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Abstract

Heat waves are highly impactful extreme events with significant health, social, and economic effects.

Accurate prediction of the timing and intensity of heat waves is crucial for effective preparedness.

Recently, data-driven weather prediction models based on machine learning techniques have

demonstrated performance comparable to physics-based Numerical Weather Prediction (NWP)

models in medium-range weather forecasting. However, their ability to predict extreme events

remains uncertain due to the rare occurrence of such events in training data. Moreover, it remains

uncertain whether data-driven models can learn the underlying physical mechanisms during extreme

events. Based on this, the thesis aims to evaluate the predictive skill of data-driven models in heat

wave prediction and interpret their predictions in the context of the underlying physical processes

they represent, using the record-breaking 2021 Pacific Northwest Heat Wave as a case study.

This study compares three data-driven weather prediction models (FourCastNet1, FourCastNet2,

and Pangu-Weather) with the state-of-the-art NWP model of Integrated Forecasting System (IFS).

Ensemble forecasts are generated for the two versions of FourCastNet with perturbations to initial

conditions and compared with the IFS ensemble forecast (ENS). Additionally, deterministic

forecasts from Pangu-Weather and FourCastNet2 are included for comparison with IFS high-

resolution forecast (HRES).

The performance of these models in predicting peak magnitude during the 2021 Pacific Northwest

Heat Wave and associated anomalous large-scale circulation patterns was evaluated. FourCastNet2

and IFS ensembles skillfully predicted the peak magnitude of the heat wave at a lead time of 7 days.

Pangu-Weather showed skillful prediction 8 days ahead but had the largest errors at a lead time

of 10 days. FourCastNet1 only captured the peak 5 days ahead. Regarding anomalous large-scale

circulation patterns, IFS ensembles showed skill 8 days ahead, while FourCastNet2 had skillful

predictions 7 days ahead, and Pangu-Weather demonstrated skill as early as 9 days but almost had

no skill at a lead time of 10 days. FourCastNet1 struggled to accurately represent the circulation

pattern even at short lead times.

Analyzing the different member groups of FourCastNet2 ensembles based on their predictive

skill of the heat wave suggests that FourCastNet2 might effectively learn the link between the

anomalous large-scale circulation patterns and high-temperature anomalies during the heat wave.

Vertical temperature and humidity profiles indirectly investigate local processes involving land-

atmosphere feedback and upper-tropospheric heat. Compared to the data-driven models, IFS

exhibits more robust forecasts across lead times, showing earlier emergence of upper-tropospheric

heat and subsequent lower-level heat development. Notably, both Pangu-Weather and FourCastNet2

experienced an overestimation of low-level atmospheric moisture, while IFS did not exhibit any.

This was further indicated by the dampened diurnal evolution of near-surface air temperature of

data-driven models compared to IFS.
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The results highlight that while data-driven models showed promising performance in predicting

heat wave magnitude over larger regions and representing large-scale circulation patterns, they

exhibit uncertainty in representing local thermodynamical processes. Since this study is based on a

case study level, a more detailed examination of systematic errors in data-driven models is needed

for future evaluation. Additionally, sensitivity tests are necessary to understand whether data-driven

models can learn the complex dynamics and feedbacks.
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1 Introduction

Heat waves are one of the most impactful natural hazards, described as events with excessively

high temperatures that continue for several consecutive days. As extreme heat typically affects

human health, ecosystems, and infrastructure, it garners significant public interest. Except for its

direct high impact, the associated risk of wildfire and drought also captures significant attention

(Domeisen et al., 2022b). With higher future global warming levels, changes in hot temperature

extremes will be more significant in frequency and intensity (IPCC, 2021). Given these huge

impacts and the increasing frequency and magnitude of heat waves, there is a growing societal and

political demand for accurate forecasting of the timing and intensity of such events across a wide

range of lead time (Barriopedro et al., 2023).

A recent record-shattering extreme heat event was the 2021 Pacific Northwest Heat Wave. From

25 June to 1 July 2021, the Pacific Northwest region of Canada and the United States experienced

an unprecedented and extremely severe heat wave. Compared to the 1981-2021 climatology, near-

surface air temperature anomalies soared to extreme highs of 16-20°C (White et al., 2023). On 29

June, the village of Lytton in Canada set a new national temperature record of 49.6°C, surpassing

the previous record by an extraordinary 4.6°C. This temperature was reportedly the highest ever

recorded north of 45° latitude worldwide (Environment and Climate Change Canada, 2022). This

heat wave resulted in an estimated 740 excess deaths in the province of British Columbia due to heat-

related issues (Henderson et al., 2022). While several subseasonal-to-seasonal prediction models

captured this above-normal temperature signal with a lead time of 2–3 weeks (Lin et al., 2022;

Emerton et al., 2022), the unprecedented magnitude of the heat wave was only accurately predicted

by state-of-the-art numerical weather prediction models within a week (Lin et al., 2022; Emerton

et al., 2022; Oertel et al., 2023). This relatively short lead time is due to complex interactions

between a chain of synoptic events, causing a predictability barrier (Oertel et al., 2023).

The high surface temperature anomaly during the 2021 Pacific Northwest (PNW) heat wave is

strongly linked to a high-amplitude upper-level ridge, also known as a "heat dome," causing high

surface temperature anomaly by advection, subsidence, and clear-sky conditions (Zschenderlein

et al., 2020; Neal et al., 2022). Previous studies have highlighted the significant role of upwind

latent heating, concentrated in two separate Warm Conveyor Belts (WCBs) from the tropical West

Pacific, in initiating and maintaining this upper-level ridge during the event (Oertel et al., 2023;

Neal et al., 2022). This process was also a key driver of mid- to upper-tropospheric heat, with

positive temperature anomalies aloft being crucial for surface heat accumulation by suppressing

moist convection (Zhang and Boos, 2023; Neal et al., 2022). Additionally, desiccated soils and

mountainous terrain in this region facilitated the establishment of deep atmospheric boundary
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1 Introduction

layers, allowing this warm aloft in the mid-to-upper-troposphere above the heat wave region to

directly contribute to surface temperatures through mixing into the deep atmospheric boundary

layer. Further, the dry soil conditions also acted to amplify surface heating through reducing

evaporative cooling.(Schumacher et al., 2022).

NWP models is the dominant method for medium-range weather forecasting, relying on solving

governing equations to predict future weather states. Over the past four decades, the performance of

NWP models has improved due to advancements in science and technology, including better repre-

sentation of unresolved processes, ensemble methods, objective analysis techniques, and increased

supercomputing power (Bauer et al., 2015). However, these advancements have also introduced

challenges for future NWP models. Specifically, the tremendous computational resources required

for further improvements present new constraints and challenges for the development of future

NWP models.

Recently, data-driven weather forecasting models based on machine learning methods have demon-

strated significant improvement in weather prediction. Since 2022, a series of data-driven models

have been developed, representing significant advancements in the field (Pathak et al., 2022; Bi

et al., 2023; Lam et al., 2022; Nguyen et al., 2023; Chen et al., 2023a; Chen et al., 2023c; Chen et al.,

2023b; Lessig et al., 2023; Price et al., Price et al.). Contrary to NWP models based on physical

laws governing atmospheric processes, these recently developed data-driven weather forecasting

models trained with ERA5 reanalysis (Hersbach, 2023) directly learn patterns and relationships

statistically. While these models often require significant computational resources during training,

trained models can deliver rapid predictions during inference, thus reducing computational costs

significantly (de Burgh-Day and Leeuwenburg, 2023). These models focus on weather forecasting

tasks from the medium to sub-seasonal range and have demonstrated impressive and comparable

forecast scores to outperform deterministic state-of-the-art numerical weather prediction model

(Ben Bouallègue et al., 2024; Rasp et al., 2023). All these features make data-driven weather

forecasting models a compelling alternative to traditional numerical methods.

However, these data-driven models also bring potential risks, particularly concerning extreme

events. The data-driven models are most trained with ERA5 reanalysis data from 1979, and a

limited training period may result in undersampling extreme events (Ebert-Uphoff and Hilburn,

2024). Additionally, these models are often optimized using local error measurements averaged

over large regions, potentially compromising the prediction of specific meteorological features

related to extreme events and introducing validation bias (McGovern et al., 2024).

Given the significant potential benefits and risks associated with data-driven weather prediction

models, it is crucial to urgently evaluate these models, especially for forecasting extreme events.

Proper interpretation is essential to ensure they can safely and effectively meet public needs.

(Ebert-Uphoff and Hilburn, 2024). Several attempts have been made to evaluate the performance

of data-driven models in predicting extreme events, including extreme temperatures, wind speed

extremes, tropical cyclones, and storm systems (Ben Bouallègue et al., 2024; Lam et al., 2022;

Charlton-Perez et al., 2024; Pasche et al., 2024; Olivetti and Messori, 2024). Most evaluation

studies focus on comparing threshold exceedances between model predictions and validation across
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large regions (Ben Bouallègue et al., 2024; Lam et al., 2022; Olivetti and Messori, 2024). Although

some studies have compared the predictive skill of deterministic forecasts for standard variables on

a case-study level (Charlton-Perez et al., 2024; Pasche et al., 2024), little attention has been given

to the link between model performance and specific mechanisms. Consequently, it remains unclear

whether a model’s predictive skill for extreme events is associated with accurately representing

relevant processes. A concern with data-driven models is that they may not include all relevant

variables or adequately capture dependencies between predicted variables, leading to forecast

uncertainty (Ebert-Uphoff and Hilburn, 2024).

To address the overarching questions, this thesis aims to evaluate the predictive skill of data-driven

models for heat wave prediction and examine the connection between their predictions and the

underlying physical processes they represent. Given its exceptional nature, the 2021 PNW Heat

Wave is chosen as the case study, which presents a significant test for data-driven models. A detailed

case study of this event will be conducted to address the following research questions:

1. At what lead time do data-driven models start providing skillful predictions of the
intensity for the peak of the heat wave and the associated anomalous atmospheric
circulation pattern, and how do they compare with numerical weather prediction
models?

2. To what extent can data-driven models capture the relationship between extreme tem-
perature anomalies and the associated anomalous large-scale atmospheric circulation
patterns?

3. How do data-driven models represent the local thermodynamical processes during the
heat wave?

The outline of this Master thesis is as follows: Chapter 2 begins by laying out the theoretical

background of this thesis. The data and method used are introduced in Chapter 3. Chapter 4

presents the evaluation of the forecast of data-driven models and compares it with the conventional

numerical weather prediction model at the peak of the selected heat wave. Chapter 5 discusses

and presents the large-scale circulation patterns and processes during the heat wave and their

representation in data-driven models. The final chapter (Chapter 6) summarizes the results, answers

the research questions, and discusses the implications of the findings.
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2 Theoretical Background

This chapter begins by providing background information on NWP and data-driven weather predic-

tion. Section 2.1.1 introduces deterministic numerical weather prediction. Since understanding and

quantifying forecast uncertainty is crucial for the extreme weather forecasting explored in this thesis,

a significant focus is placed on ensemble forecasts. Therefore, the concept of ensemble forecasts

will be introduced in the subsequent section (Section 2.1.2). Section 2.2 covers the development

and outlook of data-driven weather prediction. Additionally, gaining insights into the important

drivers and feedbacks influencing heatwave development is addressed in Section 2.3.1. Finally, the

chapter concludes with an overview of the 2021 Pacific Northwest Heat Wave in Section 2.3.2.

2.1 Numerical Weather Prediction

2.1.1 Deterministic numerical weather prediction

The development of NWP models can be traced back to the early 1900s when Bjerknes (1904) first

stated that predicting future atmospheric state is an initial-value problem. To predict the future state

of the atmosphere, a full set of partial differential equations that govern atmospheric motion and

evolution must be integrated into the next time step. These equations include the Navier-Stokes

equations for fluid motion, the mass continuity equation, the first law of thermodynamics, and the

ideal gas law. Since there is no analytical solution for these partial differential equations, numerical

methods are used to achieve numerical integration in discrete grid space. However, the governing

equations do not resolve all processes, independent of whether the equations are solved analytically

or numerically. The physical processes on unresolved scales are incorporated into the equations

for the resolved scales through source terms representing mass, momentum, and heat. Due to the

typically unresolved nature of these processes, the physical processes on unresolved scales must be

parameterized to describe their interaction with the resolved scales (Bauer et al., 2015).

According to this approach, two main challenges needed to be addressed to make accurate pre-

dictions: obtaining accurate initial conditions and understanding the laws governing atmospheric

behavior (Pu and Kalnay, 2018). Over the next century, continuous and rapid developments focused

on solving these two problems and transforming NWP from a proposition into an operationally

practical tool. To obtain a more realistic initial state of the atmosphere, observing systems were de-

veloped. In parallel, data assimilation techniques were developed to fill the gap between incomplete

observations and the required initial field, which allows for the integration of observational data
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with short-range weather forecasts to produce more accurate initial conditions possible (Al-Yahyai

et al., 2010).

Despite these continuing advancements in NWP, the predictability of the future atmospheric state is

still limited by the incorrect representation of physical processes, parameterizations in the models,

and the uncertainty from initial conditions. The ability to make predictions based on the currently

available information and models is referred to as practical predictability. However, even with

perfect models and initial conditions, there is still a theoretical limit to the predictability of the

atmospheric state, which is known as intrinsic predictability. Due to the chaotic nature of the

atmosphere (Lorenz, 1963), even infinitesimally small initial errors in a deterministic, nonlinear

system like the atmosphere can lead to vastly different outcomes over time; this is also referred to

as the "butterfly effect." Thus, a single deterministic forecast can only provide a prediction within a

certain range and is unable to give quantitative information about the future atmospheric state. As

a result, ensemble forecasting has been developed to provide quantitatively reliable information.

This is also the direction in which NWP has shifted over the past 25 years, as stated by Buizza and

Leutbecher (2015).

2.1.2 Ensemble forecasts

NWP inherently deals with uncertainties arising from two main sources: initial condition errors

and model errors (Bauer et al., 2015). Despite the development of a relatively comprehensive

observing system and data assimilation techniques, initial conditions for NWP models can only be

estimated with finite accuracy. As a result, NWP models always start calculating forecasts from an

atmospheric initial state that differs from the truth, and even a small error in the initial state will

grow significantly with lead time. Due to the inherent non-linear nature of the governing equations,

the growth of initial error is flow-dependent. Moreover, the models themselves are not perfect.

The numerical representation of atmospheric dynamics and physics introduces model uncertainties

related to factors such as the truncation of the equations of motion and the parameterization of

sub-grid scale processes like cumulus convection. These two types of errors cannot be separated, as

the initial conditions are estimated using a forecast model, meaning that initial condition errors are

influenced by model deficiencies (Leutbecher and Palmer, 2008).

Ensemble forecasting offers a practical approach to addressing the complexity of stochastic dy-

namic equations by approximating them using the Monte-Carlo method (Leith, 1974). This method

randomly sampled a finite number of points from the probability distribution representing the

uncertainty in the atmosphere’s initial state. These sampled points collectively form the ensemble

of initial conditions, each point representing a possible initial state. Instead of explicitly predicting

the movement of the whole probability distribution through phase space, ensemble forecasting

approximates it by tracking the trajectories of the ensemble members through the phase space.

(Wilks, 2011).
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2.1 Numerical Weather Prediction

Figure 2.1: Schematic illustration of concept in ensemble forecasting, in an idealized two-dimensional phase
space. This figure is adapted from Wilks (2011).

