, the T -binned trajectory data, and the front

relative cross-section composites, respectively. The purpose of the RFR models, based on height

(Eulerian perspective) and temperature (Lagrangian perspective), is to capture the temperature

regions where distinct ice nucleation processes occur, i.e., freezing of rain (T < 273K), immersion

freezing (T < 261K), deposition nucleation (T < 253K), freezing of cloud droplets (T < 243K)

and homogeneous ice nucleation of water vapor (T < 235K). Those regions are chosen not only

because they allow for analysis of ice nucleation processes but also because they primarily cover

the mixed phase. In the mixed-phase region, most hydrometeors reach their maximum in terms

of mass and number concentration, and are overall most influenced by parameter perturbations.

Generally, there are two dominant parameters, CCN and CAP, that are highly relevant for the

variance in the cloud properties. In the following, the parameter contributions to the uncertainty of

liquid hydrometeors (Section 6.1), frozen hydrometeors (Section 6.2), and net radiation (Section

6.3) are analyzed in detail.

6.1 Liquid Hydrometeors

The sensitivity index Si (3.2) shown in Fig. 6.1 describes the contributions of the perturbed parameter

i to the variance in liquid hydrometeor mass concentrations qx in the Eulerian perspective (first

column) and in the Lagrangian perspective (second column), as well as vertically integrated liquid

hydrometeor mass concentrations qx,t (third column). The sensitivity index is based on variance

decomposition performed with RFR model predictions and is only shown if the altitude and

temperature regions are suitable for the individual variables. In addition, the R2 scores of the

RFR models need to be ≥ 0.5. As expected from the analysis of the CCN impacts (Section 5.2),

the (vertically integrated) cloud water and rain mass concentrations strongly depend on the CCN

concentration, which is indicated by the high sensitivity index SCCN (Fig. 6.1a-f). The same applies

to nc, nc,t, nr, nr,t, and QCNUC (Fig. 6.2). Especially for the lowest level, which starts at 2.4km and
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Figure 6.1: Sensitivity index Si of sea surface temperature (SST; purple), cloud condensation nucleus
concentration (CCN; blue), ice nucleating particle concentration (INP; green), capacitance (CAP;
orange), and maximum supersaturation with respect to liquid (SAT; red) perturbations, and
interactions between these perturbed parameters (INT; grey). The sensitivity index is based on
variance decomposition for vertical profiles of liquid hydrometeor mass concentration (qx; first
and second column) as well as for vertically integrated liquid hydrometeor mass concentration
(qx,t) as function of distance to the cold front (at rel. lon. 0-8◦; third column) for (a-c) cloud
water and (d-f) rain. The variance decomposition is based on random forest regression (RFR)
models and performed for averages over different altitude ranges (first column) in the Eulerian
perspective, temperature ranges (second column) in the Lagrangian perspective, and relative
longitudes (third column) in the Eulerian perspective, as listed in Table A.2. The respective
RFR model hyperparameters and scores are listed in Table A.3-A.5. Note that the Lagrangian
perspective covers mainly the mixed phase for better comparison between all hydrometeor types.

275K, almost 100% of the variance in QCNUC, nc, and qc is explained by CCN perturbations. The

variance decomposition of QCNUC also shows minor influences of CAP at higher levels. Besides,

CAP impacts are visible in the upper levels of qc and nc as well. This is an indication of the WBF

process occurring in the mixed-phase region. It is driven by the ice phase, i.e., QSDEP (Fig. 6.3c,d),

which is controlled by CAP and causes subsaturation w.r.t. liquid, which is then removed by the

second saturation adjustment by removing cloud water. Throughout the warm sector, qc,t depends

strongly on the CCN concentration, and nc,t exhibits almost exclusively a dependence on the CCN

concentration. Similarly, CCN concentrations also contribute the most to the variance of qr,t (Fig.

6.1f) and nr,t (Fig. 6.2f), which Fig. 5.4d,e showed above. In contrast to qc,t and nc,t, qr,t and nr,t

are more influenced by interactions of the parameter perturbation. In particular, SINT amounts on

average to roughly 20% throughout the warm sector.

6.2 Frozen Hydrometeors

Contrary to expectations arising from Fig. 5.8d,e, the impact of varying INP concentrations on ni

is only barely visible at the levels with the lowest temperatures (Fig. 6.5b) and is not discernible
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Figure 6.2: As Fig. 6.1 but for (a), (b), (d), (e) liquid hydrometeor number concentration (nx), (c), (f)

vertically integrated liquid hydrometeor number concentration (nx,t), and (g), (h) diabatic heating
rate of cloud droplet activation (QCNUC).

in the Eulerian perspective of ni and ni,t (Fig. 6.5a,c). In the temperature ranges where IMFRZ

and DEPNUC set in, a slight dependence of qi on the INP concentration is noticeable (Fig. 6.4b).

Again, this is not reflected in the Eulerian perspective (Fig. 6.4a,c), which is consistent with the

expected low impact of INP concentrations on qi and qi,t, based on Fig. 5.8a-c. Instead, CAP is the

most dominant contributor to the variance of ni and ni,t at all levels and to qi and qi,t at most levels,

whereby qi,t is also strongly influenced by SST (up to 80%) and SAT (up to 20%) perturbations.

The SST influence appears to be mainly at the "edges" of the cloud, i.e., between 0◦ and 2◦ rel.

lon. and between 5◦ and 8◦ rel. lon. Especially, the high SST influence of 80% between 0◦ and 1◦

rel. lon. is unexpected, as no substantial impact of SST perturbations on qi,t is found in Section

5.5. In addition, qi,t is generally quite insensitive to all parameter perturbations, particularly SAT,

thus the RFR models probably try to find any relation between the parameters and qi,t, which is

not necessarily the most reasonable. Other than that, the variance decomposition of QIHOMHET

shows a large influence of INP concentrations, as expected, in the temperature ranges where IMFRZ

and DEPNUC are active (Fig. 6.6b). In the Eulerian perspective, QIHOMHET is also influenced

by INP concentrations between 6.3km and 7km, where IMFRZ and DEPNUC occur. For these

levels, the variance of ni should depend to some extent on the INP concentration, but, as already

mentioned, the influence of CAP dominates.
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Figure 6.3: As Fig. 6.1 but for diabatic heating rate of depositional growth of (a), (b) ice (QIDEP), (c), (d)

snow (QSDEP), and (e), (f) graupel (QGDEP), as well as (g), (h) diabatic heating rate of riming
(QXRIM).
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Figure 6.4: As Fig. 6.1 but for frozen hydrometeor mass concentrations: (a-c) ice, (d-f) snow, and (g-i)

graupel.

