Optimierung langfristiger Luftqualität in Baden-Württemberg

Hans-Jürgen Panitz
Forschungszentrum Karlsruhe
Institut für Meteorologie und Klimaforschung (IMK-TRO)

Projekt 740 finanziert durch die Landesstiftung Baden-Württemberg Im Rahmen des Forschungsprogramms "Modellierung und Simulation auf Hochleistungscomputern" Projektbeginn: 01.09.2004

Zielsetzung und Vorgehensweise

Unterschiedliche Methoden für die Klassifizierung meteorologischer Situationen in Hinblick auf ihre praktische Anwendbarkeit bei der Analyse der langfristigen Luftqualität einer Region untersuchen und beurteilen

Beurteilungskriterien:

- Effektivität der Methode (Handhabung, Rechenzeit, Interpretation der Klassifizierungsergebnisse)
- Repräsentieren die gefundenen Klassen das Spektrum der möglichen meteorologischen Bedingungen?

Der letzte Aspekt definiert die Vorgehensweise im Projekt:

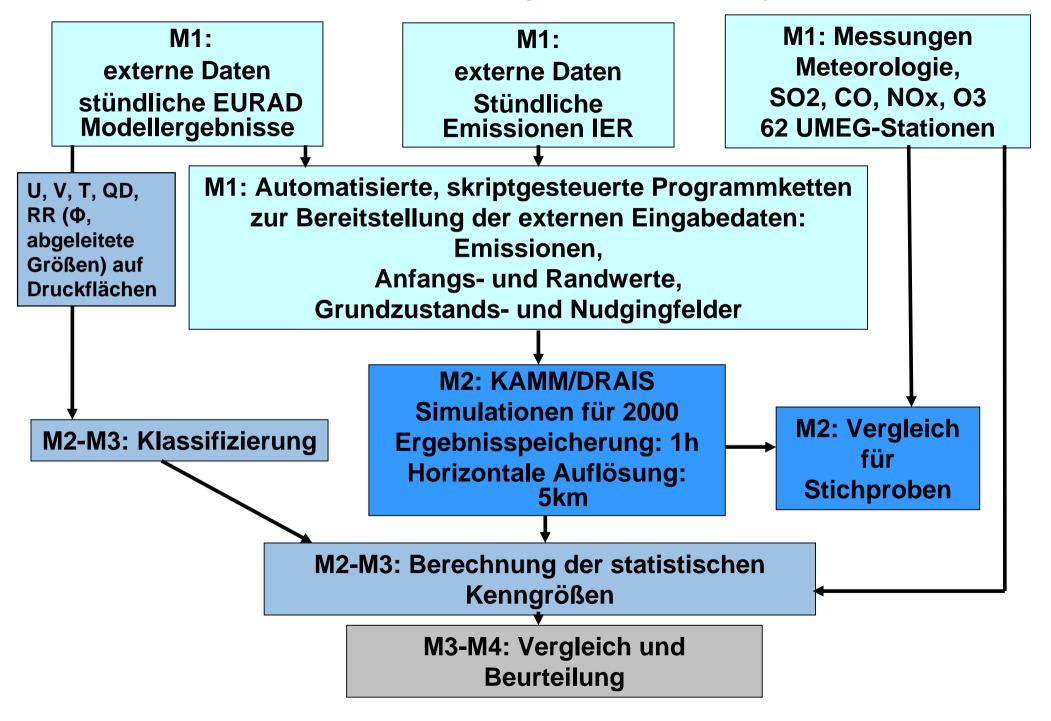
- 1. Durchführung einer Detailsimulation mit dem mesoskaligen Chemie-Transport- Modellsystem KAMM/DRAIS für ein Jahr (2000, stündliche Abspeicherung der Ergebnisse: Konzentrations- und Depositionsfelder für relevante gasförmige Luftschadstoffe, NO_x, O₃, CO, SO₂)
- 2. Berechne aus den Ergebnissen der Detailsimulation statistische Kenngrößen, die die Luftqualität quantifizieren (z.B. AOT40, SOMO35) und andere (z.B. Median, Perzentilwerte)
- 3. Klassifiziere die großräumigen meteorologischen Bedingungen für die gleiche Periode
- 4. Wähle einen Repräsentanten aus jeder resultierenden Klasse; erneute Simulationen für die Repräsentanten nicht notwendig, Ergebnisse liegen aus Schritt 1 vor
- 5. Berechne unter Berücksichtigung der Klassenhäufigkeiten die statistischen Kenngrößen auf der Basis der Simulationsergebnisse für die Repräsentanten und vergleiche sie mit denen aus Schritt 2