Figure 2.1 illustrates the concept of ensemble forecasting in a two-dimensional phase space. The

crossed circle on the left side of the initial time ellipse represents the best initial value, which is the

start of a deterministic forecast. The solid line represents the evolution of the deterministic forecast

within the phase space, starting from the initial forecast through to the intermediate and final

projections. The eight circles surrounding the central circle within the ellipse represent additional

initial states, collectively approximating the variation present in the full distribution from which

they were sampled. Initially, all ensemble members are very similar, but as the forecast progresses,

they diverge due to the inherent chaotic nature of atmospheric dynamics. At the intermediate

forecast lead time, all members produce similar forecasts, which means the forecast uncertainty is

not much larger than at the initial time. However, between the intermediate and final forecast lead

time, the trajectories diverge, thus the larger ellipse indicates the large uncertainty of the forecast.

The large dispersion at the end is from initial condition error and model error, which is a single

deterministic forecast unable to represent (the crossed circle at the final forecast lead time). The

next two sections will introduce the methods used by operational forecast centers to choose the

initial conditions to represent initial uncertainty and model uncertainty into those initial conditions.

Representation of initial uncertainty in ensemble forecasts

It must be noted that although the representation of initial uncertainty and model uncertainty

are introduced separately, they are usually addressed together, not independently. In operational

practice, producing each ensemble member requires rerunning the model every time, which implies

a substantial computational cost. The limitation of computer power makes the selection of certain

members to sufficiently represent the uncertainty become necessary. However, the actual probability

density function of initial condition uncertainty is unknown, and it changes from day to day, which

makes the selection of random samples from this distribution impossible (Wilks, 2011).

Various techniques are employed in ensemble forecasting to represent initial uncertainty in ensemble

weather forecasting. These techniques can be categorized based on whether they aim to sample the
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probability density function or selectively sample uncertainty dynamically in significant directions

in state space. For instance, the Canadian Meteorological Service ensemble is based on initial

conditions from an ensemble Kalman filter, where observations are incorporated into the model

(Houtekamer et al., 2005). Though it is a computationally efficient data assimilation method,

it has a limitation because it does not allow for the localization of ensemble-based covariances.

Localization is a technique used to address the issue of spurious long-range correlations that

arise due to sampling uncertainty in ensemble-based covariance estimates. By filtering out these

correlations, localization helps to improve the accuracy and reliability of the assimilation process

(Leutbecher and Palmer, 2008).

Another technique focuses on sampling the most dynamically relevant aspects of initial uncertainty.

For example, the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble

perturbs initial conditions based on leading singular vectors. They identify the initial uncertainties

that will lead to the largest forecast uncertainties at the end of the specified period. By focusing on

these dynamically most relevant directions, the singular vector approach ensures that the ensemble

captures the most significant sources of uncertainty (Leutbecher and Palmer, 2008).

Representation of model uncertainty in ensemble forecasts

Apart from initial uncertainty, model uncertainty must be explicitly represented in ensemble forecast

systems to prevent underdispersion. While initial condition uncertainty arises from imperfect

observations of the atmosphere’s starting state, model uncertainty stems from the inherent need to

solve the governing equations numerically rather than analytically. Furthermore, the representation

of unresolved scales of motion through parametrizations also contributes to model uncertainty

(Leutbecher and Palmer, 2008).

In general, there are three methods for representing model error: the multi-model ensemble,

the perturbed parameter ensemble, and stochastic-dynamic parametrization. The multi-model

involves combining results from multiple quasi-independent climate models developed by different

institutes around the world, and it has shown enhanced reliability over single-model ensemble

forecasts (Leutbecher and Palmer, 2008). The perturbed parameter ensemble assumed that the

correct tendency can be obtained by suitably perturbing the parameter values within a given

parameterization scheme. However, for stochastic-dynamic parametrization, instead of using bulk

formulas or an ensemble of parameterizations, it introduces stochastic elements to represent the

inherent randomness and variability of subgrid processes (Palmer et al., 2005). For example, the

IFS ensemble systems employed a Stochastically Perturbed Parametrisation Tendencies (SPPT) to

represent model uncertainty with perturbations. This approach introduces random perturbations

to the tendencies calculated by the physical parameterization schemes in the model, which can

involve adjusting a distribution to control the characteristics and properties of the model error

representation. Thus, compared to ensembles with initial perturbation only, the ensembles that

account for model uncertainty are more reliable and can avoid being underdispersive (Palmer et al.,

2009, page 2).
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2.2 Data-driven Weather Prediction

In all, the enhancement of the predictive skill of NWP has been achieved through scientific

developments through advancements in better representation of unresolved processes in global

models, the development of ensemble methods that provide forecast uncertainty estimates, and

the development of techniques to determine the initial state. In addition, the increased computing

power has enabled these advancements and contributed to the steady increase in forecast skills. The

future NWP system will involve more computational tasks due to the need for higher resolution,

but we can not expect future high-performance computing technology to keep developing, which

will impose new constraints on addressing the science challenges (Bauer et al., 2015).

2.2 Data-driven Weather Prediction

Data-driven refers to an approach that primarily relies on gathering and analyzing data, in contrast

to methods driven by process or theory (de Burgh-Day and Leeuwenburg, 2023). In the area

of machine learning (ML), all ML techniques are data-driven (Schultz et al., 2021). Recently,

Data-driven models have emerged as a promising alternative to traditional NWP models in weather

forecasting. They extract information from large amounts of historical data using advanced

machine learning techniques that do not rely on explicit physical equations to learn patterns and

make forecasts (Reichstein et al., 2019).

These models are also often interchangeably referred to as "deep learning models" (Olivetti and

Messori, 2023), "machine learning-based models" (de Burgh-Day and Leeuwenburg, 2023), or

"AI models" (Ebert-Uphoff and Hilburn, 2023). To maintain consistency and avoid confusion

throughout the master thesis, the term "data-driven weather prediction model" or "data-driven

model" will be used to refer to the complete replacement of NWP models by a data-driven approach.

The data-driven approach has shown the potential to improve forecast skill, especially for short-term

predictions, and can complement or even replace computationally expensive NWP models in certain

situations (Rasp et al., 2018). However, further challenges remain, including those related to the

necessity of large and high-quality datasets, the interpretability of the models, and the possibility of

extrapolating beyond the training data (Schultz et al., 2021).

2.2.1 Data-driven approaches for emulating components of numerical
weather prediction models

Machine learning is an increasingly powerful tool that has proven to be computationally efficient.

Much research has been conducted on applying machine learning to replace various components in

the NWP workflow to increase efficiency.

The two fundamental elements in NWP models are the parameterization scheme and the dynamical

core (see Fig. 2.2), and they are the two components that consume significant computational time.

For example, within the ECMWF IFS model, the parameterization scheme accounts for about

one-third of the total computational cost during model running (Chantry et al., 2021). Machine

Learning (ML) is utilized as an alternative tool to emulate and speed up parameterization by
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2 Theoretical Background

Figure 2.2: Idealized workflows of current numerical weather prediction(left), next-generation weather
prediction with individual components substituted or augmented by ML and DL
techniques(center), and purely data-driven Deep Learning (DL) weather forecasting
systems(right). This figure is adapted from Schultz et al. (2021).

either emulating the whole parameterization scheme or sub-components of the scheme (Gettelman

et al., 2021; Rasp et al., 2018). The Partial Differential Equations (PDEs) that represent the

dynamical core in NWP models govern the fundamental physical processes of the atmosphere. The

solving process is iterative and must be solved at every time step and grid point, making NWP

models computationally intensive. There has been growing research exploring ML techniques to

accelerate the solving process in the preconditioning and execution of solvers (Ackmann et al.,

2020). Additionally, ML techniques have been employed in post-processing and downscaling to

refine model raw output and increase accuracy and resolution (Harris et al., 2022). In addition to

using machine learning techniques to enhance NWP models as a combination with physics-based

models, a more radical and ambitious approach would be a fully data-driven replacement of the

entire NWP model to provide forecasts from short-term to seasonal ranges (Figure 2.2, third

column). This will also be the focus of the next section.
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2.2 Data-driven Weather Prediction

2.2.2 The development of data-driven weather prediction models

Early developments of data-driven weather prediction models

Dueben and Bauer (2018) took the first step and discussed the potential of Neural Networks for

global weather prediction. They developed a toy model based on neural networks and compared

it to the Lorenz 95 model, which has low complexity and includes only basic equations at coarse

resolution. In their study, they only focused on predicting the geopotential height at 500 hPa and

concluded that it is ’fundamentally’ possible to generate global weather forecasts with coarse

resolution for short-range prediction. The authors argued that while neural network models may

excel in short-range regional forecasts, they would not be competitive on medium-long-range and

climate timescales where maintaining physical consistency is key.

Rather than only extracting information from Global Circulation Models (GCMs) using machine

learning techniques, Scher (2018) combined Convolutional Neural Networks (CNNs) with an

autoencoder architecture to directly emulate the complete physics and dynamics of the GCMs

themselves. Their conceptual study proved to be very promising, with the trained neural network

able to skillfully predict the model state many time steps ahead while producing stable climate

runs whose statistics closely matched those of the original GCM. Importantly, their neural network

outperformed persistence and climatology baselines, which form some of the most important

benchmarks for skill in weather forecasting. However, the GCM used was highly simplified, lacking

both seasonal and diurnal cycles, oceans, and orography and using a coarse 625km resolution.

Building on this proof-of-concept, Scher and Messori (2019) adopted the same network architecture

developed in (Scher, 2018) but applied it with more complex GCMs. Their study assessed for

the first time how increasing the complexity of the underlying GCM affects the skill of the neural

networks. While the neural networks continued demonstrating weather forecasting skills superior to

baseline methods even for the more complex GCMs, the full climate statistics, particularly seasonal

cycles, proved hard to reproduce. This highlighted the difficulty faced when using neural networks

to emulate the behavior of comprehensively complex GCMs incorporating processes like seasonal

variations.

After, subsequent studies focused on training Neural Network (NN) models using historical weather

data to produce forecasts. Weyn et al. (2019) firstly trained a Convolutional Neural Network (CNN)

on 24 years of ERA5 reanalysis data to predict 500 hPa geopotential heights and 300-700 hPa

thicknesses over the Northern Hemisphere for medium-range forecasts. Their CNN application

improved medium-range predictions over the persistence, climatology, and barotropic model for

500 hPa heights but was not better than operational weather forecasting models. Building on this

work, Weyn et al. (2020) similarly developed a deep U-Net CNN for multi-meteorological variable

forecasting. This model was significantly better compared to the previous one by remapping the

data to a cubed-sphere grid, which minimized the distortions during convolution operations on the

cube faces and supplied natural boundary conditions across face edges. They added additional

capabilities to the CNN encoder-decoder architecture and utilized sequence prediction techniques.
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With these improvements, the new data-driven model showed similar performance with the coarse-

resolution ECMWF IFS model in global Root Mean square Error (RMSE) and Anomaly Correlation

Coefficient (ACC). However, its performance still lagged behind high-resolution operational models

and subseasonal-to-seasonal (S2S) forecasting systems. Despite these limitations, the data-driven

model has demonstrated huge potential in competing with numerical weather prediction models.

Previous works showed the potential of using a CNN to produce skillful data-driven weather

forecasts (Weyn et al., 2019, 2020; Rasp and Thuerey, 2021). Keisler (2022) explored using Graph

Neural Networks (GNNs) instead of CNNs for data-driven weather forecasting. Their GNN model

predicted 6 important atmospheric variables at 13 pressure levels in an autoregressive-iterative

setup at 6-hour time steps. Their model outperforms the results of previous data-driven models

from Rasp and Thuerey (2021) and Weyn et al. (2020). Its forecast skill is comparable with the

current (in 2022 when the paper was published) operational global forecast system (GFS) model

from the National Oceanic and Atmospheric Administration (NOAA) but still falls behind the

higher-resolution IFS model from ECMWF. The authors argued three main reasons for the GNN’s

improved performance compared to models based on CNN: Firstly, the GNN is more flexible

in handling the spherical geometry. Secondly, the forecast time step is relatively short, 6 hours.

Thirdly, the Graph Neural Network (GNN) models a denser 3-D atmospheric state with more than

one pressure level.

Advances in data-driven weather forecasting models since 2022

Significant progress has been made in data-driven weather prediction models since 2022 based on

foundational key works before, with several models showing comparative and even outperforming

the state-of-the-art IFS high-resolution models.

Pathak et al. (2022) employed a fourier-based neural network to develop FourCastNet. Trained

with ERA5 reanalysis data, FourCastNet can produce 20 variables, including challenging ones

like surface wind and precipitation, on five vertical levels with high horizontal resolution. This

high resolution allows the model to resolve extreme events, such as tropical cyclones and atmo-

spheric rivers, and allows for comparison with the high-resolution IFS of ECMWF. FourCastNet

demonstrates competitive skill with the IFS high-resolution model up to a lead time of 7 days.

In the same year, Bi et al. (2023) used vision transformer architecture, and their model PanguWeather

first reached better performance than the IFS high-resolution model for RMSE and ACC. Compared

to FourCastNet, instead of predicting variables at each level separately like FourCastNet, it takes

input weather variables with 13 vertical levels and feeds them into a single deep network, allowing

vertical information flow (de Burgh-Day and Leeuwenburg, 2023). The second innovation was in

the use of hierarchical temporal aggregation, where four versions of the model were used to predict

at different lead times (1h, 3h, 6h, 24h) to avoid cumulative error from too many iterations. Lam

et al. (2022) used GNNs to train their model GraphCast, which exceeds the skill of Pangu-Weather.

GraphCast surpasses the ECMWF’s high-resolution model on 90.0 % of the 2760 variable and lead

time combinations.
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Until now, there are still new models that keep coming out and target different needs of weather

and climate modeling tasks. While previous models were mainly trained with ERA5 reanalysis,

recent developments have broadened the scope of training data. Nguyen et al. (2023) introduced

ClimaX, which was trained with heterogeneous climate datasets, enabling the model to generalize

to diverse tasks based on different temporal and spatial horizons of interest. At the same time,

there are models (Chen et al., 2023a,c) which are specifically developed for working with longer

lead time predictions and have shown promising results. Besides, operational weather forecasting

centers, such as ECMWF, are actively engaged in developing their own data-driven models (Lang

et al., 2024).

While current state-of-the-art data-driven models have made remarkable achievements, most of

them still rely on reanalysis data for training. Moreover, given the usual sample amount of training

data, typically based on about 30 years of reanalysis data, substantial concerns have arisen regarding

performance in extreme weather forecasting. Olivetti and Messori (2024) argued that current models

are optimized for overall performance by averaging the forecast error, which may lead to poor

performance in capturing extreme weather events. Another challenge for data-driven models is the

development of probabilistic forecasts. Most models only target deterministic forecasts. A few

data-driven models such as FourCastNet (Pathak et al., 2022) and PanguWeather (Bi et al., 2023)

tried to generate ensembles by perturbing initial conditions, and Fuxi (Chen et al., 2023c) perturbed

the model parameters. There is still an open question regarding the methods for quantifying

uncertainties in data-driven models.

2.3 Heat Waves

Heat waves are often defined as prolonged periods with excessively high temperatures than normal.

Prolonged extreme temperatures from heatwaves can devastate agricultural crops, increase energy

demands, damage critical infrastructure, and trigger economic losses (Domeisen et al., 2022b).

With increasing global warming, heatwaves are projected to increase in frequency, intensity, and

duration in most regions (Perkins-Kirkpatrick and Gibson, 2017). Given the significant impact of

heatwaves, accurate prediction of these extreme heat events is therefore crucial for preparedness

and mitigating their widespread impacts on natural and human systems.

Heatwaves are typically defined based on a temperature threshold such as the 90th percentile or

higher, often requiring a persistence of at least three consecutive days (Domeisen et al., 2022b).

However, the specific definition can vary depending on the local climatology and associated impacts

(Alexander et al., 2006; Perkins and Alexander, 2013; Russo et al., 2015). While definitions may

differ across regions and applications, they generally aim to capture key heatwave characteristics

including frequency, intensity, timing, and duration.