Besides, variance decomposition identifies a dependence of QRFRZ on INP concentrations with

Sinp = 0.2 where freezing of rain is supposed to begin (Fig. 6.6f). In the Eulerian perspective, no

sensitivity indices can be determined for the lowest level (Fig. 6.6e) because the R2 score of the

RFR model is zero. However, between 5km and 5.5km, a small influence of INP concentration

is visible. In general, the variance of QRFRZ is mostly controlled by CCN concentrations, which

may be related to the dependence of QRFRZ on the mean raindrop mass that is influenced by the

CCN concentration as depicted in Fig. 5.4f. However, ni seems not to be substantially influenced

by CCN perturbations because, as already stated, CAP perturbations are identified as the dominant

influence on ni.

Ice nucleation through homogeneous freezing of cloud droplets is most strongly influenced by

CAP (roughly 60%) and CCN concentration contributes 20% to the uncertainty of QCFRZ be-

tween 7.9km and 8.4km (Fig. 6.6c). In the altitude range above, the contribution of CCN is

almost doubled, whereas the contribution of CAP is approximately reduced by 50%. Generally,

it is reasonable that the amount of CCN affects the freezing rate of cloud droplets, since CCN

concentrations govern nc and qc. In contrast, the influence of CAP, which is even more pronounced

in the Lagrangian perspective (Fig. 6.6d), is indirect because QCFRZ does not depend on CAP.

It probably relates to the WBF process. When CAP of snow is reduced, QSDEP decreases as
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6 Quantification of Uncertainty Contributions

Figure 6.5: As Fig. 6.1 but for frozen hydrometeor number concentrations: (a-c) ice, (d-f) snow, and (g-i)

graupel.

well (Fig. 5.9f,i). As a consequence, more cloud water can potentially remain in the liquid phase

instead of evaporating and depositing onto snow. This additional cloud water can then rise to higher

altitudes where it freezes, contributing to QCFRZ.

The variance of qi is dominated by CAP perturbations (Fig. 6.4a,c), as previously mentioned. This

is in accordance with the expected dependence of QIDEP on CAP (Fig. 6.3a,b). Interestingly, SCCN

is quite high for the upper levels of QIDEP in the Lagrangian perspective.

Since ni and ni,t depend primarily on CAP, the same applies to ns and ns,t (Fig. 6.5d-f) as snow

forms from ice aggregation and water vapor deposition onto ice. In fact, the (vertically integrated)

number concentration of snow depends even more strongly on CAP, with SCAP > 0.9 at all levels,

than the (vertically integrated) number concentration of ice. This dependence is in agreement

with Fig. 5.11j-l. In contrast, the variance decomposition of qs reveals that it is not consistently

influenced by CAP at all levels (Fig. 6.4d,e). In the Lagrangian perspective between 263K and

255K, a strong dependence on the CCN concentration is discernible, which is in agreement with

the T -binned profile of qs (Fig. 5.5d). To a lesser extent, the influence of CCN is also visible in

the Eulerian perspective at the corresponding level between 5km and 5.5km, which again agrees

with Fig. 5.5a. At this level in both perspectives, QSDEP depends the most on CCN concentrations

(Fig. 6.3c,d), which may explain the contribution of CCN to the variance in qs. Aside from that,
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6.2 Frozen Hydrometeors

Figure 6.6: As Fig. 6.1 but for diabatic heating rate of (a), (b) homogeneous and heterogeneous ice nucle-
ation (QIHOMHET), (c), (d) freezing of cloud droplets (QCFRZ), and (e), (f) freezing of rain
(QRFRZ).

SCAP of QSDEP is only dominant at the lowest level in both perspectives and between 6.3km and

7km in the Eulerian perspective, which is unexpected since CAP perturbations directly influence

the depositional growth of snow. Besides, SCCN dominates the upper levels in the Lagrangian

perspective. The considerable dominance of SCCN in both perspectives is probably linked to the

WBF process. Based solely on the variance decomposition of QSDEP, the variance of qs should

be more strongly influenced by CCN perturbations. Note that the large influence of the SST on

QSDEP between 7.9km and 8.4km is not necessarily reasonable, since in that altitude range,

QSDEP is rather insensitive to all parameter perturbations and varies minimally. In line with the

small variability shown in Fig. 5.11i, the variance of qs,t is barely determined by CAP (Fig. 6.4f).

Instead, CCN concentrations are dominant throughout the warm sector, which agrees with Fig.

5.5g, hinting at a stronger WBF process. Between 0◦ and 1◦ rel. lon., SST perturbations make up

50% of the variance. Only between 7◦ and 8◦ rel. lon. is the influence of CAP the largest. These

unexpected contributions to the variance of qs,t arise probably because qs,t does not exhibit a large

variance to begin with (Fig. 5.11i), as is the case for qi,t.
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6 Quantification of Uncertainty Contributions

Figure 6.7: As Fig. 6.1 but for (a) net longwave radiation at TOA (LW) and (b) net shortwave radiation at
TOA (SW).

Regarding graupel mass and number concentrations, strong influences of CAP and lesser ones

of CCN concentrations are expected based on the analysis in Sections 5.4 and 5.2. Variance

decomposition, however, reveals that qg and qg,t (Fig. 6.4g-i), as well as ng and ng,t (Fig. 6.5g-i),

primarily depend on CAP at all levels. CCN concentrations appear to have only a minor impact

on ng at the lowest level and on qg at the lowest level of the Lagrangian perspective whereas

the impacts on qc,t and ng,t are spread across the warm sector. Aside from that, graupel is highly

sensitive to CAP. Nevertheless, the variance of QXRIM almost depends completely on the CCN

concentration at the lowest level (Fig. 6.3g,h). However, this seems to be overshadowed by the

distinct dependence of QGDEP on CAP (Fig. 6.3e,f), leading to the high SCAP of qg and qg,t.

6.3 Net Radiation

Figure 6.7a shows that the variance of the net longwave radiation at TOA depends almost every-

where in the warm sector for more than 90% on CAP. This is in accordance with the expectations

based on the CAP impact seen in Fig. 5.13a. In contrast, the net shortwave radiation at TOA (Fig.

6.7b) is mainly influenced by CAP directly at the cold front. Further east up to 5◦ rel. lon., CCN

concentrations dominate and even further east between 5◦ and 8◦ rel. lon., SST perturbations seem

to be of importance. The regions where the influences of CCN and SST perturbations are relevant

coincide with the composites of SW, shown in Fig. 5.7c and 5.14a. Note that for 1−3◦ rel. lon.,

the R2 scores of the RFR models are below 0.5 and therefore the sensitivity indices are not shown.

Short Summary

The liquid hydrometeors of the cloud are mainly influenced by the CCN perturbations, whereas

the frozen hydrometeors are dominated by CAP perturbations. The net longwave radiation at TOA

is also determined by CAP, and the net shortwave radiation at TOA is influenced by CAP, CCN

concentration, and SST.
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7 Discussion

The analysis of the PPE simulations of the WCB case study provides new insights on how parameter

uncertainties influence the cloud structure of a WCB. In the following, the main results are compared

with the existing literature and assessed with respect to their implications for NWP. For this, the

main focus lies on the impacts of CCN and CAP perturbations as they are the most relevant. Note

that this thesis focuses only on source terms regarding the cloud structure. However, sink terms are

also relevant. Furthermore, limitations of this thesis are discussed.