Je besser die Übereinstimmung desto geeigneter das Klassifizierungsschema

Ursprünglich wurden drei Klassifizierungsmethoden ausgewählt;

1. "klassische" Clusteranalyse:

- Ward Methode (hierachisch agglomerativ)
- K-means (partitionierender Algorithmus)

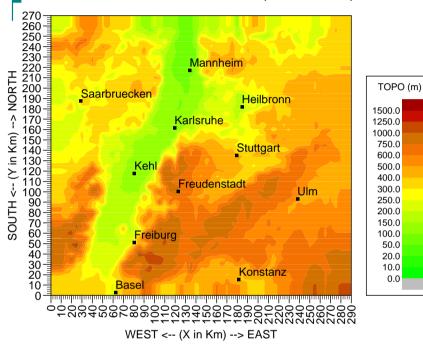

2. SOM Technik (Self Organizing Maps)

vom Ansatz partitionierend, Methode der Zuordnung von Objekten und Klassen anders als z.B. K-means

3. CART Methode (Classification and Regression Trees)

Hat sich bei näherer Betrachtung wegen der notwendigen Vorgabe einer Zielvariable und der Abhängigkeit der Klassifizierungsergebnisse von dieser Vorgabe als nicht geeignet erwiesen.

Schematische Darstellung des Ablaufes des Projekts



Setup der KAMM/DRAIS Simulationen

in der Helmholtz-Gemeinschaft

KAMM/DRAIS Simulationen

KAMM/DRAIS MODEL DOMAIN (DX=DY=5km)

Rechner: VPP5000 (Vektor-Parallel-Rechner) des **FZK**

Max. 8 Processing Elements (PE)

Jede PE hat Vector Unit mit 9.6 GFlop/s und Scalar Unit mit 1.2 GFlop/s

6 PEs mit 8 Gbyte, 2 mit 16 Gbyte Hauptspeicher **Anwendung als Vektorrechner auf 1 PE:** Rechenzeit für gesamte Simulation für das Jahr 2000:

ca. 1700 CPU Stunden ≈ 71 Tage

NX =59 NY=55 NZ = 35

Obergrenze: 5000m über NN

 $\Delta X=5 \text{km} \quad \Delta Y=5 \text{km} \quad \Delta Z_{\text{Boden}} \approx 10 \text{m} \quad \Delta Z_{\text{Ton}} \approx 250 \text{m}$

Start der Simulation: 1 Januar 00:00 UTC.

Ergebnisspeicherung: $\Delta t = 1h$

Numerischer Zeitschritt: ≤ 20 sec

Anfangs- und Randbedingungen aus EURAD Ergebnissen:

Randwerte werden stündlich neu eingelesen:

- T, QD, and C durch Flussmethode: advektiver Transport über den Rand
- Für u und v Orlanski Strahlungsbedingungen zu jedem numerischen Zeitschritt

Großskaliger Grundzustand und Nudging Felder für u und v alle 3h neu, dazwischen lineare Interpolation

Nudging Koeffizient: 3.0E-4 konstant

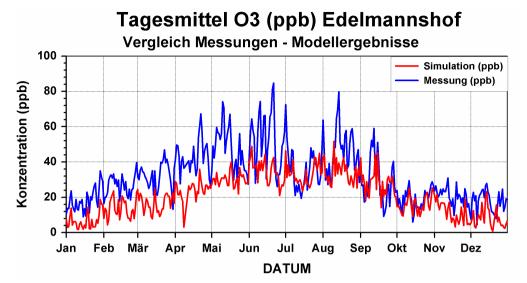
Ergebnisse der KAMM/DRAIS Simulationen Beschränkung auf Ozon