Since this thesis focuses on a case study, a detailed theoretical background on heat wave definitions

and indices will not be covered. Instead, this section will introduce the processes that lead to

heatwave development. Section 2.3.1 will introduce the key drivers and feedbacks crucial for
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heatwave development, serving as the theoretical background for the discussion in Chapter 5. The

theoretical background will conclude with Section 2.3.2, which will cover the unprecedented nature

of the 2021 Northwest Pacific Heat Wave, the synoptic situation and near-surface air temperature

evolution, as well as the drivers and mechanisms of this specific heat wave event.

2.3.1 Important drivers and feedbacks in the heat wave development

Understanding the processes that influence heatwave development and identifying the physical

drivers of heatwaves allows models to represent these processes more accurately and provide

improved forecasts. Heatwaves can result from a wide range of spatial and temporal scale processes

with complex interactions (Barriopedro et al., 2023). Successful heatwave prediction requires

considering these processes across a range of time scales. However, the relative contribution of

each process and the necessary initialization can vary across different lead times (Domeisen et al.,

2022b).

For short-term predictions (2-3 days), essential processes include the formation and maintenance

mechanisms of quasi-stationary ridges or blocking patterns, anticyclonic flow anomalies, and

diabatic heating from surface sensible heat fluxes. However, models often struggle to represent these

flow patterns accurately (Grotjahn et al., 2015). On a time scale of up to 10 days, the representation

of Rossby wave packets and the Madden-Julian Oscillation (MJO) can improve predictability (Tian

et al., 2017; Fragkoulidis et al., 2018). For sub-seasonal scales, extreme heatwaves can show

predictability in ensemble models, where ensemble members gradually cluster and shift toward

warm anomalies (Domeisen et al., 2022a). The following discussion will present different processes

ranging from large-scale to synoptic-scale and local-scale feedbacks to understand better the drivers

and predictability of heatwaves across various time scales.

Atmospheric Blockings

In the extratropics, quasistationary anticyclonic flow anomalies, known as blockings in high latitudes

and upper-level ridges (weak blockings) in low to mid-latitudes, are the primary drivers of heat

waves. These anomalies disrupt the usual westerly flow, leading to a sharp transition from zonal to

meridional pattern, which is the essential feature of blocking (Kautz et al., 2021).

There are two traditional approaches to defining blocking: one focuses on anomalies, while the

other is based on absolute meteorological fields. Blocking can be identified using various dynamical

parameters, such as negative potential vorticity anomalies in the upper troposphere (Schwierz et al.,

2004), 500 hPa geopotential height (Tibaldi and Molteni, 1990), and potential temperature on the

dynamical tropopause (Pelly and Hoskins, 2003). From the anomaly perspective, a blocking event

can be identified by a 500 hPa geopotential height anomaly representing a reversal in the typical

meridional gradient of geopotential height.
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.

Figure 2.3: Blocking and high-temperature extremes. (a): Relative frequencies of northern hemispheric
summer blocking events. (b): Percentage of having a high-temperature extreme and a co-located
blocking. This figure is adapted from Pfahl and Wernli (2012)

Persistent blocking is strongly associated with extreme weather events, such as temperature and

precipitation extremes. Pfahl and Wernli (2012) found a strong connection between atmospheric

blocking and summer temperature extremes over large parts of the mid to high-latitude continents

in the Northern Hemisphere. This connection becomes even more evident when considering weak

blockings. Figure 2.3 shows that over large parts of high-latitude land regions, the percentage

of warm temperature extremes related to weak blocking can reach 70-80%. This connection is

particularly substantial over Siberia, Scandinavia, and the eastern North Pacific region.

Atmospheric blockings can create favorable conditions for surface temperature development through

several processes. In the outer range of the blocking, the anticyclonic circulation can affect

horizontal temperature advection. In the center of the blocking, persistent anticyclonic circulation

drives strong subsidence, leading to adiabatic warming. Furthermore, the subsidence results in clear-

sky conditions, enhancing shortwave radiation during the daytime (Trigo et al., 2004; Zschenderlein

et al., 2020). The formation and maintenance of blocking are linked to various mechanisms across

scales. Rossby wave-breaking events can strongly influence and lead to blocking events (Tamarin-

Brodsky and Harnik, 2024). At the local scale, since the blocking anticyclone is characterized by

a region of low potential vorticity air transported poleward within the upper troposphere, latent

heating could enhance the transport of low potential vorticity air from the lower troposphere upward

in warm conveyor belts, contributing to the formation of blocking (Madonna et al., 2014).
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Figure 2.4: Schematic of cyclone-relative airflows over surface features. Includes cold and warm fronts
(black), precipitation (dark blue), high TCWV (light blue), ascending warm conveyor belt
(WCB; red), low-level feeder airstream (FA; green), and descending dry intrusion (DI; yellow).
This figure is adapted from Dacre et al. (2019)

Warm Conveyor Belts

The Warm Conveyor Belt (WCB) was first identified through isentropic analysis of tropical cyclones.

In this coordinate system moving with the cyclone, three distinct airstreams were observed (Green

et al., 1966). It was further evidenced by using a Lagrangian approach, which identified its physical

features, such as maximum ascent, increased potential temperature, and decreased specific humidity

along the trajectory. This trajectory typically involves significant condensation and latent heating

during the ascent phase (Wernli and Davies, 1997; Madonna et al., 2014).

WCBs can be linked to heat waves through several mechanisms. According to Pfahl et al. (2015),

WCBs and the associated release of latent heat play a crucial role in the formation and maintenance

of atmospheric blocking. A significant portion of air masses involved in Northern Hemisphere

blocking undergoes heating of more than 2K within the three days before entering the blocking

system, with a median heating of over 7K. AS The latent heat released during the ascent of air

in WCBs can increase its potential temperature. This process also modifies potential vorticity

(PV): below the level of maximum diabatic heating, the increase in potential temperature generates

positive PV anomalies, while above this level, the decrease in heating leads to negative PV

anomalies, known as PV destruction (Wernli and Davies, 1997). These negative PV anomalies

brought by WCBs are crucial for the maintenance of atmospheric blocking and, consequently, for

heatwave development.

Atmopsheric Rivers

Atmopsheric Rivers (ARs) are defined as narrow corridors characterized by enhanced water vapor

transport, usually linked to low-level jets ahead of the cold front in the extratropical cyclone. The
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ARs were usually identified by integrated water vapor (IWV) and integrated water vapor transport

(IVT), but later the IVT method proved to be a more robust and appropriate parameter than IWV

because it better described the horizontal moisture transport both at low latitudes and high latitudes

(Ralph et al., 2020).

Though ARs are not typically important drivers during heat waves and are more important in leading

to heavy precipitation events. However, anomalous atmospheric rivers can transport moisture and

heat energy from low latitudes in the warm season. During the 2021 Pacific Northwest Heat Wave,

an anomalous summertime AR played a crucial role in transporting warm and moist air from

the Southeast Asian region all the way across the Pacific and made landfall over western North

America(Mo et al., 2022). Though there is still no clear mechanism about how the ARs affected this

heat wave, it likely provided moisture to the WCB airstream (Figure 2.4) and enhanced the latent

heating release, which was crucial for the maintenance of atmospheric blocking as we discussed in

the last section.

Land-atmosphere feedback and soil moisture deficit

In addition to the large-scale drivers mentioned earlier, regional to local feedback mechanisms can

also influence the onset and duration of heat waves. In the Planetary Boundary Layer (PBL), the

air directly interacts with the Earth’s surface through processes of evapotranspiration (combined

process of water evaporation from soil and transpiration from plants) and surface flux. The

interaction between air and surface is governed by the land energy and water balance, and soil

moisture plays an important role in these processes (Seneviratne et al., 2010).

Through evapotranspiration, moisture from the soil is transported back into the atmosphere. During

periods of high soil moisture, the evapotranspiration rate is high, leading to higher latent heat flux

and less sensible heat flux, resulting in lower surface temperatures. Conversely, during dry periods,

the reduction in soil moisture content leads to a low evapotranspiration rate, meaning more energy

is converted into sensible heat flux rather than latent heat flux, increasing surface temperature.

The increased surface temperature will further dry the soil, continuing this cycle (Seneviratne

et al., 2010). Fischer et al. (2007) investigated the role of land-atmosphere interaction in European

summer heatwaves. By examining four major heatwaves using climate model simulations, they

confirmed that soil moisture deficits and subsequent feedback mechanisms significantly amplify

temperature extremes during heatwaves.

Miralles et al. (2014) presented a conceptual framework illustrating how soil moisture deficits

and heat accumulation in the PBL contributed to extreme temperatures during mega-heatwaves.

Fig.2.5 shows that desiccated soils contributed to higher surface sensible heat fluxes, which transfer

more heat from the land surface to the overlying air, steadily heating the PBL. In addition to

surface heating, warm air from higher altitudes is entrained into the PBL, further adding heat. The

combined effect of surface sensible heat flux and warm air entrainment causes the PBL height

to expand. As the height of the PBL increases, more warm air is entrained. At night, the heat

generated during the daytime is preserved in the residual layer. Until the next day, the heat from the
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Figure 2.5: Conceptual model of land-atmosphere feedback. This figure is adapted from Miralles et al.
(2014).

residual layer is re-entrained into the PBL. Over several days of development, this heat cycle leads

to progressive heat accumulation in the PBL, enhancing soil desiccation and further escalating

near-surface air temperatures.

Thus, an accurate representation of soil moisture and its interaction with the atmosphere is crucial

for correctly simulating water and energy surface fluxes. For example, the Tiled ECMWF Scheme

for Surface Exchanges over Land (TESSEL) is the operational land surface model employed in the

IFS to simulate the evolution of soil conditions, vegetation states, and snow cover over continental

regions at various spatial resolutions (Balsamo et al., 2009)

2.3.2 The 2021 Pacific Northwest Heat Wave

Overview: the unprecedented nature of the 2021 Pacific Northwest Heat Wave

From 25 June to 1 July 2021, the Pacific Northwest region of Canada and the United States

experienced an unprecedented and extremely severe heatwave. Compared to the climatology from

1981 to 2021, near-surface air temperature anomalies soared to extreme highs of 16-20°C (Figure
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Figure 2.6: 3-day running mean of daily maximum near-surface air temperature anomalies with respect to
1981-2020 climatology, from June 23 to July 2, 2021, based on ERA5 reanalysis data. This
figure is adapted from White et al. (2023).

2.6). On June 29, the village of Lytton in Canada (indicated by the red triangle in Figure 2.6) set

a new national temperature record of 49.6°C, surpassing the previous record by an extraordinary

4.6°C. This temperature was reportedly the highest ever recorded north of 45° latitude worldwide

(Environment and Climate Change Canada, 2022). Tragically, the next day, a catastrophic wildfire,

exacerbated by drought conditions, devastated much of Lytton. This extreme heat event, far beyond

historical experience, had devastating consequences, resulting in an estimated 740 excess deaths in

the province British Columbia (Henderson et al., 2022).

This heatwave shattered numerous local historical records and ranked among the most extreme

heatwaves worldwide (Thompson et al., 2022). According to White et al. (2023), the 2021 PNW

heatwave was extraordinary even when compared to the infamous European heatwave in August

2003 and the Russian heatwave in July–August 2010. Although shorter in duration, the Pacific

Northwest heatwave broke all-time temperature records by a significantly larger margin. Moreover,

the maximum temperature anomalies, measured in standard deviations from normal, exceeded

those of the 2003 European and 2010 Russian heatwaves (Thompson et al., 2022).

The exceptionally high near-surface temperatures during the heatwave were associated with remark-

ably high geopotential height and exceptionally dry soil conditions (Figure 2.7). From 28 June to

30 June, the average near-surface air temperature anomalies were exceptionally high, surpassing

five times the daily standard deviation calculated from 1981-2010. Concurrently, the anomalies in

geopotential height and soil moisture deficiency were also remarkably high, exceeding four and

three times their respective standard deviations during the period from 25 June to 3 July (Bartusek

et al., 2022).
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Figure 2.7: Evolution in ERA5 reanalysis throughout June averaged over the PNW (40–60°N, 110–130°W;
land only) of near-surface air temperature (red line with dots), geopotential height on 500 hPa
(orange line with dots) and soil moisture anomalies (brown line with dots), and the amplitude of
a zonal wavenumber-4 disturbance in the midlatitude upper atmospheric circulation (colored blue
when in negative phase and yellow in positive phase). Dashed grey lines represent ±1.5 standard
deviations from their 1981–2010 mean. This figure is adapted from Bartusek et al. (2022).

Synoptic situation and near-surface air temperature evolution

The synoptic evolution leading to the high-temperature anomaly was associated with the develop-

ment of an amplified upper-level ridge over the region. This ridge formed in connection with a

rapidly deepening upstream cyclone (purple contour on fig. 2.8 (a)) that produced a WCB helping

amplify the ridge (Oertel et al., 2023; Neal et al., 2022).

According to the analysis of Hotz et al. (2023), in the early stage of the heat wave (25 June to

26 June), near-surface air temperature anomalies in the PNW increased through both diabatic

and advective processes (Fig.2.8 (i)). Air parcels ascended over the Pacific, moved poleward fed

into the strengthening ridge, and then descended, contributing to positive temperature anomalies

onshore (Fig.2.8 (b)). During the peak of heat wave (27 June - 30 June), the upper-level ridge was

centered over the PNW, with average near-surface temperature anomalies exceeding 12 K ((Fig.2.8

(c), (e)). Temperature anomalies were primarily contributed diabatically at first, but the adiabatic

contribution increased (Fig.2.8 (i)), associated with air parcels spiraling down anticyclonically

into the ridge over the heat region (Fig.2.8 (d), (f)). After the peak (30 June - 1 July), total and

diabatic temperature anomalies dropped (Fig.2.8 (i)), and this termination is associated with an

onset of precipitation. Despite the upper-level ridge starting to shift east (Fig.2.8 (g)), advective

temperature anomalies remained positive until 2 July, further indicating the termination was driven

by convective cooling rather than cold air advection.

In summary, the near-surface air temperature development in 2021 PNW Heat Wave was associated

with a quasi-stationary upper-level ridge downstream fueled by an upstream cyclone. Air parcel

trajectory analysis revealed that the low-level air mass initially warmed due to latent heating

upstream (from 24 June to 25 June). As this air mass subsided under the upper-level ridge, it
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Figure 2.8: Synoptic evolution of the Pacific Northwest (PNW) heatwave, showing daily averages for (a, b)
25 June 2021, (c, d) 27 June 2021, (e, f) 29 June 2021, and (g, h) 1 July 2021. Panel (i) depicts
near-surface temperature anomalies and contributions from 22 June to 3 July 2021. Left panels
(a, c, e, g): color indicates temperature anomaly at 980 hPa; grey contours represent mean
sea-level pressure (SLP) in 5 hPa intervals (1020 hPa bold); purple contours show geopotential
height at 500 hPa in 100 m intervals (5800 m bold); black rectangle marks the PNW heatwave
region. Middle panels (b, d, f, h): 30 trajectories with positive temperature anomalies, colored by
pressure, arriving at land grid points on each date (10 trajectories each at 10, 30, and 50 hPa
above ground level). Right panel (i): near-surface air temperature anomaly (black), advective
component (green), adiabatic component (purple), and diabatic component (orange) from 24
June to 3 July 2021; grey line shows maximum 5-day daily temperatures. This figure is adapted
from Hotz et al. (2023).

experienced further adiabatic warming. In the end, the heat wave eventually dissipated through

convective cooling processes.