There are few previous studies on how CCN concentrations influence the cloud structure of a WCB.

However, several studies (Tao et al., 2012; Schneider et al., 2019; Barthlott et al., 2022; Marinescu

et al., 2021) have examined the importance of CCNs in the context of convective clouds. The

systematic increase in cloud water mass concentration with increasing CCN concentration observed

in this study and the related decrease in rain mass concentration are in agreement with the findings

of Barthlott et al. (2022). They attributed the decrease in rain mass concentration to a decrease in

the autoconversion of cloud water to rain as the cloud droplets are smaller, as found in this study.

In contrast, Schneider et al. (2019) pointed out that for convective clouds, the influence of CCN

concentration on precipitation is complex and case dependent. They found that the precipitation

response depends on updraft intensity and whether warm- or cold-rain processes dominate. This

implies that for other WCB cases, an increase in the CCN concentration may not necessarily lead

to a reduction in the rain mass concentration. Furthermore, Barthlott et al. (2022) found a decrease

in graupel mass concentration with increasing CCN concentrations due to a reduction in riming,

which is consistent with our findings. Moreover, they reported an increase in vapor deposition in

general and related it to the WBF process consuming more water vapor. We also find an increase

in the diabatic heating rate of vapor deposition onto snow with increasing CCN concentrations.

Since this study shows that the uncertainty in the CCN concentration has a substantial impact on

the liquid hydrometeors of the WCB cloud, incorrect model representation may be prone to errors

in precipitation forecasts, and CCNs influence surface precipitation structure and intensity (Oertel

et al., 2025b).

In addition to that, the variance decomposition highlights the importance of uncertainties in CCN

concentrations for the net shortwave radiation at TOA at around 4◦ rel. lon. This could be due to a

higher cloud optical depth (Barthlott et al., 2022) caused by the increase in the cloud droplet number

concentration and the shift to smaller mean cloud droplet sizes when the CCN concentration is

increased. The observed influence of SST on the net shortwave radiation at TOA east of 4◦ rel.

lon. may be related to increased ni,t and ns,t and decreased mean ice particle sizes for higher SSTs.

When there are more snow and ice particles and the mean ice particle sizes are also smaller near the
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cloud top, the cloud becomes optically thicker, i.e., the cloud optical depth increases. Consequently,

more shortwave radiation is reflected at the cloud top back to space, and the net shortwave radiation

at TOA decreases. The increases in ni,t may be due to secondary ice production through the Hallett-

Mossop process (Lamb and Verlinde, 2011). It is active between −3 ◦C and −8 ◦C and describes

an increase in ice number concentration through ice splintering during riming. In this temperature

range, an increase in the riming rate with increased SST is discernible (Fig. A.1a,b), as well as

an increase in ice number concentration (Fig. A.1c,d). However, the variance decomposition of

vertically integrated ice and snow number concentrations does not show a significant contribution of

SST perturbations. Thus, SST perturbations are not as important for ni,t and ns,t. Another possible

explanation for the impact of SST on the net shortwave radiation at TOA may be a poleward

extension of the WCB inflow region for higher SST (Oertel et al., 2025b). Closer to the pole, the

incoming solar radiation is generally reduced, leading to a smaller net shortwave radiation, as the

cloud band is potentially shifted further north for higher SST.

Furthermore, we find that increasing the INP concentration decreases the ice number concentration

in the mixed and ice phase. This disagrees with Lee et al. (2024), who investigated the impact

of INPs on stratiform mixed-phase clouds. Li et al. (2013) also analyzed mixed-phase clouds

and found that increasing the INP concentration initially decreases the ice number concentration

as heterogeneous and homogeneous freezing compete. However, when the number of INPs is

increased further, the ice number concentration increases again, which is not observed in our study.

They attributed this increase to heterogeneous freezing dominating homogeneous freezing. We also

observe that the heterogeneous ice nucleation rates are higher for higher INP concentrations and that

the homogeneous ice nucleation rate of water vapor is lower for higher INP concentrations. Despite

that, HOMNUC is crucial in our study for the ice number concentration, as it is a few orders of

magnitude larger than the other ice nucleation processes. However, variance decomposition shows

that the INP perturbations are only relevant for the diabatic heating rates of immersion freezing

and deposition nucleation. In this thesis, the influence of INP perturbations on the ice number

concentration is negligible compared to CAP perturbations as they predominantly determine the

ice number concentration through HOMNUC.

In line with expectations based on Eq. (2.7) and Westbrook and Heymsfield (2011), reducing CAP

of ice and snow leads to a decrease in their depositional growth rates. However, despite the reduced

deposition onto ice and a smaller mean ice particle mass below 12km, the maxima of qi,t and qi in

the Eulerian perspective increase slightly at lower CAPs. This is likely due to significant increases

in ni,t and ni, driven by enhanced HOMNUC activity due to increased water vapor availability.

In contrast, snow mass concentrations respond differently: the maximum qs in the Lagrangian

perspective decreases slightly with lower CAPs, while qs,t remains mostly unaffected. The relatively

small overall decrease in snow mass is probably explained by the substantial increases in ns,t and

ns, possibly resulting from intensified ice aggregation linked to higher ice number concentrations.

In general, the variance decomposition confirms that number concentrations of ice and snow are

predominantly influenced by uncertainties in CAP. This aligns with the findings of Johnson et al.

(2015), who studied the uncertainty in convective cloud microphysics. They also found that the

shape of ice crystals, considered by the capacitance, determines the uncertainties in the number
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and mass of ice crystals. In addition to that, they found that immersion freezing and deposition

nucleation rates, as well as aerosol concentrations, also contribute to that. All of these contributors

were independently perturbed as they do not influence each other in their study. In contrast,

IMFRZ and DEPNUC are equally perturbed in our study by varying the INP concentration, but this

influence is only minimally represented in the variance decomposition of the ice number and mass

concentration, where instead CAP dominates. However, for qs,t, and partly qs, large influences of

the CCN concentration are visible in the variance decomposition, which may be caused by the CCN

contributions to the variance of QSDEP that, in turn, may relate to the WBF process (Barthlott

et al., 2022). Mazoyer et al. (2021) demonstrated in their comparison of two microphysics schemes,

each treating vapor deposition differently, that depending on the scheme, latent heating along WCB

trajectories is either solely dominated by deposition on ice or by deposition on ice, snow, and

graupel. In our study, depositional growth of all three hydrometeor types is relevant. Since the

uncertainties in CAP of ice and snow have a considerable impact on the frozen hydrometeors of the

WCB cloud and latent heating by vapor deposition, using an inadequate CAP in NWP models is

likely to produce forecast errors of downstream Rossby waves due to errors in latent heating within

the WCB (Berman and Torn, 2022; Grams et al., 2011). Moreover, the exact prediction of latent

heating associated with WCBs will be more important in the future climate, as Binder et al. (2023)

suggested that in a warmer climate, latent heating of WCBs will increase due to higher atmospheric

moisture contents.