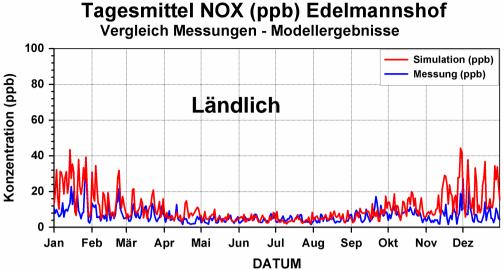
Ergebnisse der Simulation

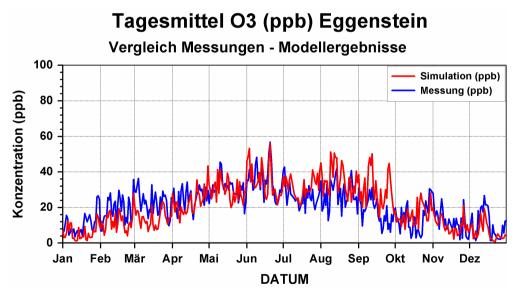
- Obwohl Evaluierung des Modells nicht das vorrangige Ziel des Vorhabens ist, ist ein Vergleich mit Messungen immer von Interesse
- Möglichkeiten:
 - Vergleich für jede Station und für jeden Tag; bei 62 Stationen und 366 Tagen unpraktisch und langwierig
 - Alternative: statistische Evaluierung über unterschiedliche Maßzahlen (siehe z.B. EPA,1991; Nester and Panitz, 2004) sowie Vergleich von verschiedenen Mittelwerten (siehe z.B. Tarrason, 2003)

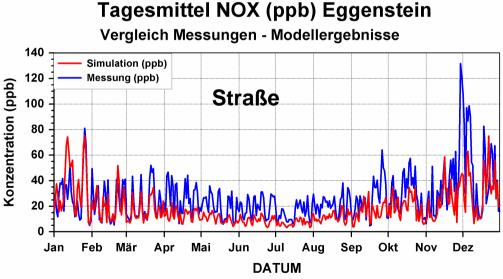
EPA (1991): Guideline for regulatory application of the urban airshed model. EPA-450/4-91-014 Nester and Panitz (2004): Evaluation of the chemistry transport model system KAMM/DRAIS based on daytime ground-level ozone data. Int. J. Env. And Poll., 22, 87-107

Tarrason, L. (Ed.) (2003): Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, Part III, Unified EMEP Model Performance. EMEP Status Report 2003, ISSN 0806-4520

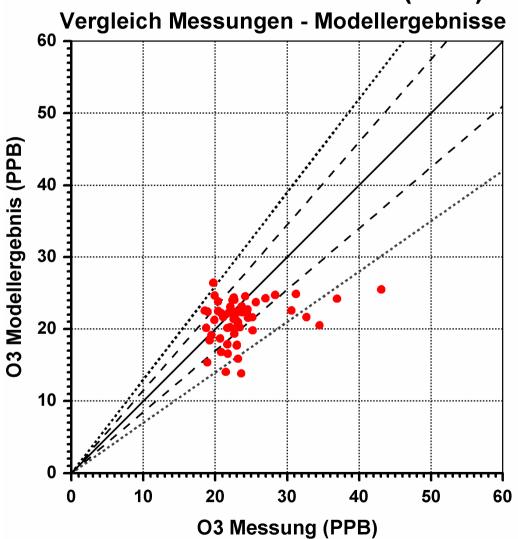

Ergebnisse der Simulation Vergleich mit Messungen


- Es ist immer zu beachten, dass
 - Punktmessungen mit Flächenmittelwerten (25 km²) verglichen werden; die entsprechende "Punktsimulation" wird aus den Simulationsergebnissen an den 4 umliegenden Gitterpunkten durch lineare Interpolation abgeschätzt
 - Messwerte nicht in den "Antrieb" der Modellrechnungen eingehen; "Antrieb" = Anfangs- und Randbedingungen (Meteorologie und Chemie), großskaliger Grundzustand und Nudging (nur Meteorologie)
 - Emissionsdaten mit relativ hohen Unsicherheiten behaftet sind (z.B. NO_x: ± 50%, CO: Faktor 2 zu niedrig, siehe *Panitz et al., 2002*)


Panitz, H.-J., K. Nester and F. Fiedler: Mass budget simulations of NO_x and CO for the evaluation of calculated emissions for the city of Augsburg. Atmos. Environ, 36 S1, S33-S51, 2002.


Auswahl von statistischen Größen, die im Folgenden benutzt werden: S und O bezeichnen die Modell- bzw. Messdaten. N ist die Anzahl der Fälle.