Drivers and mechanisms of the 2021 Pacific Northwest Heat Wave

Before discussing the drivers and mechanisms in detail, the predictive skill of this event and

associated processes will be introduced first. According to Emerton et al. (2022), while seasonal

forecasts from ECMWF indicated an increasing probability of above-normal temperatures for

the Pacific Northwest region in June 2021, they did not consistently capture the signal for this

record-breaking heat wave until about 2-3 weeks in advance. Lin et al. (2022) further evaluated
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S2S forecast models and found that though forecasts beyond 2 weeks (initialized on 17 June) can

indicate the above-normal temperature signals, they still struggled to predict the extreme intensity

of the heat wave. It was not until the lead time was reduced to 5 to 11 days that the models began to

accurately capture the intensity of this heat wave. They identified two key processes that contributed

to this limited forecast skill before two weeks, an anomalous atmospheric river with its moisture

transport (Mo et al., 2022), and the eastward progression of Rossby wave trains associated with

the boreal summer intraseasonal oscillation in Southeast Asia. Aligning with previous findings,

Oertel et al. (2023) focused on the medium-range forecasts and found that the magnitude of the

heat wave could not be well predicted beyond a 7-day lead time. They discovered that a complex

chain of synoptic precipitation events across the Pacific, involving enhanced WCBs, was crucial

for amplifying the upper-level ridge downstream over Western North America. Only when these

complex weather events were captured by the models could the extreme magnitude of the heat

wave be accurately predicted.

The link between the 2021 PNW heat wave and a high-pressure system, referred to as a "heat

dome," had been previously identified as the main dynamical component (Bartusek et al., 2022;

Lin et al., 2022). This high-pressure system was characterized by subsidence, trapped air, and

sensible heating as the dominant mechanisms driving the anomalous heat in the lower atmosphere.

However, the conceptual model of a ’heat dome’ overlooked the role of upstream diabatic heating

processes (White et al., 2023). Based on a local wave activity diagnostic, Neal et al. (2022)

revealed an essential role of diabatic heat released during cloud formation in an upstream cyclone

in strengthening and amplifying this upper-level ridge associated with the heat wave. Oertel et al.

(2023) further expanded on the diabatic heating perspective by quantifying the contribution of

diabatic heat released by air masses originating from WCB ascent across the Pacific Ocean to the

formation of the upper-level ridge.

While large-scale flow patterns played a role, Philip et al. (2022) pointed out that the observed

near-surface air temperature anomaly during the 2021 PNW heat wave was more extreme than

would be expected only based on these anomalous large-scale atmospheric flow patterns, suggesting

the local topography and antecedent dry soil might have amplified this high-temperature anomaly.

Schumacher et al. (2022) further investigated the complex interplay between dynamic and thermo-

dynamic processes, finding that the latent heat release from the upstream cyclone not only helped to

initiate the upper-level ridge and contributed to high-temperature anomaly in the upper-troposphere

but also directly contributed to the extreme near-surface temperatures by mixing into the deep

boundary layer facilitated by dry soil conditions. Further, this dry soil also acted to amplify surface

heating by reducing evaporative cooling and enhancing sensible heating.

Several studies have highlighted the crucial role played by temperature anomalies in the upper

troposphere, suggesting that the extreme magnitude of the 2021 PNW Heat Wave was controlled

by this upper-tropospheric heat (Schumacher et al., 2022; Hotz et al., 2023). They argued that these

positive temperature anomalies aloft helped suppress convective dampening, which would otherwise

act to limit the near-surface extreme temperatures through convective mixing and precipitation

processes. Based on moist convective instability theory, Zhang and Boos (2023) theoretically

explained how upper-tropospheric temperature anomalies (represented by 500 hPa temperature)
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could set an upper bound on surface temperatures during heat waves over mid-latitude continental

regions. Further, Papritz and Röthlisberger (2023) quantified the sources of temperature anomalies

near the surface and in the free troposphere and revealed that while local surface heating and

subsidence were primarily responsible for the near-surface temperature anomaly, upstream diabatic

heating substantially contributed to warming the air aloft in the upper troposphere which reinforce

the idea the extreme buildup of heat near the surface during the heatwave was enabled by prior

warming of the free troposphere aloft.

In summary, the 2021 PNW Heat Wave resulted from a combination and interplay between

anomalous large-scale circulation patterns and thermodynamic processes. This unique combination

of drivers and processes led to the record-breaking temperatures experienced during the heat wave.
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3.1 Data

3.1.1 Observational reference: ERA-5 reanalysis

To better understand climate change and extreme weather, it is important to study the past. However,

observational data is often incomplete and contains errors. Data assimilation methods combine

observations with short-range weather forecasts to provide the best estimate of atmospheric condi-

tions for weather prediction initialization. Reanalysis uses the same approach, but for past periods,

gaps in observations are filled to create consistent long-term datasets. These datasets are valuable

references for evaluating weather forecast model performance (ECMWF, 2023). ERA5 is the fifth-

generation atmospheric reanalysis dataset produced by the Copernicus Climate Change Service

(C3S) at the ECMWF. Covering the period from 1950 to the present, it provides a high-resolution

(0.25° or approximately 31 km) representation of atmospheric conditions across 137 vertical levels,

extending up to 80 km altitude. ERA5 is based on the ECMWF’s Integrated Forecast System (IFS)

high-resolution model (Cycle 41r2) and 4D-Var data assimilation (Hersbach, 2023).

In this thesis, ERA5 is not only used as ground truth to evaluate the performance of models but also

used as the base state for the initial condition generation of the data-driven model (Section 3.2.3).

The variables used at multiple levels and in detail are summarized in the following table (Table 3.2).

Additionally, the climatology is computed from the ERA5 reanalysis data, which is interpolated to

a grid spacing of 1° for the period from 1979 to 2019. For each grid point, a time period centered

on 29 June is considered, spanning from June 15 to July 14.

3.1.2 Numerical Weather Prediction reference: ECMWF IFS forecasts

ECMWF IFS model, widely considered the best globally for medium-range weather forecasting, is

chosen as the baseline numerical weather prediction model. The IFS undergoes regular updates to

maintain its leading position, resulting in varying model configurations over time. In this thesis, the

cycle 47r2 configuration is utilized. The IFS offers several atmospheric model configurations for

different forecast ranges, with the medium-range forecast comprising the high-resolution single

forecast (HRES) and the ensemble forecast (ENS). In this thesis, both the IFS HRES and ENS

forecasts are employed.
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IFS HRES

The HRES runs at a high resolution of 0.1° (approximately 9 km), with 137 vertical levels. It is

run four times daily at 00, 06, 12, and 18 UTC. The forecast initialized from 00/12 UTC covers a

period of 10 days, while those initialized from 06/18 UTC cover 3.75 days. The initial conditions

are derived using an ensemble 4D-Var data assimilation system, which incorporates information

from the forecast of the previous assimilation cycle and collected observations within a 3-hour

assimilation window around the analysis time (Owens and Hewson, 2018). In this thesis, the IFS

HRES forecasts initialized at 00/12 UTC are retrieved from WeatherBench2 (Rasp et al., 2023)

with a re-gridded resolution of 0.25°.

IFS ENS

The ENS forecast consists of 51 members, including one unperturbed control forecast and 50 per-

turbed forecasts. The ensemble data assimilation (EDA) creates initial conditions by incorporating

observation, model, and boundary condition errors for generating perturbed members. To further

represent forecast uncertainty, singular perturbations are added to the initial conditions and designed

to capture the most rapidly growing modes of atmospheric instability. The model uncertainty is

represented by Stochastically Perturbed Parameterisation Tendencies (SPPT), which introduces

spatially and temporally correlated perturbations to the model physics tendencies (Owens and

Hewson, 2018). Until 2023, the horizontal resolution was 0.2 degrees. In Cy48r1, the resolution of

the ENS is upgraded to 0.1 degrees, matching the resolution of HRES. The ensemble forecasts are

initialized at 00/12 UTC and provide a longer range of forecasts up to 15 days. In this thesis, the

IFS ENS are re-gridded to 0.25°.

3.1.3 Data-driven model: FourCastNet forecasts

In this Master’s thesis, two versions of the data-driven model FourCastNet are used to compare

with the forecast of the ECMWF Integrated Forecasting System (IFS) model. The updated version

of the FourCastNet differs from the original model by incorporating a new neural operator and

more dense vertical information input. The following section will describe the model architecture

and discuss the differences and updates between these two versions.

FourCastNet Version 1

The Fourier ForeCasting Neural Network (FourCastNet) (Pathak et al., 2022) uses the Vision

Transformer (ViT) as the architectural backbone, combined with Fourier Neural Operators (FNOs),

resulting in the Adaptive Fourier Neural Operator (AFNO) model. The Vision Transformer (ViT)

can process images by transforming them into a series of tokens, which are then fed into the

transformer. This allows the model to capture long-range dependencies effectively, making it

26



3.1 Data

Figure 3.1: Two steps of training include pre-training and fine-tuning of FourCastNet; This figure is adapted
from Pathak et al. (2022).

efficient for understanding spatial relationships in high-resolution atmospheric data. Furthermore,

the Fourier Neural Operator enables the neural network to operate in the frequency domain, thereby

allowing the network to learn complex functions and make accurate predictions (Falk et al., 2018).

The integration of ViT and FNO in the AFNO model allows dependencies to be captured across

spatial and channel dimensions.

FourCastNet (version 1) uses high-resolution input data comprising 6 surface variables and 5

atmospheric variables at four pressure levels (Table 3.1.4) and predicts the atmospheric state with a

6-hour temporal resolution. It is trained with ERA5 reanalysis data in two steps: pre-training and

fine-tuning. The first step is to pre-train the model with meteorological variables in ERA5. Each

variable is re-gridded and represented by a 2D field consisting of pixels (721×1440). Consequently,

a single training data point at a specific time is represented by a tensor with dimensions of

(721×1440×20). The training dataset spans years from 1979 to 2015, the validation dataset covers

the years 2016 and 2017, and the testing dataset includes data after 2018.

Next, the training steps are described. Each training data point at a specific time is denoted as

X(k∆t), where k represents the time index, and ∆t is fixed as 6 hours. In the pre-training step, the

AFNO model is trained to learn the mapping from X(t) to X(t +∆t) in the next time step. In the

subsequent fine-tuning step, the model uses the output X(t +∆t) as input to generate the output

X(t +2∆t). The training loss is then calculated by comparing X(t +∆t) and X(t +2∆t) with their

respective ground truth values (ERA5), Xtrue(t +∆t) and Xtrue(t +2∆t) (Figure 3.1). The model is

optimized by minimizing the sum of these two computed training losses. After the pre-training

and fine-tuning steps, the validation dataset is used to estimate the skill of the model through

hyperparameter optimization.

FourCastNet Version 2

Based on the first version of the FourCastNet, FourCastNet2 utilizes Spherical Fourier Neural

Operators (SFNO) to represent non-linear atmospheric dynamics better. Traditional FNOs use fast

Fourier transforms, which can transform data to the frequency domain where global, long-range

dependencies can be modeled more easily (Falk et al., 2018). However, a significant drawback
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of using fast Fourier transforms is that they assume a Euclidean (flat) domain. When applied to

spherical data, such as Earth’s surface data, this assumption leads to issues like incorrect handling

of the poles. This means that FFT does not naturally respect the spherical geometry, leading to

artifacts when modeling data on a sphere. Instead, SFNOs employ a Harmonic Transform (SHT)

that is suitable for spherical geometries, allowing for more accurate and realistic simulations of

atmospheric dynamics. Moreover, SFNO has demonstrated long-term stability in maintaining

plausible dynamics for year-long simulations, enhancing its predictive skill for medium-range to

long-term weather forecasts (Bonev et al., 2023). FourCastNet2 is trained with a denser vertical

level, encompassing 13 pressure levels, while maintaining the same spatial and temporal resolution

as FourCastNet1 despite the architectural changes.

This thesis generates ensemble forecasts for two versions of FourCastNet, FourCastNet1 and

FourCastNet2. Each ensemble consists of 50 members, with one control member. The ensemble

forecasts for both versions are initialized at 00 UTC for each day from June 14, 2021, to July

4, 2021. For FourCastNet1, a total of 57 time steps with 6-hour intervals are generated, up to a

maximum lead time of 336 hours. FourCastNet2 generates a total of 60 time steps with 6-hour

intervals, up to a maximum lead time of 360 hours. Regarding the spatial area, the ensemble

forecasts are generated globally and then extracted for the study area. Refer to Section 3.2.3 for the

generation of initial conditions. Additionally, deterministic forecasts of FourCastNet2 are created

with IFS HRES initial conditions, initialized at 00 UTC for each day from June 14, 2021, to July

4, 2021, a total of 60 time steps with 6-hour intervals are generated, up to a maximum lead time

of 360 hours. The chosen variables in this thesis are summarized in Table 3.2, noted the specific

humidity values of FourCastNet used in this thesis were derived from the dewpoint temperature,

which was calculated from the variable of air temperature and relative humidity, in conjunction

with the pressure.

3.1.4 Data-driven model: Pangu-weather forecasts

In this thesis, the Pangu-Weather model has been used for supplementary comparison. Pangu-

Weather is a data-driven weather prediction model employing a transformer architecture - the

3D Earth-specific transformer (3DEST). Unlike traditional models operating in two dimensions,

3DEST processes data in three dimensions, considering latitude, longitude, and pressure levels,

enabling information to flow horizontally and vertically. Pangu-Weather predicts 4 surface variables

and 5 upper-air variables at 13 pressure levels with a 0.25° horizontal resolution (Table 3.1.4). It

was trained with ERA5 reanalysis data from 1979 to 2017, using 2019 for validation and 2018,

2020, and 2021 for the test dataset. In contrast to FourCastNet, which follows a fixed interval

approach, Pangu-Weather utilizes hierarchical temporal aggregation, training four different models

with varying lead times (1h, 3h, 6h, 24h) to reduce cumulative forecast errors. For example, for a

forecast with a 30-hour lead time, the 24-hour model will be executed once, followed by the 6-hour

model executed once more (Bi et al., 2023). In this thesis, the Pangu-Weather model, initialized

with the initial conditions from the IFS HRES forecast, is used and obtained from WeatherBench2
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(Rasp et al., 2023) with a horizontal resolution of 0.25° and up to a maximum lead time of 240 hours.

FourCastNet1 FourCastNet2 PanguWeather

Architecture Adaptive Fourier Neu-
ral Operator

Spherical Fourier
Neural Operators

3D Earth-specific
Transformer

Resolution 0.25◦×0.25◦ 0.25◦×0.25◦ 0.25◦×0.25◦

Temporal steps 6h 6h 1,3,6,24h

Levels surface and 4 pressure
levels (50, 500, 850,
1000 hPa)

surface and 13 pres-
sure levels (50, 100,
150, 200, 250, 300,
400, 500, 600, 700,
850, 925, 1000 hPa)

surface and 13 pres-
sure levels (same as
FourCastNet2)

Variables Surface variables:
T2M, U10, V10,
MSL, TP, SP; Atmo-
spheric variables: Z,
T, RH, U, V

same as FourCastNet1
but with denser verti-
cal levels

Surface variables:
T2M, U10, V10,
MSL; Atmospheric
variables: Z, T, Q, U,
V

Training datasets ERA5 reanalysis
(1979-2017)

ERA5 reanalysis
(1979-2017)

ERA5 reanalysis
(1979-2017)

Table 3.1: Summary features of data-driven weather prediction models. T2M: 2 m temperature, U10: 10 m
zonal wind, V10: 10 m meridional wind, MSL: mean sea level pressure, TP: total precipitation,
SP: surface pressure, Z: geopotential height, T: temperature, RH: relative humidity, Q: specific
humidity, U: zonal wind, V: meridional wind.
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Model/Dataset Type ∆x ∆t Chosen vari-
ables

Initial condi-
tions

ERA5 Reanalysis 0.25◦ 6h (noted
the temporal
resolution for
upper-level
variables is
24 h, except
for variables
at 850 hPa
and 500 hPa)

Single level -
T2m, TCWV;
multiple lev-
els (13 levels)
- T, RH, Z

-

IFS HRES NWP de-
terministic
forecasts

0.1◦

(remapped to
0.25◦)

6h (noted
the temporal
resolution for
upper-level
variables is
24 h, except
for variables
at 850 hPa
and 500 hPa)

Single level -
T2m, TCWV;
multiple lev-
els (13 levels)
- T, RH, Z

Operational
IFS HRES
ICs

IFS ENS NWP ensem-
ble forecasts
(51 members)

0.2◦

(remapped to
0.25◦)

6h Single level -
T2m, TCWV;
multiple lev-
els (4 levels) -
T, RH, Z

Operational
IFS ENS ICs

Pangu-
Weather

Data-driven
deterministic
Forecast

0.25◦ 6 h Single level -
T2m, TCWV;
multiple lev-
els (13 levels)
- T, Q, Z

IFS HRES
ICs

ForecastNet1 Data-driven
ensemble
forecasts (51
members)

0.25◦ 6 h Single level -
T2m, TCWV;
multiple lev-
els (4 levels) -
T, RH, Z

IFS ICs and
gaussian
noise ICs

ForecastNet2 Data-driven
deterministic
and ensemble
forecasts (51
members)

0.25◦ 6h Single level -
T2m, TCWV;
multiple lev-
els (13 levels)
- T, RH, Z

IFS ENS
ICs, IFS
HRES ICs
and Gaussian
noise ICs

Table 3.2: Summary of datasets used in this thesis. T2m: 2 m temperature, TCWV: total column water vapor,
T: temperature, RH: relative humidity, Z: geopotential height, Q: specific humidity.