Since this thesis is based on a single WCB case, our findings are not necessarily transferable to other

WCB cases in a one-to-one way. For example, the location and season in which a WCB occurs is

relevant to the intensity of latent heating during the WCB ascent (Madonna et al., 2014). This has

to do with the sea surface temperature that influences the specific humidity and temperature in the

boundary layer and therefore WCB moisture uptake and WCB ascent (Christ et al., 2025; Oertel

et al., 2025b). If, in general, the WCB ascent is weaker and less latent heating occurs, parameter

perturbations may not lead to a substantial variance in the WCB cloud characteristics. In particular,

if less water vapor is available during the ascent, some processes such as deposition nucleation

may occur to a smaller extent. Thus, perturbing the parameters may have only a minor impact on

these processes, if any at all. In contrast, other processes may become more relevant. Therefore,

extending the analysis to include multiple WCB cases from different locations and seasons is

required to better asses the robustness and generalizability of our results.

In addition, the presented contributions of the perturbed parameters to the variance of the WCB

cloud structure are only valid for the predefined parameter ranges. For different ranges, the results

may be different, as in parameters that are dominant in this study may be less dominant in another

study with different parameter ranges, and vice versa. In particular, if the CAP range were smaller,

the impact of INP perturbations on the ice number concentration would be greater, as mentioned

above.

Furthermore, the conducted simulations assume that the graupel particles are spherical and, associ-

ated with this, that CAP of a graupel particle is equal to its radius. However, graupel particles can

change their shape over time due to riming, making them not spherical and therefore having another
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CAP. The different CAP, which directly influences the graupel mass by depositional growth, also

has implications for the associated latent heating and radiative properties of the cloud.

Another limitation is that the ICON model does not differentiate between CCN emission sources,

such as air pollution or sea spray, and the associated differences in the chemical composition

of CCNs. This can have consequences for the correct model representation of CCN activation,

as Panicker et al. (2021) found that the number of activated CCNs at a certain supersaturation

depended on the combustion emission sources they tested. In addition, the ICON model also does

not consider different types of INPs which can have, analogously to CCN activation, impacts on the

representation of heterogeneous ice nucleation. Paramonov et al. (2018) investigated heterogeneous

ice nucleation of mineral and soil dust between 233K and 248K and corroborated that the chemical

composition of INPs is relevant.

Moreover, we found that SAT and SST perturbations are, in general, rather unimportant for the

WCB cloud structure compared to the other parameter perturbations. Again, this could be because

the ranges of the other parameter perturbations are relatively large and are therefore probably more

influential.

Beyond this, the composites in the applied Eulerian perspective are based on averages over many

time steps and cross-sections at different latitudes, which may result in certain processes being

inadequately captured or even entirely missed. For example, the double peak of the number

concentration of rain stems from a double peak in the diabatic heating rate of frozen hydrometeors

melting to rain. The reason for this is that the melting level occurs at different heights depending on

the latitude, i.e., it is located at lower altitudes further north. If there is a sufficiently high peak in

nr at different altitudes at different latitudes, then averaging over the cross-sections from multiple

latitudes does not lead to a single peak, but in this case to two peaks. This implies that for processes

relying on temperature thresholds, another approach, e.g., Lagrangian diagnostics, might be more

suitable.

To better visualize the temperature thresholds of processes such as melting to rain and, more

importantly, ice nucleation, and to be able to perform a process-based analysis, the T -binned

trajectory data are considered in the Lagrangian perspective. With that, the diabatic heating rate of

frozen hydrometeors melting to rain exhibits only one peak, as expected. However, the Lagrangian

perspective is generally not comparable on a one-to-one basis to the Eulerian perspective, since

the composites are averaged for each PPE member over October 4 and 5. The trajectory data,

on the other hand, are averaged for each PPE member over its tens of thousands of trajectories,

all of which have an ascent rate of at least 600hPa within 48h covering multiple time steps, but

do not all start their ascent at the same time. In this way, differences in variables can occur

depending on the perspective. In particular, variable values can be up to one order of magnitude

larger in the Lagrangian perspective, but are overall rather similar. Besides, qualitative impacts of

parameter perturbations do not change with perspective. An example of this is the graupel mass

concentration, where the absolute values depend on the perspective, but the qualitative influence of

CAP perturbations remains the same. In general, the use of T -binned trajectory data is appropriate

if the focus is on a process-based analysis.
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Lastly, it should be mentioned that regarding the random forest regression models, the sample size

of the training and validation datasets is relatively small. This could negatively impact the quality

of the RFR model fits, which form the basis of the quantitative sensitivity analysis carried out in

this thesis. Furthermore, previous studies (Wellmann et al., 2018, 2020; Oertel et al., 2025b) used

Gaussian process emulation instead of RFR for sensitivity analysis. However, this study shows that

the performance of RFR models is similar to or even better than GPE models, depending on the

target variable. That is why RFR offers a reliable alternative to GPE.
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8 Conclusion

This thesis investigated the relative importance of five uncertain model parameters, i.e., cloud

condensation nucleus concentration, ice nucleating particle concentration, capacitance of ice and

snow, sea surface temperature, and maximum supersaturation with respect to liquid, for the cloud

structure of a WCB case in the North Atlantic simulated with the ICON model. For this sensitivity

analysis, the five parameters were simultaneously and systematically perturbed in a perturbed

parameter ensemble comprising 70 members. The PPE was qualitatively evaluated using Eulerian

and Lagrangian diagnostics. Furthermore, variance decomposition was applied to hydrometeor

mass and number concentrations, as well as microphysical process rates, based on predictions of

RFR surrogate models to quantify the relative uncertainty contributions of the perturbed parameters.

The most relevant impacts of the parameter perturbations are summarized in Fig. 8.1.

We find that the combined parameter perturbations generally influence the WCB cloud structure.

They lead to variabilities in the mass and number concentrations of all types of hydrometeors. In

particular, the mass and number concentrations of snow, ice, and cloud water increase compared

to the unperturbed reference simulation. In contrast, the number and mass concentrations of rain

decrease mainly. On the other hand, the mass and number concentrations of graupel do not show

such a clear increase or decrease. However, an increasing trend is discernible in graupel mass and

number concentrations. In addition, the maximum mass concentrations of snow, ice, and cloud

water are vertically displaced.

More specifically, we find that varying the CCN concentration influences the WCB cloud structure in

several ways. The first research question in this thesis was how exactly different CCN concentrations

influence the WCB cloud structure. In general, the vertically integrated total hydrometeor mass and

number concentration increase with increasing CCN concentration due to a dominant systematic

increase in cloud water mass concentration and cloud droplet number concentration. This is

observed at all levels in the Eulerian and Lagrangian perspective. The reason for this is the

consistently increased CCN activation, which was directly perturbed by the scaling factor fCCN

and provides part of the answer to the second research question, namely, which process rates

account for the observed changes in the cloud structure. In contrast to cloud water, the rain mass

concentration decreases with increasing CCN concentrations at all levels in both perspectives.