Mittlere Abweichung (BIAS)	$Bias = \frac{1}{N} \sum_{i}^{N} (S_i - O_i)$		
Mittlere relative Abweichung (MNB) in %	$MNB = \frac{1}{N} \sum_{i}^{N} \frac{(S_i - O_i)}{O_i}$		
A15 in % (Nester and Panitz Int. J. Env. Poll., 22, 87 – 107, 2004)	Relative Anzahl von Fällen mit einer absoluten Differenz zwischen Messung und Simulation ≤ 15 ppb		
Verschiedene Mittelwerte	Raum (Mittel über alle Stationen), Zeit, Raum-Zeit		
Tägliche Ozon Maximalkonzentrationen	Mittelwerte über alle Stationen		



in der Helmholtz-Gemeinschaft

Jahresmittelwerte O3 (PPB)

Anzahl Stationen: 56

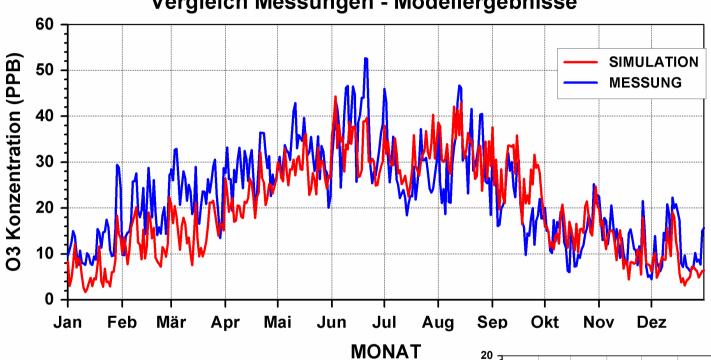
Mittelung über Zeit (ein Jahr)

Rel. Abweichung <= |15%|: 35 (63%) Rel. Abweichung <= |30%|: 48 (86%) Mittlere Rel. Abweichung: - 8.2%

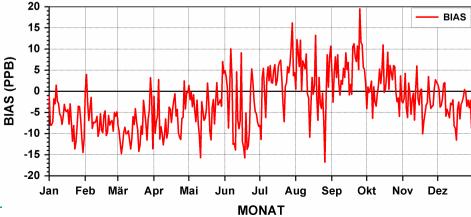
basierend auf den 56 Jahresmittelwerten

Mittelung über Raum und Zeit:

Mittelwert Model: 21.3 ppb Mittelwert Messung: 23.9 ppb Mittlere Abweichung (BIAS)

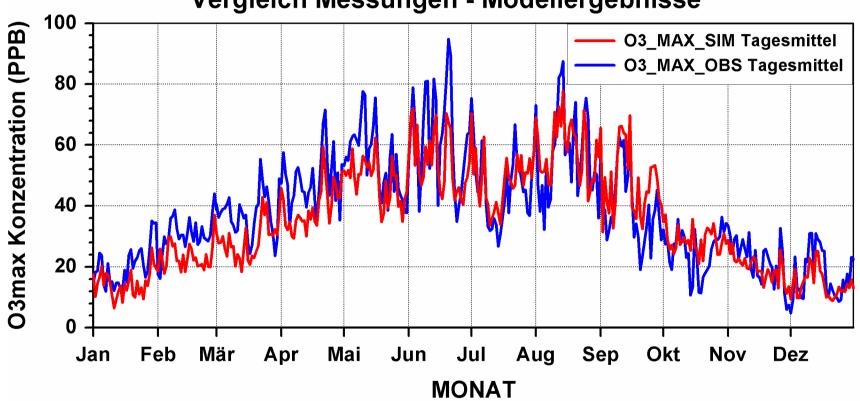

basierend auf 427246 Stundenwerten: -2.6 ppb

Bias = S-O


Relative Abweichung = (S-O) / O

Tagesmittel O3 (ppb) über alle Stationen

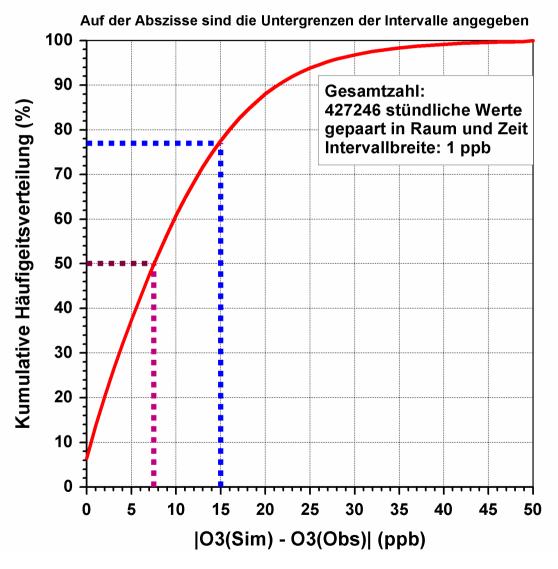
Vergleich Messungen - Modellergebnisse


Mittlerer BIAS: -2.6 ppb

Tagesmittel O3max (ppb) über alle Stationen

räumliche Korrespondenz, zeitlich: Darstellung des absoluten Tagesmaximums

Vergleich Messungen - Modellergebnisse


Mittelwerte:

OBS: 38.7 ppb **SIM:** 35.7 ppb

Mittlerer BIAS: -3.0 ppb Mittlerer Rel. BIAS: -13.1%

in der Helmholtz-Gemeinschaft

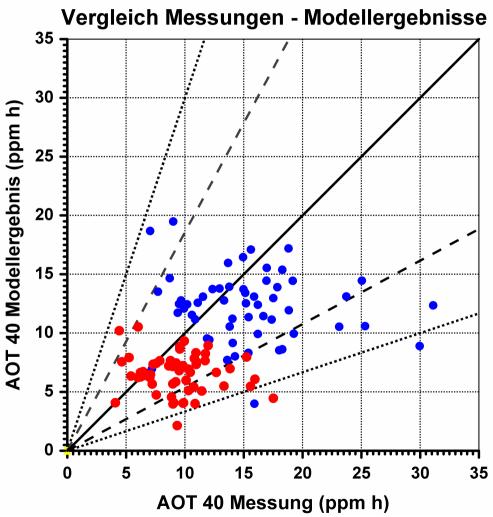
O3: CFD für das Jahr 2000

Vergleich mit Nester and Panitz, 2004, Int. J. Env. Poll., 22, 87 – 107, basierend auf Evaluierung von drei unterschiedlichen Episoden

- •TRACT September 1992
- •FLUMOB Juli 1994
- •BERLIOZ Juli 1998

$$\Delta 15 = 76\%$$

$$\Delta 8 = 50\%$$


in der Helmholtz-Gemeinschaft

Zwei statistische Größen, die die Luftqualität in Bezug auf Ozon beschreiben:

AOT40 (ppb h) (accumulated amount of ozone above 40 ppb) Indikator für das Risiko von Schäden an der Vegetation	$AOT40_{C} \\ Kritischer Wert: 3 ppm h$ $AOT40_{F} \\ Kritischer Wert: 5 ppm h$	AOT40 für landwirtschaftliche Produkte, z.B. Getreide Integrationszeitraum: Mai – Juli, 08:00 – 20:00 (EU Definition) AOT40 für Wälder Integrationszeitraum: April – September, 08:00 – 20:00	AOT 40 = ∫max (O ₃ – 40 ppb ,0)dt es werden nur Ozonkonzentrationen > 40 ppb berücksichtigt
SOMO35 (ppb d) (Sum of Ozone Means over 35 ppb) WHO Empfehlung als Indikator für gesundheitliche Auswirkungen	Jährliche Summe über die täglichen Maxima der 8-stündigen gleitenden Mittelwerte, die 35 ppb überschreiten	(EU Definition) Kritischer Wert: ?	$SOMO35 = \sum_{d=1}^{Ny} \max \left(A_8^d - 35ppb, 0\right)$ $N_y = \text{Anzahl der Tage eines Jahres}$ $A_8^d = \text{Maximum aller 8-stündigen}$ gleitenden Mittelwerte eines Tages

in der Helmholtz-Gemeinschaft

AOT40 (PPM H)

Anzahl der Stationen: 56

AOT40 für Wald

Einzelwerte:

Rel. Abweichung ≤ |30%|: 46 (82%) Rel. Abweichung ≤ |50%|: 54 (96%)

Mittelwerte

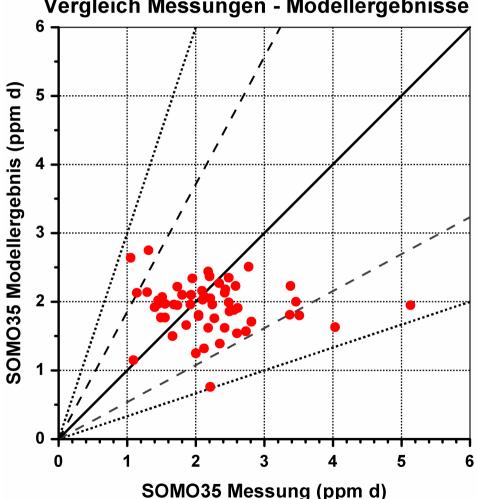
Mittelwert Messwerte: 15.3 ppm d Mittelwert Simulation: 12.3 ppm d