30



3.2 Methods

(a)

(b)

Figure 3.2: Study regions over the Pacific Northwest: (a) ERA5 two-meter temperature anomaly on 29 June
2021 at 00 UTC with respect to the ERA5 climatology for June and July from 1979 to 2019. The
star represents the city of Lytton. The red solid box represents a 20° latitude by 20° longitude
region centered on Lytton, while the black box encompasses the area between 49°N-59°N and
115°W-125°W. (b) ERA5 500 hPa geopotential height anomaly on 29 June 2021 at 00 UTC with
respect to the ERA5 climatological mean for June and July from 1979 to 2019. The blue solid
box represents the region spanning 145°W-95°W and 30°N-75°N.

3.2 Methods

3.2.1 Study domain

The focus of this thesis is on the Northwest Pacific region. The first study region is a 20◦ latitude by

20◦ longitude box centered on Lytton, following the same definition as in Oertel (2023). This region
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is chosen to evaluate the model’s forecast performance in predicting the magnitude of the 2-m

temperature peak (29 June 2021 00UTC) during the 2021 Pacific Northwest Heat Wave. The model

performance evaluation for 2-m temperature in Chapter 4 is based on this region. Additionally, the

grouping of ensemble members based on their predictive skill in 2-m temperature, described in

Section 4.1, is also based on the same study region. To specifically investigate the effect of land-

atmosphere feedbacks on model performance, a second study region is defined that encompasses

only land areas. This region, a black box with 10.5◦ latitude by 10.5◦ longitude, is employed in

Chapter 5 to study the vertical profile of temperature and humidity.

Furthermore, to evaluate the forecast representation of the location and shape of the upper-level

ridge, the 500 hPa geopotential height anomaly is used to characterize the upper-level ridge. The

study region for this analysis is chosen as the box (145◦W-95◦W, 30◦N-75◦N) covering the high

geopotential height anomaly over North America.

3.2.2 Evaluation metrics

In this section, several evaluation metrics used in the thesis are introduced. The equations are taken

and adapted from Japan Meteorological Agency (2024).

Bias

The bias, also known as the mean error, represents the difference between forecast and verifying

values and is defined as:

BIAS ≡ ∑
n
i=1 wiDi

∑
n
i=1 wi

, (3.1)

Di = Fi −Ai, (3.2)

wi = cosφi, (3.3)

where Fi and Ai represent the forecast and verifying values for the i data point. Di is the deviation

between the forecast and the verifying value. n is the number of samples representing the total grid

points of the field. If the forecast is perfect, bias equals zero, indicating no bias. When computing

the average of a wide region, the differences in area due to the latitude need to be accounted for. In

the equirectangular projection, the weighting coefficient wi is replaced with the cosine of latitude to

account for the convergence of longitude near the poles. In this thesis, the two-meter temperature

fields chosen for evaluation by bias weighted at each grid point (i) by the cosine of latitude before

calculating bias, with latitude expressed in degrees, for example:

Tiweighted = Ti cos
(

lat ·π
180

)
(3.4)
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Root Mean square Error

Root Mean Square Error (RMSE) measures the average magnitude of the errors. Unlike bias, which

can show whether the forecast tends to be too high or too low, RMSE measures the overall accuracy

by considering the square of the errors. This ensures that larger errors have a more significant

impact on the RMSE value. It is defined by:

RMSE ≡

√
∑

n
i=1 wiD2

i√
∑

n
i=1 wi

(3.5)

Where Di is the deviation between the forecast and the verifying value as defined in eq. 3.2, RMSE

is calculated as the square root of the average of squared differences between the predicted and

verified values. wi is the weighting coefficient as defined in eq. 3.3. In this thesis, the temperature

and geopotential fields chosen for evaluation by RMSE are weighted at each grid point (i) by the

cosine of latitude before calculating RMSE, with latitude expressed in degrees, for example:

Tiweighted = Ti

√
cos

(
lat ·π
180

)
(3.6)

Anomaly Correlation Coefficient

The Anomaly Correlation Coefficient (ACC) is a widely used measure for spatial field verification.

It quantifies the spatial correlation between forecast and observed anomalies, relative to climatology.

ACC evaluates how well forecast anomalies reflect observed anomalies, indicating the accuracy of

the forecast in predicting actual data (Andersson, 2015). It is defined as follows:

ACC =
∑

n
i=1 wi( fi − f̄ )(ai − ā)√

∑
n
i=1 wi( fi − f̄ )2 ∑

n
i=1 wi(ai − ā)2

, (−1 ⩽ ACC ⩽ 1) (3.7)

where n is the number of samples, and fi, ai are respectively given by:

fi = Fi −Ci, f̄ =
∑

n
i=1 wi fi

∑
n
i=1 wi

, (3.8)

ai = Ai −Ci, ā =
∑

n
i=1 wiai

∑
n
i=1 wi

. (3.9)

where Fi, Ai, Ci represent the forecast value, the verifying value, and the climatological value,

respectively. Additionally, f̄ and ā are the mean value of fi and ai, and wi is the weighting
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coefficient as defined in eq. 3.3. The geopotential height on 500 hPa fields chosen for evaluation in

this thesis by ACC has been weighted at each grid point (i) by the cosine of latitude. The Anomaly

Correlation Coefficient (ACC) ranges from +1 to -1, where +1 indicates perfect correlation, 0

indicates no correlation (climatological average), and -1 indicates perfect anti-correlation. ACC

values below 0.6 suggest that the positioning of synoptic scale features has little forecasting value

(Owens and Hewson, 2018).

Forecast skill horizon

First, the concept of the ’forecast horizon’ and ’forecast skill horizon’ is differentiated. The forecast

horizon is the time period between the initial forecast time and the future valid time, representing

the length of the forecast period. The forecast skill horizon used by ECMWF is originally defined

as the lead time when the ensemble ceases to be more skillful than a climatological distribution,

based on the continuously ranked probability score (Buizza and Leutbecher, 2015). In general, the

forecast skill horizon is the maximum lead time at which the forecast provides more accurate and

reliable information than a reference baseline, such as the climatological distribution they defined.

In this thesis, rather than quantifying the practical skill limit against climatology, a ’skillful’ near-

surface air temperature forecast horizon is defined as the lead time when the forecast bias with

respect to ERA5 reanalysis first becomes smaller than 5 K. For 500 hPa geopotential height, a

skillful forecast horizon is defined as the lead time when the ACC value of the forecast compared

with ERA5 becomes higher than 0.6 since lower values are insufficient for accurately positioning

synoptic-scale features. The forecast skill horizons for these two variables must be interpreted

separately due to their different definitions of ’skillful.

3.2.3 Generation of initial conditions

In this thesis, the approaches to producing ensembles for the data-driven model are all based on

initial condition ensemble methods, which involve running the model multiple times with slightly

different initial conditions. For FourCastNet Version 1 and Version 2, 50 ensemble members are

generated using two initial conditions. One initial condition is derived from the IFS ENS analysis by

extracting the initial state. The other initial condition is obtained by perturbing the ERA5 field with

random Gaussian noise. The following two methods are then described using equations adapted

from Bülte et al. (2024) and (Pathak et al., 2022).

Gaussian noise perturbation

The first approach is to add random perturbation to the initial state of the ERA5 field with a

0.25◦×0.25◦ resolution to represent the initial condition error in the analysis. Pathak et al. (2022)

first employed Gaussian noise to generate initial conditions:
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XGauss,m
lat,lon,t,0 = Ylat,lon,t +σξlat,lon,t m = 1, . . . ,M, (3.10)

where Ylat,lon,t represents the initial state of variables based on ERA5 reanalysis, lat and lon

represent global grid points and t represents the initialization time. The Gaussian noise ξlat,lon,t ∼
N(0,1) is introduced, and σ is the tuning parameter to tune the noise level. Thus, Gaussian initial

condition XGauss,m
lat,lon,t,0 is generated over the initialization time t, members m and variables. It should

be noted that initial conditions are generated globally for all grid points in the models. In this

thesis,σ = 0.3 is set as in Pathak et al. (2022), and m = 50 is set to generate 50 initial conditions

for comparison with the same ensemble members of IFS.

IFS Initial condition

To compare with the IFS, the same initial conditions are used to compare the IFS models. The IFS

ensemble forecasts Zm
lat,lon,t,0 for each member (51 members in total) at time step 0 are extracted

(starting point of the forecast) and used as initial conditions. Additionally, the IFS HRES forecasts

at time step 0 are also chosen to initialize FouCastNet2.

X ifs,m
lat,lon,t,0 = Zm

lat,lon,t,0 for m = 1, . . . ,M. (3.11)

As introduced in Section 3.1, all ensemble forecasts of FourCastNet (Version 1 and Version 2)

are initialized at 00UTC. It should be noted that, compared to the initial conditions of IFS, ERA5

employs a longer assimilation window. Specifically, forecasts initialized from ERA5 at 00/12 UTC

include observational data up to 9 hours ahead, whereas operational forecasts only extend 3 hours

ahead (Lam et al., 2022). As a result, forecasts initialized from ERA5 at 00/12 UTC tend to perform

better than those initialized at 06/18 UTC for short lead times. Therefore, care should be taken not

to over-interpret the performance of forecasts initialized with ERA5-based Gaussian noise initial

conditions at short lead times when evaluating them against ERA5 as the ground truth.

3.2.4 Classification of ensemble members

The purpose of classifying ensemble members into groups is to analyze differences between those

that perform well (good members) and those that perform poorly (bad members) in predicting

extreme temperatures during heatwaves. By separating ensemble members based on their predictive

skill of near-surface air temperature, the processes contributing to successful or unsuccessful

heatwave predictions in the data-driven models can be studied and compared.
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Figure 3.3: Schematic illustration of member groups. The box represents the 30-70 quantile range of RMSE,
with the line inside the box indicating the median. This illustration is for conceptual purposes
and is not derived from actual data.

Specifically, ensemble members are classified into three groups (good, bad, neutral) based on their

forecast skill for 2-meter temperature during a heatwave period from June 27 to July 1, 2021,

00UTC. Classification uses the percentile rank of RMSE against ERA5 reanalysis, averaged over

the study area (black box defined in Section 3.2.1). At each initialization time from 18 June to 28

June, the 15 members with RMSE smaller than the 30th percentile are "good members", the 15

members with RMSE larger than the 70th percentile are "bad members", and the remaining 20 are

"neutral members" (see Figure 3.3).
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4 Forecast evaluation for the 2021
Pacific Northwest Heat wave

On the peak day (29 June 00 UTC) of this heat wave, the heat wave magnitude represented by the

two-meter temperature anomaly with respect to June to July climatological mean from 1979 to 2019

reached up to 15-20K over a large area of the Pacific Northwest (Figure 3.2a). The most extreme

region can be identified around the city of Lytton, where the hottest temperature was recorded

during this event. Although the amplitude of the upper-level ridge had peaked and matured on 26

June and 27 June and started to weaken by 28 June (Neal et al., 2022), the positive geopotential

height anomaly at 500 hPa was still present over the North American continent on 29 June (Figure

3.2b).

According to Oertel et al. (2023), state-of-the-art numerical NWP models failed to capture the

magnitude of the extremely high-temperature anomaly during the peak of this heat wave beyond a

7-day lead time, indicating the existence of a predictability barrier. This chapter aims to compare

the performance of data-driven models against NWP models in predicting the magnitude of the

heat wave peak temperature, following the same definition of heat wave peak magnitude as Oertel

et al. (2023). Additionally, the predictive skill of data-driven models for the associated upper-level

ridge pattern is investigated. Section 4.1 analyzes the forecast evolution initialized 14 days before

the heat wave peak for 2-meter temperature and 500 hPa geopotential height. Section 4.2 compares

their forecast skill horizons to quantify the predictive skill of models further.

4.1 Forecast evolution for the heat wave peak with lead
time

4.1.1 Forecast evolution of 2-m temperature for the heat wave peak

In order to evaluate the prediction of heat wave magnitude at the peak, we first investigate the 2-m

temperature forecast and compare how the forecasts evolve across lead time within different models.

Figure 4.1 illustrates the domain-averaged 2m temperature forecasts valid at 29 June 00 UTC (4

p.m. in the Pacific Northwest), initialized between 15 June 00 UTC and 28 June 00 UTC. The

ensemble and control forecasts are represented by boxes and diamonds, respectively. Additionally,

the triangle represents the deterministic forecasts initialized with the operational IFS HRES initial

conditions. These are shown for IFS (blue), FCNV2 with IFS initial conditions (green), FCNV2

with Gaussian noise initial conditions (yellow), and Pangu-Weather (red). For comparison, the
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corresponding ensemble and control forecasts from FCNV1 with IFS and Gaussian noise initial

conditions are also included (grey).

Before going deeper into the analysis of the forecast performance of 2-m temperature compared

with ERA5 reanalysis, the general feature of the ensemble spread will first be introduced. Overall,

as the initialization time approaches 29 June, the ensemble spread decreases for both data-driven

models and NWP models, indicating a reduction in forecast uncertainty closer to the event. When

comparing the control forecast with the ensemble spread, we can identify that for the IFS ENS,

the control forecast consistently lies within the ensemble spread for almost all initialization time

(except for initialization time on 15 June). However, for FCNV2 with IFS and Gaussian noise

initial conditions, we can identify that their control forecasts occasionally lie outside the ensemble

spread, particularly for forecasts initialized before 23 June. This may suggest that ensemble

generation approaches based only on perturbing initial conditions may not fully capture the forecast

uncertainty. While this approach accounts for initial condition uncertainty, it does not represent

model uncertainty, as highlighted by Bülte et al. (2024). In contrast, the IFS ENS incorporates

model uncertainty through stochastically perturbed parametrization tendencies (Section 2.1.2).

Moreover, compared with IFS ENS, the FCNV2 tends to have a smaller ensemble spread at longer

lead time, especially for ensemble forecasts initialized with Gaussian noise initial condition. As

the perturbed Gaussian noise is random and independent of the prevailing atmospheric condition,

with the model integrated into a longer lead time, the noise will not be as strong as in the ifs

initial condition. In contrast, IFS ENS initial condition employed the singular vector perturbation

techniques can identify the most influential perturbation and better represent the forecast uncertainty

even at the longer lead time (Section 2.1.2). It should be noted that the discussion of ensemble

spread here is based only on the distribution of ensemble members, without direct computation

and comparison to observational distributions. Previous discussions have pointed out the under-

dispersion and underestimation of forecast uncertainty in data-driven model ensemble forecasts

initialized by Gaussian initial conditions and IFS initial conditions (Bülte et al., 2024, Fig. 5b).