This occurs because the mean size of cloud droplets is reduced, which decreases the conversion

of qc to qr. In addition, a reduction of the graupel mass and number concentration occurs at all

levels. We attribute this to a decrease in the riming rate caused by smaller mean cloud droplet sizes.

Furthermore, the liquid fraction increases in the mixed-phase region below 6km and below the

melting level. Variance decomposition shows that the CCN concentration is indeed the dominant
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contributor to most of the variance in the (vertically integrated) number and mass concentrations

of rain and cloud water. However, only between 2.4km and 5.5km or between 275K and 255K

is the cloud water mass concentration most sensitive to CCN perturbations. Higher up, CAP and

INP perturbations become more relevant to cloud water mass concentrations. The riming rate is

also only determined by CCNs between 2.4km and 2.9km or between 275K and 267K and the

variance decomposition of the (vertically integrated) graupel mass concentration and (vertically

integrated) number concentration reveal vanishingly small CCN influences.

The third research question addressed how the impacts of CCN perturbations compare to the

other parameter perturbations. In fact, the influence of CCN perturbations on the WCB cloud

structure is considerably larger compared to INP perturbations. However, there are two main INP

impacts. First, increases in immersion freezing and deposition nucleation rates are observed, which

occur with increasing INP concentrations. Second, an increasing ice number concentration with

decreasing INP concentrations occurs at all levels as a result of the increased rate of homogeneous

ice nucleation of water vapor at temperatures below 235K. As immersion freezing and deposition

nucleation rates are directly perturbed by the scaling factor fINP, their variance decomposition

shows, as expected, that the INP concentration is the dominant contributor. Although also perturbed

by fINP, the freezing rate exhibits only minor INP influences and is instead dominated by CCNs, as

CCNs influence the raindrop size distribution. The influence of INPs on the variance of ice number

concentrations is overshadowed by the influence of CAP, which is also reflected in the variance

decomposition of the homogeneous ice nucleation rate of water vapor. Thus, impacts of INPs are

relevant for ice nucleation through immersion freezing and deposition nucleation, but in the end,

ice number concentrations are determined primarily by CAP and only to a small extent by INPs.

In general, the importance of CAP perturbations for the WCB cloud structure is comparable in

magnitude to that of CCNs. The most pronounced effect of CAP perturbations is the systematic

increase in graupel mass and number concentration at all levels when CAP of ice and snow is

reduced. This increase in mass concentration is primarily driven by enhanced depositional growth

of graupel due to the greater availability of water vapor, as the depositional growth of ice and snow

is reduced by the scaling factor fCAP. Furthermore, increased riming further contributes to graupel

formation and growth. In addition to ice, (vertically integrated) number concentrations of snow

also increase with decreasing CAP, mainly due to enhanced homogeneous ice nucleation of water

vapor. Variance decomposition confirms that the number and mass concentrations of graupel, ice,

and snow, as well as their depositional growth rates, are predominantly influenced by CAP. An

exception is the vertically integrated snow mass concentration, which is more strongly affected

by CCN perturbations. Furthermore, the depositional growth rate of snow is markedly shaped by

CCNs at higher levels, hinting at the influence of the Wegener-Bergeron-Findeisen process.

As the cloud structure near the cloud top influences radiative properties, we find a variance in the

radiation balance at TOA. With regard to the fourth research question how the radiation balance

at TOA is affected by parameter perturbations, the results show that the balance of longwave

radiation is primarily governed by CAP perturbations. Reducing CAP of ice and snow decreases

the net longwave radiation at TOA since less longwave radiation is emitted at the cloud top due to

lower cloud top temperatures. This vertical displacement of ice to lower temperatures is caused
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Figure 8.1: Summary of the most important impacts of the parameter perturbations on the WCB cloud
structure. Arrows pointing upward indicate an increase, whereas arrows pointing downward
indicate a decrease.

by increased homogeneous ice nucleation of water vapor. To a lesser extent, the net shortwave

radiation at TOA is reduced as well for lower CAP, which is attributed to an increase in the number

concentrations of all frozen hydrometeors, especially ice, leading to a higher cloud optical depth.

The variance decomposition of the net longwave radiation verifies the dominant role of CAP

throughout the warm sector, whereas for the net shortwave radiation, the impact of CAP is most

dominant near the cold front. In addition, CCN and SST perturbations also play a role for the net

shortwave radiation further east in the warm sector, which may also be related to a higher cloud

optical depth.

In summary, CCN concentrations predominantly influence the number and mass concentration of

liquid hydrometeors in the cloud, while CAP influences the number and mass concentration of the

frozen hydrometeors plus the net longwave radiation at TOA. Specifically, CAP overshadows the

impact of INPs on immersion freezing and deposition nucleation with its influence on the number

and mass concentration of frozen hydrometeors. The net shortwave radiation at TOA is influenced

by CCNs, SST and CAP. Aside from that, SST and SAT perturbations are in general negligible for

the cloud structure compared to the other perturbations. In conclusion, CCN and CAP perturbations

are most relevant to the WCB cloud properties.
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Outlook

Based on the results and limitations of this thesis, future research could aim to consider different

types of CCNs and INPs, which could be done with ICON-ART (Schröter et al., 2018). As the

amount of CCNs strongly influences liquid hydrometeors and the amount of INPs influences the

heterogeneous ice nucleation, the question arises whether this would still apply to the same degree

if differences in the chemical composition of CCNs and INPs were introduced. Furthermore, the

CAPs of all frozen hydrometeors need better constraints to improve the model representation and

predictability of latent heating by vapor deposition, which has implications for the predictability of

large-scale circulation. In addition, there is potential to improve the performance of the RFR surro-

gate models, e.g., by either expanding the Grid Search to cover a wider range of hyperparameters

or by using larger sample sizes of training and validation datasets. Lastly, this thesis focuses on the

influences of parameter perturbations on the cloud structure of one WCB case. It remains an open

question whether these influences hold for other WCB cases. In particular, are other cases affected

to a similar extent? If not, what are the reasons for the differences?
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A Appendix

A.1 Metrics

The mean absolute error (MAE) is given by

MAE =
1

N

N−1

∑
i=0

yi − ŷi , (A.1)

with the total number of data points N, the true value yi of the i-th sample and the predicted value ŷi

(Pedregosa et al., 2011). Accordingly, the mean squared error (MSE) is calculated with

MSE =
1

N

N−1

∑
i=0

(yi − ŷi)
2 , (A.2)

and the root mean squared error (RMSE) with

RMSE =

√

1

N

N−1

∑
i=0

(yi − ŷi)
2 . (A.3)

Note that the root mean squared error has the same units as the target variable.