Mittlere rel. Abweichung: -9.4 %

 AOT40 für landwirtschaftl. Produkte Einzelwerte:

Rel. Abweichung ≤ |30%|: 38 (68%) Rel. Abweichung ≤ |50%|: 54 (96%)

Mittelwerte


Mittelwert Messwerte: 9.4 ppm d Mittelwert Simulation: 6.6 ppm d Mittlere rel. Abweichung: -16.6 % Definition Relative Abweichung:

(SIM-OBS)/(SIM+OBS)

in der Helmholtz-Gemeinschaft

SOMO35 (ppm day)

Anzahl Stationen: 56

Einzelwerte:

Rel. Abweichung <= |30%|: 48 (86%) Rel. Abweichung <= |50%|: 56 (100%)

Mittelwerte:

Mittelwert Messwerte: 2.2 ppm d Mittelwert Simulation: 1.9 ppm d

Mittlere Abweichung (BIAS): -0.3 ppm d

Mittlere Rel. Abweichung: -4.9%

Relative Abweichung: Definition: (S-O) / (S+O)

Zusammenfassung und Ausblick

Zusammenfassung

Stand der Arbeiten

- Meilensteine M1 und M2 (Erstellung eines Präprozessorsystems zur Aufbereitung notwendiger Eingangsdaten für KAMM/DRAIS, Durchführung der Detailsimulationen, Bereitstellung der Klassifizierungssoftware) sind gemäß Zeitplan erreicht.
- Die Arbeiten zum Erreichen des Meilensteins M3 laufen (Durchführung der Klassifizierungen, Berechnung statistischer Kenngrößen aus den Ergebnissen der Detailsimulation und den Messdaten)

Zusammenfassung (cont'd)

2. Bisherige Ergebnisse

Vergleich Modellergebnisse mit Messdaten

- Die Ergebnisse der Detailsimulation sind mit Blick auf das eigentliche Ziel des Projekts und unter Berücksichtigung von Bedingungen wie Auflösung des Rechengitters und Unsicherheiten in den Eingangsdaten zufriedenstellend.
- Der Jahresgang sowohl der Tagesmittelwerte der Ozonkonzentration als auch der maximalen Ozonwerte konnte im Mittel über alle Messstationen qualitativ sehr gut wieder gegeben werden.
- > Selbst tägliche Variationen finden sich in den Simulationsergebnissen wieder.
- Für jede Station individuell berechnete Jahresmittelwerte stimmen ebenfalls gut überein. In 63% aller Fälle ist die relative Abweichung zwischen Modell- und Messdaten ≤ |15%|, in 86% ≤ |30%|. Im Mittel beträgt sie etwa -8%
- Bei den Stickoxiden (NO_x) (nicht gezeigt) sind die Abweichungen zwischen Modellergebnissen und Messdaten größer als bei Ozon (z.B. -28% bei den Jahresmittelwerten). Unter Berücksichtigung der Unsicherheiten in den Emissionsdaten ist das aber akzeptabel.
- Statistische Kenngrößen für die Luftqualität (z.B. AOT40 und SOMO35) lassen sich ebenfalls zufriedenstellend aus den Modellergebnissen berechnen

Zusammenfassung (cont'd)

Eignung der Klassifizierungsmethoden

- Die CART-Methode ist hinsichtlich der Untersuchungen langfristiger Luftqualität kein geeignetes Mittel zur Klassifizierung der meteorologischen Situationen.
- Bei dieser Methode muss eine Zielvariable (z.B. die maximale Ozonkonzentration) vorgegeben werden und das Ergebnis der Klassifizierung hängt von dieser Vorgabe ab.
- CART liefert somit keine Klassen, die als repräsentativ für das Spektrum aller möglichen meteorologischen Bedingungen angesehen werden können. Die Methode wird daher nicht weiter betrachtet.

3. Ausblick

Meilensteine 3 und 4:

- Durchführung der Klassifizierung der meteorologischen Bedingungen des Jahres 2000 auf Basis der Ergebnisse des EURAD Modells
- Vergleich der statistischen Kenngrößen und Beurteilung der Klassifizierungsmethoden
- Nennenswerte Verzögerungen bei der Ereichung des Projektziels sind derzeit nicht zu erwarten