Next, the forecast bias with respect to ERA5 will be analyzed. The ERA5 reanalysis (red line)

indicates that the 2-meter temperature on 29 June 00 UTC was approximately 303 K. Before

21 June, most model forecasts underestimated the intensity of the heat wave by more than 7 K.

The Pangu-Weather forecast initialized on 19 June significantly underestimated the magnitude

of this heat wave, showing a larger bias compared to FCNV2 and IFS. On 21 June, while the

ensemble spread of the FCNV2 forecast is small, the IFS ensemble forecast shows a much larger

ensemble spread and begins to anticipate the upcoming heat wave, but most ensemble members

still underestimate the magnitude of the heat wave of more than 5 K.

Between 21 June and 22 June, the 2-m temperature forecast of FCNV2 and IFS experienced a

so-called "forecast jump" (Richardson et al., 2024). They abruptly improved their forecast and

started to capture the magnitude of this heat wave. The improvement between 21 June and 22

June of the ensemble mean for FCNV2 is even larger than that of IFS. Similarly, the operational

Pangu-Weather also improved its forecast, and the underestimation on 22 June is less than 3K.

Notably, between 20 June and 22 June, Pangu-Weather has already experienced a "forecast jump."
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4.1 Forecast evolution for the heat wave peak with lead time

Figure 4.1: Distribution of ensemble forecasts of 2m Temperature on 29 June 2021 00 UTC. Averaged over
a 20° latitude by 20° longitude box centered on Lytton, initialized between 15 and 28 June 2021,
00 UTC. The box marks the 25-75 quantile, whiskers mark the 1-99 quantile, and the line within
the box represents the median. Colored diamonds show the control forecast (CF), colored
triangles show the deterministic forecast. The red line represents the ERA5 reanalysis of 2m
temperature at 00 UTC on 29 June. IFS_ENS: IFS ensemble forecasts; FCNV1_EC:
ForeCastNet1 initialized with IFS initial conditions; FCNV1_GAUSS: ForeCastNet1 initialized
with Gaussian noise initial conditions; PGW_HRES: Pangu-Weather initialized with IFS HRES
initial conditions; FCNV2_EC: ForeCastNet2 initialized with IFS initial conditions;
FCNV2_GAUSS: ForeCastNet2 initialized with Gaussian noise initial conditions.

After June 23, FCNV2, Pangu-Weather, and IFS accurately captured the magnitude of this heat

wave.

Finally, it is worth noting that the performance of FCNV1 was significantly worse compared to

the other models (grey box in Figure 4.1) throughout the initialization period, which consistently

underestimated the magnitude of the heat wave. Unlike other models (FCNV2, IFS, and Pangu-

Weather), FCNV1 did not exhibit a notable "forecast jump" between 21 June and 22 June. Instead,

it only improved the forecast between 23 June and 24 June, which is two days later than the other

two models. Even at a shorter lead time of 5 days (forecast initialized on 24 June), the FCNV1

initialized with Gaussian noise initial condition still had a forecast bias of around 5 K. Except

for the change of architecture (Section 3.1.3), another distinctive difference between FCNV1 and

FCNV2 is the different numbers of levels of input data (FCNV1 only with 4 pressure levels, as

shown in Table 3.1.4). This might provide the FCNV2 with a more comprehensive representation

of the atmospheric conditions, thus leading to the difference in the performance of 2-m temperature

forecasts. In the next chapter, this will be further investigated.

4.1.2 Forecast evolution of 500 hPa geopotential height for the heat wave
peak

As a correct prediction of heat wave magnitude is strongly linked to the right representation of

the upper-level ridge, the forecast evolution of geopotential height on the 500 hPa level is further

investigated. Figure 4.2 shows the forecast evolution of ACC for the 500 hPa geopotential height
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4 Forecast evaluation for the 2021 Pacific Northwest Heat wave

Figure 4.2: Distribution of ensemble forecasts of ACC of Z500 valid on 29 June 2021 00 UTC, averaged
over the region (145◦W −95◦W,30◦N −75◦N, described in Section 3.2.1), initialized between
15 and 28 June 2021 00 UTC. The box marks 25-75 quantiles, the whiskers are 1-99 quantiles,
and the line is median. Colored diamonds represent the control forecast, colored triangles
represent the deterministic forecast, and the red line represents an ACC standard value of 0.6.

anomaly valid on 29 June 00 UTC. The ACC is calculated between the model forecasts and ERA5

reanalysis data as the method described (Section 3.2.2), and the color scheme and plot elements

follow the same conventions as described before (4.1.1).

First, the contrast in ensemble spread between FCNV2 initialized with Gaussian initial conditions

(yellow box) and IFS ENS (blue box) is more noticeable in the forecast of geopotential height

at a longer lead time, which further indicates the limitation of Gaussian initial condition. Next,

we compare the ACC of forecasts with a threshold value of 0.6 (red line in Figure 4.2). For most

forecasts initialized before 19 June, the ACC values remain below 0.6, indicating that both FCNV2

and IFS have limited skill in representing this high geopotential height anomaly before 19 June.

The Pangu-Weather struggled to represent the upper-level ridge on June 19th, and the ACC value

was negative, which corresponded with its inaccurate temperature forecast for that day (Figure 4.1).

For forecasts initialized on 20 June, the ACC of the ensemble median for IFS reaches 0.6, demon-

strating improved skill in representing the upper-level ridge, although not fully correct. In contrast,

the ACC of FCNV2 forecasts initialized with both IFS and Gaussian noise initial conditions remains

below 0.6 until 21 June. Although Pangu-Weather had the poorest performance on 19 June, it

showed a substantial improvement on 20 June, with the ACC value increasing from a negative value

the previous day to 0.6. From forecasts initialized on 22 June, the ACC of all forecasts (except for

FCNV1) surpasses 0.6, coinciding with the abrupt improvement in surface air temperature forecast

(Section 4.1.1).

Compared to FCNV2 and IFS, FCNV1 (grey box) with both IFS and Gaussian noise initial

conditions performs the worst, and it only crosses the ACC value of 0.6 on 24 June and still

struggles in accurately representing the upper-level ridge even one day prior to the heat wave peak.
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4.2 Analysis of forecast skill horizon

4.2 Analysis of forecast skill horizon

To quantify the skill of models in predicting the magnitude of the heat wave and the representation of

upper-level ridge at the peak of the heat wave, in this section, the forecast skill horizon of two-meter

temperature and 500 hPa geopotential height will be further analyzed based on forecast evolution in

the last section (Section 4.1). As discussed in Section 3.2.2, the forecast skill horizon for two-meter

temperature is defined as the lead time when the forecast bias of two-meter temperature becomes

smaller than 5K. Based on the analysis presented in Section 4.1.1, this 5K bias baseline can provide

an approximate estimation of when the forecast experienced a significant improvement, which likely

occurred between June 21st and June 22nd. On June 21st, most of the forecast bias values were

greater than 5K. To define a skillful 500 hPa geopotential height forecast, an ACC of 0.6 is used as

the baseline since values below 0.6 are considered insufficient for accurately positioning synoptic-

scale features. It needs to be noted that the forecast skill horizons for two-meter temperature and

500 hPa geopotential height should be interpreted separately, as the definition of "skillful" differs

between these two variables.

We first start with the analysis of the forecast skill horizon of two-meter temperatures (Figure

4.3). Figure 4.3a and 4.3b show the forecast evolution of FCNV1 and FCNV2 ensemble forecasts,

respectively, alongside the IFS ensemble forecast. Compared to the control forecasts (see Figure

A.1), the ensemble forecasts exhibit greater consistency over initialization time. Further, forecast

skill horizons defined before are extracted and compared across models in Figure 4.3c. Overall,

the comparison shows that the forecast skill horizons for FCNV2, whether initialized with IFS

initial conditions (green box) or Gaussian noise initial conditions (yellow box), are similar and

comparable to the IFS ensemble. Both become skillful in predicting the heat wave magnitude

at a lead time of around 7-8 days. Compared with FCNV2 and IFS, FCNV1 (grey box) exhibits

shorter forecast skill horizons, lagging behind both FCNV2 and the IFS by about two days. FCNV1

initialized with IFS initial conditions performs slightly better than initialized with Gaussian noise

initial conditions. Notably, the operational Pangu-Weather (red triangle) has a longer forecast skill

horizon (8-9 days) than both IFS and FCNV2, which means its forecast bias is less than 5 K earlier

than that of the other models (FCNV2 and IFS).

Next, the same analysis of the forecast skill horizon is applied to the 500 hPa geopotential height

(Figure 4.4). Figure 4.4a and Figure 4.4b show the forecast evolution of ACC of 500 hPa geopo-

tential height for FCNV1 and FCNV2, respectively, alongside the IFS ensemble forecast. Despite

the detailed forecast evolution analysis discussed in the previous section, it needs to be noted that

both FCNV2 and FCNV1 initialized with Gaussian noise initial conditions struggled to accurately

represent the upper-level ridge, even at short lead times, as their ACC values remained below 1.

(orange line in Figure 4.4a and 4.4b). This issue with 500 hPa geopotential height forecasts using

Gaussian initial conditions was also identified by Bülte et al. (2024). Next, forecast skill horizons

are extracted and compared across models in Figure 4.4c. IFS (blue box) exhibits a longer forecast

horizon (8-9 days) for the 500 hPa geopotential height compared to FCNV1 (grey box) and FCNV2

(blue and green boxes). Pangu-Weather demonstrates its ability to represent this upper-level ridge at
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Model T2m Z500

IFS ENS 7.22 (7.45) 8.20 (8.36)

FCNV2_EC 7.31 (7.18) 7.61 (7.61)

FCNV2_GAUSS 7.36 (7.35) 7.69 (7.84)

FCNV1_EC 5.42 (5.46) 7.23 (7.28)

FCNV1_GAUSS 5.02 (5.43) 6.19 (7.19)

PGW_HRES 8.39 9.00

Table 4.1: Forecast skill horizons (in days) for two-meter temperature (T2m) and 500 hPa geopotential height
(Z500). Values outside parentheses indicate the ensemble mean forecast skill horizon, while
values inside parentheses represent the corresponding control forecast skill horizon. Note that the
last row of Pangu-Weather represents the forecast skill horizon of a single deterministic forecast.

a lead time of 9 days. The significant improvement is more evident compared with control forecasts

of IFS and FCNV2 (Figure A.2),

Finally, the forecast skill horizons for two-meter temperature and 500 hPa geopotential height

across models are summarized in Table 4.1. FCNV2 initialized with either IFS or Gaussian initial

conditions demonstrates similar skill in predicting the heat wave peak magnitude, achieving a

temperature bias of less than 5K at a 7-day lead time, comparable to the IFS model. However,

the IFS model captures the upper-level ridge 8 days before the peak, earlier than FCNV2. Pangu-

Weather exhibits a longer forecast skill horizon, with a temperature bias of less than 5K around

8 days before the peak and skillfully representing the upper-level ridge 9 days prior. FCNV1

performed the worst and it only predicted the magnitude of heat wave peak forecasts at a lead time

of 5 day and struggling to represent the upper-level ridge accurately. It is important to note that

the forecast skill horizon is defined only with respect to the peak time of the heat wave, which

might not provide a comprehensive picture of the performance of models during the entire heat

wave period. Moreover, as mentioned by Pasche et al. (2024), although Pangu-Weather predicted

the high temperature earlier, an analysis of the spatial distribution showed that it even predicted a

higher temperature in the region where the ground truth data did not indicate one.
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4.2 Analysis of forecast skill horizon

(a) Forecast evolution of 2-m temperature bias of FCNV2

(b) Forecast evolution of 2-m temperature bias of FCNV1

(c) Comparison of forecast skill horizon of 2-m temperature across models

Figure 4.3: (a) Ensemble forecast evolution of two-meter temperature bias with respect to ERA5 reanalysis
valid on 29 June 00UTC, initialized from 14 days to 1 day prior to 29 June 00UTC. The solid
marked line represents the ensemble mean; the shading area represents ±1.5 standard deviations.
The two-meter temperature bias averaged over 20° latitude by 20° longitude box. The dashed
line represents a 5 Kelvin bias baseline. (b) Same as (a) but for FCNV1 ensemble forecast. (c)
The forecast skill horizon of models for 2-m temperature. The line represents the forecast
horizon of the ensemble mean, and the whisker represents the forecast horizon range, covering
±1.5 standard deviations from the mean forecast horizon. The diamond shape points represent
control forecasts, and the triangle represents operation Pangu-Weather initialized with IFS
high-resolution initial condition.
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4 Forecast evaluation for the 2021 Pacific Northwest Heat wave

(a) Forecast evolution of 500 hPa geopotential height ACC for FCNV2

(b) Forecast evolution of 500 hPa geopotential height ACC for FCNV1

(c) Comparison of forecast skill horizon of 500 hPa geopotential height across models

Figure 4.4: Same as Figure 4.3 but for ACC of 500 hPa geopotential height averaged over the region
(145◦W-95◦W, 30◦N-75◦N).
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5 Meteorological analysis of the 2021
Pacific Northwest Heat Wave

Results from the previous chapter revealed that data-driven models (FCNV2 and Pangu-Weather)

predicted the peak magnitude during the 2021 Pacific Northwest Heat Wave with performance com-

parable to IFS. Although the predictive skill of representing the upper-level ridge was investigated,

whether these data-driven models could effectively capture the link between the high-temperature

anomaly and this upper-level ridge remains unclear. Secondly, while the large-scale circulation pat-

tern acted as an important precursor during this event, the extreme near-surface temperatures would

not have been as severe without additional thermodynamic processes involved in soil moisture

deficits and upper-tropospheric heat as discussed in Section 2.3.2.

Thus, in this chapter, instead of focusing only on how the data-driven model depicts this extreme

heat, the model evaluation is extended to the representation of drivers and processes that are already

known to lead to the high near-surface temperatures during this event. By separating ensemble

members of the data-driven model based on their predictive skill of near-surface air temperature

(Method 3.2.4), the processes contributing to successful or unsuccessful heat wave predictions in

the data-driven models can be studied and compared with the NWP model. Following an intensive

analysis of the forecast on 29 June, the analysis in this chapter extends to the whole heat wave

period (27 June to 1 July).

Section 5.1 investigates the representation of the large circulation pattern in data-driven ensemble

forecasts. In Section 5.2, the time evolution of the vertical structure of temperature and moisture

anomalies based on ERA5 reanalysis and associated thermodynamic processes are first discussed,

laying the background for the next section. Lastly, Section 5.3 evaluates the representation of

local thermodynamical processes in data-driven models, and the implication for near-surface air

temperature diurnal evolution is discussed.