The R2 score (coefficient of determination) is defined as

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − ȳ)2

, (A.4)

with the average of the true values ȳ = 1
N ∑

N
i=1 yi. This score is a measure of the goodness of a fit.

The optimal value of R2 is 1, which means that yi = ŷi, that is, the predicted values fit perfectly the

true values. If R2 = 0, the model can only predict the average of the true values, which means that

ŷi = ȳ. Thus, the model has no predictive power. In addition, R2 can become infinitely negative,

resulting in misleading predictions.
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A.2 Figures

Figure A.1: As Fig. 5.3 but for low (purple), moderate (magenta), and high (orange) sea surface temperature
(SST) perturbations. (a), (b) Diabatic heating rate of riming (QXRIM, in Kh−1) and (c), (d) ice
number concentration (ni, in kg−1). Cyan horizontal lines mark the level of −3◦C and −8◦C.
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A.3 Tables

Table A.1: Mean scaling factors f of all parameter perturbations per subset. Subsets are sorted by each
perturbed parameter in ascending order.

sorted by subset fCCN fINP fCAP fSST fSAT

CCN low 3.664 1.808 0.542 -0.024 0.040
CCN moderate 10.208 2.403 0.584 0.406 0.056
CCN high 16.661 3.470 0.654 -0.285 0.055
INP low 9.778 0.048 0.611 -0.229 0.047
INP moderate 10.007 0.648 0.542 0.336 0.047
INP high 10.756 7.061 0.628 -0.007 0.057
CAP low 8.573 2.464 0.327 -0.113 0.047
CAP moderate 10.543 1.260 0.593 0.322 0.048
CAP high 11.402 4.007 0.859 -0.109 0.055
SST low 10.176 2.489 0.619 -1.328 0.054
SST moderate 10.213 1.722 0.579 0.058 0.042
SST high 10.143 3.500 0.581 1.382 0.055
SAT low 8.907 2.576 0.559 0.022 0.017
SAT moderate 10.288 1.346 0.584 0.000 0.051
SAT high 11.335 3.804 0.635 0.092 0.084

Table A.2: Values of the mean altitudes h, temperatures T , and relative longitudes rel. lon used for random
forest regression models. Models are trained with data averaged over a number of height levels
Nh, T -bins NT, and rel. lon steps Nlon that cover different height levels, temperature, and relative
longitude ranges.

Nh h [km] h range [km] NT T [K] T range [K] Nlon rel. lon [◦] Rel. lon range [◦]
3 9.3 9.0 - 9.5 4 233 237 - 229 10 0.45 0.0 - 0.9
3 8.2 7.9 - 8.4 4 241 245 - 237 10 1.45 1.0 - 1.9
4 6.6 6.3 - 7.0 4 251 255 - 247 10 2.45 2.0 - 2.9
3 5.2 4.0 - 5.0 4 259 263 - 255 10 3.45 3.0 - 3.9
5 2.6 2.4 - 2.9 4 271 275 - 267 10 4.45 4.0 - 4.9

10 5.45 5.0 - 5.9
10 6.45 6.0 - 6.9
10 7.45 7.0 - 7.9

Table A.3: Hyperparameter values used for training the random forest regression models and respective root
mean squared error (RMSE) and R2 for various variables and mean altitudes h in the Eulerian
perspective. Hyperparameter tuning is performed with the Grid Search algorithm.

Variable h [km] Ntree Ns Nfeat RMSE R2

qc 8.2 200 2 4 7.62×10−4 0.84

qc 6.6 100 2 3 4.71×10−3 0.79

qc 5.2 500 4 3 1.86×10−2 0.63

qc 2.6 250 2 5 1.36×10−2 0.97

qr 6.6 200 3 5 5.62×10−5 0.76

qr 5.2 100 3 5 1.47×10−4 0.87

qr 2.6 250 2 3 1.29×10−3 0.79

qi 9.3 500 2 4 3.55×10−3 0.78

qi 8.2 150 2 5 3.36×10−3 0.85

67



A Appendix

Continuation of Table A.3

Variable h [km] Ntree Ns Nfeat RMSE R2

qi 6.6 500 2 3 1.31×10−3 0.80

qi 5.2 500 2 4 2.39×10−3 0.80

qi 2.6 150 3 5 3.40×10−4 0.90

qs 8.2 150 3 4 1.14×10−3 0.73

qs 6.6 200 2 4 4.31×10−3 0.73

qs 5.2 500 3 5 5.79×10−3 0.69

qs 2.6 150 2 4 3.17×10−3 0.89

qg 6.6 200 3 3 1.58×10−4 0.85

qg 5.2 500 2 5 7.69×10−4 0.95

qg 2.6 150 2 4 2.71×10−3 0.95

nc 8.2 100 2 5 1.63×106 0.69

nc 6.6 500 4 3 1.34×107 0.54

nc 5.2 200 2 4 3.27×107 0.88

nc 2.6 150 3 5 2.32×107 0.99

nr 6.6 100 3 5 7.51×101 0.80

nr 2.6 500 2 5 2.34×102 0.83

ni 9.3 150 2 4 2.42×105 0.73

ni 8.2 150 2 4 1.47×105 0.75

ni 6.6 150 2 4 3.40×104 0.59

ni 5.2 500 2 2 3.54×103 0.60

ni 2.6 100 2 3 5.37×101 0.93

ns 9.3 100 2 5 1.76×102 0.76

ns 8.2 100 2 4 8.79×102 0.74

ns 6.6 100 2 5 1.38×103 0.77

ns 5.2 150 2 5 7.35×102 0.80

ns 2.6 150 3 4 4.39×101 0.82

ng 6.6 500 2 3 4.49 0.89

ng 5.2 250 2 5 1.05×101 0.96

ng 2.6 100 3 4 2.83×101 0.94

QCNUC 9.3 100 3 5 1.48×10−4 0.64

QCNUC 8.2 100 2 4 9.14×10−4 0.68

QCNUC 6.6 100 4 3 2.98×10−3 0.70

QCNUC 5.2 100 2 5 1.42×10−3 0.99

QCNUC 2.6 150 3 5 5.09×10−4 0.99

QIHOMHET 9.3 100 2 3 1.61×10−3 0.73

QIHOMHET 6.6 500 2 2 5.60×10−7 0.81

QCFRZ 8.2 100 2 5 3.86×10−6 0.79

QRFRZ 6.6 100 4 5 1.61×10−6 0.88

QRFRZ 5.2 200 2 5 3.41×10−6 0.78

QSDEP 8.2 500 3 5 3.13×10−3 0.73

QSDEP 6.6 500 2 5 1.97×10−2 0.62

QSDEP 5.2 150 4 5 2.63×10−2 0.88

QSDEP 2.6 100 4 5 7.31×10−3 0.92

QIDEP 8.2 150 2 5 4.93×10−3 0.60

QIDEP 6.6 500 5 5 1.33×10−2 0.81
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Continuation of Table A.3

Variable h [km] Ntree Ns Nfeat RMSE R2

QIDEP 5.2 250 3 5 1.96×10−2 0.91

QIDEP 2.6 500 2 5 3.13×10−3 0.85

QGDEP 6.6 100 2 3 2.44×10−3 0.87

QGDEP 5.2 500 2 5 5.08×10−3 0.97

QGDEP 2.6 150 3 5 4.82×10−3 0.80

QXRIM 6.6 200 4 4 2.77×10−4 0.80

QXRIM 5.2 200 2 4 1.22×10−3 0.91

QXRIM 2.6 250 4 5 1.73×10−3 0.94

RADSW 9.3 500 2 5 1.95×10−3 0.73

RADSW 8.2 250 3 5 1.50×10−3 0.80

RADSW 6.6 100 3 5 1.40×10−3 0.74

RADSW 5.2 100 3 4 7.99×10−4 0.88

RADSW 2.6 100 3 5 2.93×10−4 0.79

RADLW 9.3 500 3 4 3.52×10−3 0.88

RADLW 8.2 100 4 5 4.50×10−3 0.86

RADLW 6.6 500 4 5 5.23×10−3 0.71

RADLW 5.2 500 2 4 4.18×10−3 0.83

RADLW 2.6 100 3 5 1.16×10−3 0.87

End of Table

Table A.4: Hyperparameter values used for training the random forest regression models and respective
root mean squared error (RMSE) and R2 for various variables and mean temperatures T in the
Lagrangian perspective. Hyperparameter tuning is performed with the Grid Search algorithm.

Variable T [K] Ntree Ns Nfeat RMSE R2

qc 241 200 2 5 4.88×10−4 0.93

qc 251 150 3 5 9.36×10−3 0.82

qc 259 500 2 2 3.86×10−2 0.71

qc 271 200 4 5 2.97×10−2 0.98

qr 251 100 2 5 1.35×10−4 0.74

qr 259 200 3 4 6.84×10−4 0.82

qr 271 100 2 3 9.77×10−4 0.90

qi 233 150 2 4 1.63×10−3 0.83

qi 241 150 3 5 2.22×10−3 0.89

qi 251 500 3 2 1.38×10−3 0.85

qi 259 150 2 5 2.00×10−3 0.96

qi 271 100 2 5 5.92×10−4 0.95

qs 241 500 3 3 4.56×10−4 0.79

qs 251 100 2 4 3.00×10−3 0.76

qs 259 100 2 4 6.30×10−3 0.71

qs 271 150 3 3 7.82×10−3 0.88

qg 241 250 3 5 1.43×10−4 0.74

qg 251 250 3 5 9.49×10−4 0.92

qg 259 150 3 5 2.57×10−3 0.91
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Continuation of Table A.4

Variable T [K] Ntree Ns Nfeat RMSE R2

qg 271 100 4 5 7.83×10−3 0.93

nc 233 150 3 5 5.00×104 0.71

nc 241 100 2 4 2.16×106 0.70

nc 251 150 5 3 2.25×107 0.65

nc 259 250 2 4 3.84×107 0.96

nc 271 100 3 5 2.75×107 1.00

ni 233 200 2 4 3.10×105 0.78

ni 241 100 2 4 1.58×105 0.85

ni 251 150 3 4 2.08×104 0.82

ni 259 500 2 2 2.51×103 0.61

ni 271 100 2 4 1.60×102 0.92

ns 233 150 3 4 2.09×101 0.90

ns 241 150 2 5 2.37×102 0.91

ns 251 250 2 5 7.06×102 0.90

ns 259 250 2 5 5.33×102 0.87

ns 271 100 2 4 2.98×101 0.87

QCNUC 241 100 3 2 1.62×10−3 0.65

QCNUC 251 250 5 4 4.04×10−3 0.91

QCNUC 259 150 2 5 1.05×10−2 0.89

QCNUC 271 100 2 5 1.06×10−3 0.97

QIHOMHET 233 250 2 4 2.91×10−4 0.90

QIHOMHET 251 500 5 2 3.69×10−7 0.89

QIHOMHET 259 500 5 2 1.10×10−8 0.92

QCFRZ 233 100 3 5 3.38×10−6 0.74

QCFRZ 241 100 2 5 8.24×10−7 0.66

QRFRZ 251 150 2 5 7.12×10−6 0.87

QRFRZ 259 100 2 5 6.94×10−6 0.91

QRFRZ 271 100 2 3 7.22×10−8 0.88

QSDEP 241 100 3 4 4.99×10−3 0.81

QSDEP 251 150 4 5 1.56×10−2 0.94

QSDEP 259 150 2 5 8.89×10−2 0.83

QSDEP 271 150 2 5 2.67×10−2 0.89

QIDEP 241 250 2 4 6.62×10−3 0.68

QIDEP 251 500 3 4 2.76×10−2 0.89

QIDEP 259 250 2 5 2.90×10−2 0.95

QIDEP 271 100 2 4 7.30×10−3 0.95

QGDEP 241 150 2 5 3.31×10−3 0.89

QGDEP 251 100 4 5 9.43×10−3 0.95

QGDEP 259 200 2 5 1.72×10−2 0.95

QGDEP 271 150 2 4 1.28×10−2 0.93

QXRIM 251 150 2 5 1.75×10−3 0.76

QXRIM 259 100 3 3 2.86×10−3 0.83

QXRIM 271 100 2 5 6.57×10−3 0.90

End of Table
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Table A.5: Hyperparameter values used for training the random forest regression models and respective root
mean squared error (RMSE) and R2 for various variables and mean relative longitudes rel. lon in
the Eulerian perspective. Hyperparameter tuning is performed with the Grid Search algorithm.