5.1 Representation of blocking patterns in the
data-driven model

Figure 5.1 shows the composite-mean two-meter temperature anomaly and associated 500 hPa

geopotential height anomaly (with respect to climatology) averaged from 27 June to 1 July for the

"good members" in the FourCastNet2 and IFs ensemble forecasts initialized on 20 June, 22 June,

and 24 June.
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5 Meteorological analysis of the 2021 Pacific Northwest Heat Wave

(a) FCNV2_ECGood initialized on 20 June (b) IFSGood initialized on 20 June

(c) FCNV2_ECGood initialized on 22 June (d) IFSGood initialized on 22 June

(e) FCNV2_ECGood initialized on 24 June (f) IFSGood initialized on 24 June

(g) ERA5 reanalysis

Figure 5.1: Composite mean of 2-m temperature anomaly (filled contours) and Z500 anomaly (solid black
contours) for "good members" in FCNV2 initialized with IFS initial conditions (a, c, e) and IFS
ENS (b, d, f) ensemble forecasts initialized on 20, 22, and 24 June, and ERA5 reanalysis (g),
averaged from June 27 to July 1 (included), with respect to the ERA5 June-July climatology
(1979-2019)
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5.1 Representation of blocking patterns in the data-driven model

The "good members" are defined as those members with higher predictive skill in two-meter

temperature in terms of RMSE. According to the ERA5 reanalysis (Figure 5.2g), an upper-level

ridge characterized by an anomalous 500 hPa high geopotential height anomaly was located over

Northwestern America during the heat wave (27 June to 01 July), exhibiting a high geopotential

anomaly in the center up to 240 m. The two-meter temperature anomaly compared to climatology

reached up to 12 K, and the location of the center of this blocking system coincides well with the

high near-surface air temperature anomaly.

Next, we move the attention to the "good members" in the ensemble forecasts. In general, as

the initialization time of the forecast is closer to the valid forecast time, both FCNV2 and IFS

progressively improve in capturing the location and magnitude of the blocking system and associated

high-temperature anomaly. On 20 June, while the IFS "good members" had already captured the

reversal of the geopotential height anomaly gradient and the location of this system was already

on the continent, the exceptional thickness was still underestimated (Figure 5.1b). In contrast, the

FCNV2 "good members" struggled to predict the correct location of the center, with the predicted

center of the blocking system still over the Northwest Pacific Ocean. (Figure 5.1a). By 22 June,

both "good members" of IFS and FCNV2 predicted the location of the blocking system, but the

magnitude of the high geopotential height anomaly remained underestimated. Concurrently, both

models could predict the temperature anomaly, although the spatial extent and magnitude were

still underestimated (Figure 5.1c and 5.1d). On 24 June, while the FCNV2 predicted the center

location of the high geopotential height anomaly, the IFS model better captured the magnitude of

the geopotential height anomaly at the center. As a result, compared to the ERA5 reanalysis, the

IFS model more accurately depicted the spatial extent of the high-temperature anomaly. Although

the IFS model still slightly underestimated the magnitude of the high-temperature anomaly, the

FCNV2 underestimated the magnitude but depicted a larger spatial extent. (Figure 5.1e and 5.1f).

In contrast to the "good members" in the ensemble forecasts (Figure 5.1), the "bad members"

(Figure 5.2) are defined as those members with lower predictive skill in two-meter temperature in

terms of RMSE. A notable difference between the "good members" and "bad members" is identified

in the forecasts initialized on 22 June (Figures 5.2c and 5.2d). The "good members" of both IFS and

FCNV2 depicted a similar picture of the temperature anomaly and large-scale circulation pattern

on this day. However, the difference between the "bad members" of FCNV2 and IFS is distinctive.

The "bad members" in the IFS ensembles have already captured the shape and location of the

blocking system and the associated temperature anomaly. In contrast, the "bad members" in the

FCNV2 ensembles still struggled to capture the correct circulation pattern and the high-temperature

anomaly. The observed difference between the "bad members" of FCNV2 and IFS suggests that

FCNV2 may have more difficulty predicting anomalous conditions compared to IFS on 22 June.

In other words, FCNV2 might be more significantly affected when extrapolating to such extreme

conditions, as identified by Pasche et al. (2024). However, it is important to consider that the

performance difference between "bad forecasts" of FCNV2 and IFS could also be influenced by the

insufficient initial conditions used to generate the data-driven ensemble forecasts.

Despite the more pronounced divergence in performance between the ’good’ and ’bad’ members of

the FCNV2 ensembles, the previous analysis still implies that FCNV2 may capture the relationship
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(a) FCNV2_ECBad initialized on 20 June (b) IFSBad initialized on 20 June

(c) FCNV2_ECBad initialized on 22 June (d) IFSBad initialized on 22 June

(e) FCNV2_ECBad initialized on 24 June (f) IFSBad initialized on 24 June

(g) ERA5 reanalysis

Figure 5.2: Composite mean of 2-m temperature anomaly (filled contours) and Z500 anomaly (solid black
contours) for "bad members" in FCNV2 initialized with IFS initial conditions (a, c, e) and IFS
ENS (b, d, f) ensemble forecasts initialized on 20, 22, and 24 June, and ERA5 reanalysis (g),
averaged from June 27 to July 1 (included), with respect to the ERA5 June-July climatology
(1979-2019)
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between high-temperature anomalies and large-scale blocking patterns, as the members with good

predictive skill in two-meter temperature forecasts also capture the blocking pattern better. Further,

this relationship is evident from the spatial alignment of the temperature anomaly with the location

of the high geopotential height anomaly in the FCNV2 ensembles.

5.2 Evolution of the vertical structure and associated
processes

In this section, we first examine the temporal evolution of temperature and humidity vertical

anomalies with respect to the climatology from 24 June to 5 July in the ERA5 reanalysis. This

analysis aims to discuss several important processes involved in land-atmosphere feedback and

upper-tropospheric heat during the development of the heat wave. It is important to note that our

discussion of these processes is not only based on the analysis of the vertical profiles of temperature

and humidity. Instead, it is also informed by and connected to many other studies, as the vertical

profiles alone provide limited information.

5.2.1 Evolution of the temperature anomaly vertical structure and
associated processes

Figure 5.3a illustrates the temporal evolution of the vertical structure of temperature anomalies

from 100 hPa to 850 hPa during the period from 24 June to 5 July. The figure reveals a distinct

tilted pattern in the temperature anomalies throughout the vertical profile. Notably, significant

temperature anomalies in the mid- to upper-tropospheric levels (300 hPa to 600 hPa) emerge from

24 June to 25 June, with anomalies exceeding 12 K. In contrast, during this time, the temperature

anomalies in the lower troposphere (700 hPa to 850 hPa) only range from 2 K to 6 K. Hotz

et al. (2023) used Lagrangian temperature anomaly decomposition to quantitatively analyze this

upper tropospheric anomaly, separating it into positive advective diabatic and negative adiabatic

components, suggesting that the warming of the air parcel in the upper troposphere is due to diabatic

processes and the horizontal advection of warm air, which further confirms this warm aloft is a

signature of WCBs (Section 2.3.1).

This heat signature of WCBs in the mid-to-upper-troposphere begins to weaken gradually on 27

June and continues until 2 July. Simultaneously, the temperature in the lower levels starts to rise,

with the temperature anomaly beginning on 26 June and peaking between 29 June and 30 June,

exceeding 16 K. This observed pattern further implies the top-down control of near-surface heat

during this event, a significant feature as noted by Hotz et al. (2023) and Schumacher et al. (2022).

In addition to this feature, we can also identify the vertical extent of heat from 850 hPa to 600 hPa,

indicating that the impact of the extreme heat event is not limited to the near-surface layers but

extends to higher altitudes in the lower atmosphere. This vertical extent of heat may be related to

atmospheric boundary layer processes and mixing within the lower atmosphere. As Schumacher
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(a) Evolution of vertical temperature anomaly vertical structure

(b) Evolution of relative humidity anomaly vertical structure

(c) Evolution of specific humidity anomaly vertical structure

Figure 5.3: (a) Time heightight plot of temperature anomaly with respect to the June and July climatology
from 1979 to 2019, averaged over the land domain (49◦N −59◦N and 115◦W −125◦W )
between 24 June and 1 July, 2021. (b) Time-height plot of relative humidity anomaly. (c)
Time-height plot of specific humidity anomaly.
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et al. (2022) described, desiccated soils contributed to higher surface sensible heat fluxes, which

transfer more heat from the land surface to the overlying air, steadily heating the planetary boundary

layer. In addition to surface heating, warm air from the upper troposphere was gradually entrained

and mixed into the growing PBL. The combined effect of surface sensible heat flux and warm

air entrainment caused the PBL height to expand. As the PBL height increased, it was further

connected with the upper-tropospheric heat. In the PBL, the heat kept accumulating as the process

as Miralles et al. (2014) described: at night, the heat generated during the daytime was preserved

in the residual layer. The next day, the heat from the residual layer was re-entrained into the PBL.

Over several days of development, this heat cycle led to progressive heat accumulation in the PBL,

further enhancing soil desiccation and escalating near-surface air temperatures.

But it needs to be noted this upper-tropospheric heat was not primarily responsible for the near-

surface temperature anomaly, the contribution of the warm air aloft was more important in serving

as a prerequisite for the heat accumulation in the PBL by suppressing moist convection that would

have had a cooling effect (Schumacher et al., 2022; Papritz and Röthlisberger, 2023). In summary,

the dry soil conditions, strong surface sensible heating, and the resulting deep PBL facilitated the

mixing process and allowed for the accumulation of heat within the boundary layer over several

days. These factors played a crucial role in the sustained development of the lower-level temperature

anomaly, ultimately leading to extreme temperatures exceeding 16 K during the peak of the heat

wave between 29 June and 30 June (Figure 5.3a).

5.2.2 Evolution of the moisture anomaly vertical structure and associated
processes

The discussion in the last section suggests that the dry soil conditions played a crucial role in

facilitating the growth of the PBL height. Through enhanced surface sensible heating, the dry soils

further exacerbated the near-surface temperatures. Next, we examine the temporal evolution of

specific humidity vertical profiles in ERA5 reanalysis and build a more comprehensive picture

of the thermodynamical processes that contributed to the development of this extreme heat wave

event.

As shown in Figure 5.3c, a column of positive specific humidity anomaly (0.001 to 0.002 kg/kg)

extending from 850 hPa to the upper troposphere can be identified from 24 June to 26 June. Given

the antecedent dry soil conditions and limited precipitation in the region prior to the onset of the heat

wave (Section 2.3.2), which likely suppressed local evapotranspiration, the moisture contributing to

the observed (ERA5 reanalysis) high specific humidity column from 24 June to 26 June is more

likely advected from remote source. From 26 June, the moisture column height gradually decreased,

and the high moisture column can be identified in the low-level atmosphere and persist until the

end of the heat wave. The following discussion will focus on the source of this moisture and the

associated processes.

During the 2021 Pacific Northwest heat wave, an anomalous warm-season atmospheric river (AR)

played a significant role in transporting tropical moisture from Southeast Asia across the North
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Pacific Ocean to North America (Mo et al., 2022). This AR made a prolonged landfall during the

period of June 24-26, bringing a substantial amount of moisture into western Canada. Concurrently,

the WCB ascent occurred over the East Pacific from 25 June to 28 June, with the outflow of

WCB directly feeding into the upper-level ridge. The timing of the AR’s landfall and the WCB’s

ascent suggests that the moisture transported by the AR likely provided moisture for the ascending

WCB (Oertel et al., 2023). Thus, this specific humidity column from 24 June to 26 June might be

attributed to the combined effects of ARS and WCBs during this period.

While the interaction between the AR and WCB may explain the moisture transport and the

formation of the high specific humidity column between June 24 and 26 June, the trajectory

analysis by Baier et al. (2023) provides additional insights and explains the second high specific

humidity column (28 June to 30 June) in the lower level (Figure 5.3c). Baier et al. (2023) further

traced back the air causing this heat wave 3 weeks before reaching Northwestern America, showing

9 to 6 days before this event (20 June to 23 June), the air ascended by the convective lift along the

Meiyu-Baiu front over Eastern Asia and thus lead to strong diabatic heating, which is concentrated

into two WCBs Oertel et al. (2023). During the last 6 days before the event (23 June to 29 June),

the air mass that landed over Northwestern America descended and entered the PBL. Despite this

descending motion, which typically leads to a decrease in moisture content, the specific humidity

within the PBL remained high. This suggests that the increased lower atmospheric specific humidity

observed between 28 to 30 June may have primarily been a result of the advection of the moist air

mass from the tropics, which subsequently descended into the PBL. Given the dry soil conditions

during this period, only a small amount of the observed moisture can be associated with local

evaporative processes, as the dry soils would have limited the potential for evaporative cooling.

(Figure 5.3c). However, it needs to be noted that there are no clear quantifications of the moisture

sources in other studies. The description provided here is based on the interpretation of the observed

specific humidity profiles and the air mass trajectory analysis conducted by Baier et al. (2023).

Though the positive specific humidity anomaly is observed during the heat wave period (Figure

5.3c), the negative relative humidity anomaly profile can be identified for the atmospheric column

from the lower atmosphere to the upper troposphere (Figure 5.3b). The negative relative humidity

anomaly suggests that despite the increased specific humidity, the air was still unsaturated relative

to its temperature. This explains why the relatively high specific humidity did not lead to increased

cloud formation or precipitation. Instead, the moisture from the West Pacific that mixed into the

warm and dry air mass might act as a short-lived greenhouse gas, trapping solar radiation and

further warming the lower atmosphere as a potential mechanism stated by (Mo et al., 2022). The

negative relative humidity anomaly is also consistent with the clear sky conditions observed during

this event. These clear sky conditions allowed for increased incoming shortwave radiation, which

further contributed to the warming of the lower atmosphere during the heat wave.

Finally, the termination of this heat wave and the associated mechanism are briefly discussed.

After 1 July, the temperature anomaly in the lower level significantly dropped, and by 02 July, the

temperature of the whole atmospheric column had weakened, thus marking the end of this heat

wave (Figure 5.3a). The termination of the heat wave occurred when the atmosphere was no longer

stable as warming aloft entrained to lower-atmopshere, causing the convective damping of the
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near-surface temperature (Zhang and Boos, 2023; Hotz et al., 2023). The high specific humidity

anomaly and low relative humidity can also be observed after 1 July (Figure 5.3b). The increased

moisture content in the atmosphere, as indicated by the specific humidity anomaly, likely provided

the necessary conditions for the heavy precipitation that accompanied the termination of this heat

wave Hotz et al. (2023).

In summary, by combining the analysis of the temporal evolution of the vertical structure of

temperature and humidity during the 2021 Pacific Northwest heat wave with findings from other

studies, several important processes leading to the development of this extreme event have been

identified. First, the upper-tropospheric heat driven by WCBs during this event was an important

prerequisite for heat accumulation in the lower atmosphere. The warm air aloft increased the

stability of the atmospheric column and suppressed the cooling effect of moist convection, which

would have otherwise limited near-surface temperature extremes. Second, dry soil conditions played

a crucial role in modulating the surface energy balance. The dry soils facilitated the development

of a deep planetary boundary layer (PBL), allowing the lower atmosphere to connect with the

upper-tropospheric heat source. More importantly, the deep PBL enhanced heat accumulation near

the surface, leading to high-temperature anomalies. This, in turn, exacerbated soil drying, creating

a positive feedback loop that further amplified the heat wave.

The combination of these processes, including upper-tropospheric heat suppressing convective cool-

ing and dry soils facilitating PBL growth and heat accumulation, created a favorable environment

for the development and intensification of extreme surface temperatures during the 2021 PNW heat

wave.

5.3 Representation of processes in the data-driven
models

After discussing several important thermodynamical processes leading the high-temperature devel-

opment during the 2021 Pacific Northwest heat wave using ERA5 reanalysis data, the following

section will examine the time evolution of the vertical temperature and humidity profile forecast

by data-driven models and how they represent the aforementioned processes in the 2021 Pacific

Northwest Heat Wave.