Variable rel. lon [◦] Ntree Ns Nfeat RMSE R2

qc,t 0.45 250 2 3 5.78×10−2 0.91

qc,t 1.45 250 3 4 6.54×10−2 0.93

qc,t 2.45 200 4 5 7.85×10−2 0.95

qc,t 3.45 500 3 4 1.01×10−1 0.90

qc,t 4.45 200 2 3 1.11×10−1 0.73

qc,t 5.45 100 2 5 6.39×10−2 0.58

qc,t 6.45 200 2 5 1.76×10−2 0.70

qc,t 7.45 100 5 4 1.34×10−2 0.65

qr,t 0.45 500 4 5 6.86×10−3 0.86

qr,t 1.45 100 2 4 8.34×10−3 0.89

qr,t 2.45 250 3 4 1.16×10−2 0.86

qr,t 3.45 150 4 5 1.25×10−2 0.80

qr,t 4.45 250 3 3 7.80×10−3 0.74

qr,t 5.45 150 5 2 4.22×10−3 0.68

qr,t 7.45 150 5 5 1.31×10−3 0.58

qi,t 0.45 150 4 5 4.64×10−3 0.77

qi,t 1.45 500 3 2 4.84×10−3 0.74

qi,t 2.45 500 2 5 5.46×10−3 0.65

qi,t 3.45 100 5 5 4.70×10−3 0.63

qi,t 4.45 100 3 4 3.10×10−3 0.77

qi,t 5.45 150 3 1 3.90×10−3 0.55

qi,t 6.45 150 2 2 4.18×10−3 0.67

qi,t 7.45 500 2 3 3.67×10−3 0.59

qs,t 0.45 500 5 4 1.02×10−2 0.68

qs,t 1.45 200 2 5 2.47×10−2 0.71

qs,t 2.45 150 2 5 2.27×10−2 0.64

qs,t 4.45 500 2 5 1.51×10−2 0.59

qs,t 5.45 500 3 5 1.43×10−2 0.59

qs,t 6.45 150 5 4 9.36×10−3 0.67

qs,t 7.45 250 2 4 4.59×10−3 0.62

qg,t 0.45 100 3 3 1.09×10−2 0.82

qg,t 1.45 100 3 3 1.15×10−2 0.93

qg,t 2.45 100 2 3 1.22×10−2 0.93

qg,t 3.45 150 2 4 1.11×10−2 0.92

qg,t 4.45 200 3 4 1.10×10−2 0.91

qg,t 5.45 500 2 3 7.80×10−3 0.86

qg,t 6.45 500 2 4 2.45×10−3 0.91

qg,t 7.45 150 2 5 1.63×10−3 0.83

nc,t 0.45 200 2 4 1.19×1011 0.97

nc,t 1.45 200 3 5 1.21×1011 0.99

nc,t 2.45 100 2 5 1.62×1011 0.99

nc,t 3.45 150 3 4 2.05×1011 0.97
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Continuation of Table A.5

Variable rel. lon [◦] Ntree Ns Nfeat RMSE R2

nc,t 4.45 200 4 4 2.16×1011 0.92

nc,t 5.45 500 2 3 1.53×1011 0.83

nc,t 6.45 150 3 4 4.80×1010 0.93

nc,t 7.45 250 2 5 2.55×1010 0.97

nr,t 0.45 500 3 5 7.12×105 0.89

nr,t 1.45 100 2 4 1.37×106 0.67

nr,t 2.45 100 2 4 6.03×105 0.93

nr,t 3.45 250 3 4 7.66×105 0.85

nr,t 4.45 200 5 4 6.20×105 0.87

nr,t 5.45 500 4 5 5.98×105 0.89

nr,t 6.45 100 4 5 5.56×105 0.86

nr,t 7.45 100 5 5 2.07×105 0.98

ni,t 0.45 150 2 4 2.97×108 0.60

ni,t 1.45 150 2 4 2.98×108 0.73

ni,t 2.45 150 3 4 2.99×108 0.79

ni,t 3.45 100 2 5 3.58×108 0.72

ni,t 4.45 500 2 4 4.37×108 0.56

ni,t 5.45 150 2 5 3.18×108 0.65

ni,t 6.45 150 2 5 1.88×108 0.60

ni,t 7.45 150 2 3 9.62×107 0.60

ns,t 0.45 150 2 5 2.19×106 0.85

ns,t 1.45 150 2 4 3.48×106 0.83

ns,t 2.45 100 2 5 3.29×106 0.81

ns,t 3.45 250 2 5 3.39×106 0.74

ns,t 4.45 500 2 4 3.14×106 0.68

ns,t 5.45 500 2 5 2.17×106 0.71

ns,t 6.45 200 2 4 1.35×106 0.77

ns,t 7.45 500 2 4 9.43×105 0.81

ng,t 0.45 150 2 5 1.02×105 0.90

ng,t 1.45 100 2 3 1.01×105 0.93

ng,t 2.45 100 3 4 1.21×105 0.93

ng,t 3.45 100 3 4 1.24×105 0.92

ng,t 4.45 100 3 5 1.14×105 0.87

ng,t 5.45 100 3 5 6.64×104 0.88

ng,t 6.45 100 3 4 3.96×104 0.91

ng,t 7.45 500 3 4 2.41×104 0.88

SW 0.45 150 2 2 1.70 0.69

SW 3.45 150 3 5 1.64 0.62

SW 4.45 250 3 3 2.68 0.59

SW 5.45 500 2 5 2.94 0.75

SW 6.45 200 2 4 2.35 0.75

SW 7.45 100 2 4 2.46 0.62

LW 0.45 100 2 3 8.42×10−1 0.81

LW 1.45 150 3 4 1.00 0.77

LW 2.45 150 2 5 9.04×10−1 0.82
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Continuation of Table A.5

Variable rel. lon [◦] Ntree Ns Nfeat RMSE R2

LW 3.45 500 3 5 9.46×10−1 0.87

LW 4.45 500 2 5 8.53×10−1 0.86

LW 5.45 500 5 4 1.08 0.71

LW 6.45 500 5 4 1.24 0.70

LW 7.45 500 3 3 1.29 0.81

End of Table
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CAP capacitance

CCN cloud condensation nucleus

COD cloud optical depth

CRE cloud radiative effect

DEPNUC diabatic heating rate of deposition nucleation

ETC extratropical cyclone

FAST Fourier amplitude sensitivity test

GPE Gaussian process emulation

HOMNUC diabatic heating rate of homogeneous ice nucleation of water vapor

ICON ICOsahedral Nonhydrostatic

IMFRZ diabatic heating rate of immersion freezing

INP ice nucleating particle

IOP intensive observation period

IWC ice water content

LW Net longwave radiation at the top of atmosphere

LWC liquid water content

LWP liquid water path

LWCRE longwave cloud radiative effect

MAE mean absolute error

MLR multiple linear regression

MSE mean squared error
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NAWDEX North Atlantic Waveguide and Downstream Impact Experiment

NWP numerical weather prediction

OLR outgoing longwave radiation

PPE perturbed parameter ensemble

PSD particle size distribution

PV potential vorticity

QCFRZ diabatic heating rate of freezing of cloud droplet

QCNUC diabatic heating rate of cloud droplet activation

QGDEP diabatic heating rate of depositional growth of graupel

QIDEP diabatic heating rate of depositional growth of ice

QIHOMHET diabatic heating rate of heterogeneous and homogeneous ice nucleation

QRFRZ diabatic heating rate of freezing of rain

QSDEP diabatic heating rate of depositional growth of snow

QXRIM diabatic heating rate of riming

RADLW longwave cooling rate

RADSW shortwave heating rate

REF unperturbed reference simulation

RFR random forest regression

RMSE root mean squared error

SAT maximum supersaturation with respect to liquid

SATAD2 second saturation adjustment

SIP secondary ice production

SST sea surface temperature

SW Net shortwave radiation at the top of atmosphere

SWCRE shortwave cloud radiative effect

TOA top of atmosphere
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TWP total water path

WBF Wegener-Bergeron-Findeisen

WCB warm conveyor belt
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