5.3.1 Forecast evolution of vertical temperature structure

Good members and bad members in data-driven ensemble forecasts

We first examine the temporal evolution of the vertical temperature anomaly profile in good

members and bad members of FCNV2 and FCNV1 ensembles. Figure 5.4 shows the evolution of

the vertical temperature anomaly forecast initialized from 20 June to 24 June 00 UTC. The left

column represents good members with better predictive skills for near-surface air temperature,
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(a) FCNV2Good initialized on 20 June (b) FCNV2Bad initialized on 20 June

(c) FCNV2Good initialized on 22 June (d) FCNV2Bad initialized on 22 June

(e) FCNV2Good initialized on 24 June (f) FCNV2Bad initialized on 24 June

(g) ERA5 reanalysis

Figure 5.4: Time-height plots of temperature forecast anomalies (24 June - 1 July, 2021) of FourCastNet2
initialized with IFS initial conditions (FCNV2), averaged over the land domain, with respect to
the June-July climatology (1979-2019). Scatter points at 500 hPa and 850 hPa represent
FourCastNet1 (FCNV1) forecasts. The first column (a, c, e) shows the composite mean of "good
members," while the second column (b, d, f) shows the composite mean of "bad members." Each
row represents a different initialization time (20, 22, and 24 June 00 UTC). Last row: ERA5
reanalysis (g).
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5.3 Representation of processes in the data-driven models

while the right column represents bad members with worse predictive skills. Scatter points at 500

hPa and 850 hPa indicate the FCNV1 ensemble forecasts, available only at these two levels.

Overall, both good members and bad members across lead times can predict that the heat first

emerges from the upper-troposphere on 24 June to 25 June, though the forecast of the magnitude

of this upper-tropospheric heat varies. Second, for both good members and bad members in the

forecasts at earlier initialization time (Figure 5.4a, 5.4b) (20 June), they all struggle to predict the

development of the temperature anomalies in the lower atmosphere during heat wave period.

Next, the difference between good members and bad members in FCNV2 across initialization time

is discussed. From the forecast initialized on 18 June (Figure A.3a, A.3b), both good and bad

ensemble members only capture the warm signal of upper-tropospheric heat. From the forecast

initialized on 20 June (Figure 5.4a and 5.4b), both the good and bad ensemble members captured

the signal of this warm aloft (300 hPa - 400 hPa), however, they still did not predict any further

heat development in the lower-level atmosphere. A notable difference between the good and bad

members is their representation of the heat mixing between 500 and 600 hPa levels.

The forecasts initialized on 22 June (Figure 5.4c and 5.4d) show the improvement forecast of

upper-tropospheric heat, consistent with the time when it better predicted the upper-level ridge and

near-surface temperature forecasts as we discussed in Section 4.2. Notably, compared to the bad

members, the good ensemble members better depicted the persistence of upper-tropospheric heat

and the mixing of heat between the upper-troposphere and lower atmosphere. From the forecast

initialized on 24 June (Fig. 5.4e, f), the difference between good and bad members becomes smaller,

they all capture the upper-tropospheric heat and the development of high temperature in the lower-

level atmosphere during the heat wave period (27 June to 1 July). However, compared to ERA5

reanalysis, there is still a slight underestimation of the vertical extent of heat at lower-atmopshere.

Finally, the difference between FCNV1 and FCNV2 is discussed. For forecasts initialized at earlier

initialization times (18 June and 20 June) (scatter points in Figure A.3a, b and Figure 5.4a, b), the

difference between FCNV2 and FCNV1 is not significant as both of them have underestimated the

magnitude of upper-tropospheric heat. The difference becomes larger for the forecast initialized on

22 June (Figure 5.4c, d). Compared to FCNV2, FCNV1 underestimates the upper-tropospheric

heat more significantly and also fails to predict the heat development in the lower atmosphere.

The poor performance of FCNV1 in representing upper-tropospheric heat and subsequent heat

development is consistent with its poor performance in predicting near-surface temperature as

discussed in Section 4.1. FCNV1 underestimated the upper-tropospheric heat at 500 hPa and likely

failed to capture the vertical heat mixing between 500 hPa and 850 hPa.

In summary, as the initialization time progresses, FCNV2 exhibits an improved representation of the

upper-tropospheric heat and its subsequent development in the lower levels. A comparison between

the good and bad members reveals that the good members, characterized by better predictive skill

for near-surface temperature, depict the heat mixing between the upper troposphere and lower

levels more accurately. This heat mixing is linked to the development of a PBL, which is promoted

by dry soil conditions and the entrainment of warm air from aloft into the PBL.
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Inter-comparison between deterministic forecasts

Before going into the moisture vertical profile, we first discuss the vertical temperature anomaly

profiles in Pangu-Weather and IFS HRES, and compared them with the FCNV2.

Fig 5.5 shows the evolution of vertical temperature forecast anomaly profile in IFS HRES (first

row), FCNV2 (second row) and Pangu-Weather(third row), initialized from 18 June to 24 June.

Comparing the forecast evolution across the three models, all three models start capturing the

emergence of upper-tropospheric heat and the subsequent development of heat in the lower levels

as the initialization time progresses from 18 June to 24 June.

Next, we turn our attention to the difference between each model. For IFS HRES, it have shown

strong upper-trophspheric heat signal (10 - 12 K) from the forecast initialized on 18 June (Figure

5.5 (a)). However, for FCNV2 and PanguWeather, the magnitude of upper-tropospheric heat are

still significantly underestimated (5.5(e), (i)). Moving to the forecasts initialized on 20 June (Fig 5.5

(b), (f), (j)), IFS HRES shows the onset of heat development at lower levels starting from 26 June,

whereas FCNV2 fails to capture any signals of this lower-level heat development, and PanguWeather

starts to depict the lower-level heat development but does not predict its prolonged duration. For

the forecast initialized on 22 June (Fig 5.5 (c), (g), (k)), both IFS HRES and PanguWeather capture

the upper-tropospheric heat and the subsequent heating in the lower-level atmosphere, albeit still

underestimating the intensity of the strong heat at the lower level. In contrast, FCNV2 fails to

capture the strong heating in both the upper troposphere and the heat development in the lower

atmosphere. It is only in the forecasts initialized on 24 June (Fig 5.5 (d), (h), (l) ) that all three

models, including FCNV2, accurately depict this evolution of the vertical temperature anomaly

profile. However, compared to IFS and Pangu-Weather, we can identify FCNV2 underestimated

the high temperature anomaly in the lower-level atmosphere.

In summary, IFS HRES outperforms PanguWeather and FCNV2 in predicting the development

of upper-level heat and subsequent heating in the lower atmosphere. IFS HRES captures the

evolution of the vertical temperature profile earlier and more accurately than the other two models.

While PanguWeather captures the lower-level heat development earlier than FCNV2, both models

underestimate the intensity and duration of the heating compared to IFS HRES in the forecasts

initialized before 22 June. FCNV2 lags behind IFS HRES and PanguWeather, only accurately

representing the evolution of the vertical profile at the initialization time of 24 June.
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5.3 Representation of processes in the data-driven models

Figure 5.5: Time-height plots of temperature forecast anomalies, averaged over the domain from 24 June to
1 July, 2021, with respect to the June-July climatology (1979-2019) for deterministic forecasts.
The first row (a-d) shows IFS HRES, the second row (e-h) shows FCNV2 initialized with IFS
HRES initial conditions, and the third row (i-l) shows PanguWeather forecasts initialized with
IFS HRES initial conditions. Each column represents a different initialization time from 18 June
00 UTC to 24 June 00 UTC. Note that IFS HRES has a temporal resolution of 24 h, while
PanguWeather and FCNV2 have a resolution of 6 h.

5.3.2 Forecast evolution of vertical moisture structure

The analysis in Section 5.2 demonstrated that dry soil conditions played a critical role in the

development of lower atmospheric temperatures during this heat wave event. Dry soil conditions
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led to the creation of a deep PBL, allowing heat accumulation and mixing with upper-tropospheric

heat within the PBL. In addition, dry soil facilitated the surface energy balance, promoting sensible

heat flux over latent heat flux, thus contributing to heating the lower atmosphere (Schumacher

et al., 2022). To indirectly investigate the representation of dry soil conditions and associated

land-atmosphere feedback in data-driven models, this section examines their representation of the

evolution of the vertical moisture profile.

Good members and bad members in FCNV2 ensemble forecast

We first examine the temporal evolution of the specific humidity anomaly vertical profile in good

members and bad members in FCNV2 and FCNV1 ensembles. Fig. 5.6 shows the evolution of

the specific humidity forecast initialized from 18 June to 24 June 00 UTC, the scatter points over

500hPa and 850 hPa represent the forecast of FCNV1 as it only available in these two levels.

To begin with the overall pattern of FCNV2 forecast(Figure 5.6), firstly, both good members and

bad members across lead times can capture this high column of specific humidity extending from

850 hPa to the upper troposphere, which emerged from June 24 to June 26, as discussed in Section

5.2. Second, as the initialized time progresses, we can identify that forecasts start to capture the

growing low-level moisture appearing on 29 June, through the magnitude varies. Notably, for the

forecast initialized on 22 June (Figure 5.6c, d ), both good and bad members overestimate the

low-level moisture (0.005 kg/kg), while in the ERA5 reanalysis, it is only up to 0.0030 - 0.0035

kg/kg (Figure 5.6g). In contrast, the low-level moisture forecast initialized on 24 June (Fig 5.6e, f)

predicts lower moisture compared to the forecast initialized on 22 June, but still remains slightly

higher than the ERA5 reanalysis.

Next, the difference between good and bad members is discussed. From forecasts initialized on

18 June (Figure A.4a, A.4b), the good members captured the increase in low-level moisture better

than the bad members during the heat wave peak (28 June to 30 June). On 20 June (Figure 5.6a,

b), both good and bad members predicted an increase in low-level moisture reasonably well, but it

needs to be noticed at this time (20 June) that the FCNV2 forecast of low-level temperature was

still underestimated (Figure 5.4a, b). The forecast initialized on 22 June (Fig 5.6c, d) shows an

overestimation of low-level moisture by both good and bad members, though the good members

had a lower overestimation between 28 June and 29 June compared to the bad members. For the

forecast initialized on 24 June (Fig 5.6e, f), the difference between the good member and bad

members was not as evident.

Finally, we compare the evolution of vertical specific humidity anomaly between FCNV1 and

FCNV2. Overall, the depiction of low-level moisture between FCNV1 and FCNV2 is similar. As

the initialization time progresses, the forecast of low-level moisture also grows, and we can also

identify the evident overestimation in FCNV1 that appeared from the forecast initialized on 22 June

(Scatter points in Fig 5.6c, d).
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In summary, FCNV2 represents the high moisture column that appeared on 24 June. However,

both good members and bad members in FCNV2 overestimated the low-level moisture from the

forecast initialized on 22 June. The overestimation of the good member is slightly lower than that

of the bad member, but the difference is not evident. From the forecast initialized on 24 June, the

overestimation seems to be "corrected."

In the last section, the difference between good members and bad members in depicting the

vertical temperature anomaly profile is their representation of the mixing of heat between the upper

troposphere and lower-level atmosphere. Connecting their depiction of the vertical profiles of

moisture and temperature, one possible explanation for the overestimation of low-level moisture

by FCNV2 during the heat wave peak from forecasts initialized on 22 June is that, while FCNV2

demonstrated improved predictability of the upper-level ridge and high-temperature anomaly on

22 June (see Fig 4.1 and 4.2), it does not initialize or account for soil moisture conditions, which

suggests it may not adequately represent the temperature - soil moisture feedback (see Section2.3.1).

Consequently, FCNV2 could overestimate the evapotranspiration rate during the heat wave as it

starts to predict the high near-surface temperature anomaly. This overestimation would lead to

excessive moisture being transferred from the land surface to the lower atmosphere, resulting in

the observed overestimation of low-level atmospheric moisture forecasts during the heat wave’s

peak. The lack of proper representation of the soil moisture deficit and its modulating effect

on evapotranspiration in FCNV2 could be a key factor contributing to this overestimation. For

the "corrected" moisture prediction from the forecast initialized two days later (24 June), one

assumption is that as the initialization time approaches the actual event, the initial conditions might

give the FCNV2 more information about the connection between temperature and moisture, thus

FCNV2 could capture the right development of lower-level atmospheric moisture.

In the next section, we compare FCNV2 with IFS and PanguWeather models to further investigate

this hypothesis. These comparisons can help us understand whether the overestimation of low-level

moisture is specific to FCNV2.

Inter-comparison between deterministic forecasts

Fig 5.7 shows the evolution of vertical-specific humidity forecast anomaly profile in IFS HRES

(first row), Pangu-Weather (second row), and FCNV2 (third row), initialized from 18 June to 24

June. Comparing the forecast evolution across the three models, all three models start to capture

the high column of specific humidity extending from 850 hPa to the upper troposphere as the

initialization time progresses from 18 June to 24 June.

Next, we shift our focus to the forecast of low-level moisture and compare the performance of

different models. From forecasts initialized on 20 June (second column in fig 5.7), we can identify

all three models (PanguWeather, IFS HRES, and FCNV2) begin to capture the development of

low-level moisture on 29 June. Notably, Pangu-Weather (Fig 5.7 (j)) significantly overestimates
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(a) FCNV2Good initialized on 20 June (b) FCNV2Bad initialized on 20 June

(c) FCNV2Good initialized on 22 June (d) FCNV2Bad initialized on 22 June

(e) FCNV2Good initialized on 24 June (f) FCNV2Bad initialized on 24 June

(g) ERA5 reanalysis

Figure 5.6: Time-height plots of specific humidity forecast anomalies (24 June - 1 July, 2021) of
FourCastNet2 initialized with IFS initial conditions (FCNV2), averaged over the land domain,
with respect to the June-July climatology (1979-2019). Scatter points at 500 hPa and 850 hPa
represent FourCastNet1 (FCNV1) forecasts. The first column (a, c, e) shows the composite mean
of "good members," while the second column (b, d, f) shows the composite mean of "bad
members." Each row represents a different initialization time (20, 22, and 24 June 00 UTC). Last
row: ERA5 reanalysis (g).
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the low-level moisture, with values reaching up to 0.005 kg/kg. In contrast, both IFS HRES and

FCNV2 do not exhibit any overestimation in their forecasts initialized on 20 June (Fig 5.7 (b), (f)).

Interestingly, when we examine the forecasts initialized on 22 June (third column in Figure 5.7),

we notice Pangu-Weather appears to have "corrected" its previous overestimation of moisture.

However, FCNV2 has started to overestimate the low-level moisture, which is consistent with

our investigation in the ensemble forecast. Remarkably, IFS HRES provides a more accurate

representation of low-level moisture across initialization times. From the forecast initialized on 24

June (fourth column in Figure 5.7), the moisture overestimation of FCNV2 improved but was still

higher than the ERA5 reanalysis.

In summary, the comparison between models highlights that IFS HRES demonstrates a more con-

sistent performance in representing the evolution of vertical specific humidity across initialization

times, especially for the representation of low-level moisture. In contrast, Pangu-Weather and

FCNV2 exhibit overestimation of the low-level atmospheric moisture at certain initialization times,

though this overestimation is not consistent across all initialization times.

The inconsistent overestimation of low-level moisture in data-driven models could impact the

modeled surface energy balance, as higher moisture content leads to increased evaporative cooling,

potentially reducing the modeled surface temperatures. However, the evaluation of heat wave

magnitude in the previous chapter 4 considered a larger region, which might have made this

deficiency less apparent. To better understand the impact of the low-level moisture overestimation

on the modeled near-surface air temperature in data-driven models, the next section will focus on a

smaller region over land and investigate the diurnal evolution of near-surface air temperature.

Implication for near-surface air temperature diurnal evolution

Fig 5.8 shows the forecast of near-surface air temperature evolution during the heat wave period

in FCNV2 and IFS ENS initialized from 20 June to 24 June. Before analyzing the forecast, We

first examine the near-surface temperature evolution based on ERA5 reanalysis (red line in Figure

5.8). The near-surface air temperature gradually increased at the early stage of the heat wave from

27 June, and we can identify the diurnal cycle between 28 and 30 June (the peak of a heat wave)

became quite stable.

The stable diurnal cycle during the peak of the heat wave shown in the ERA5 reanalysis reflected

several important features during 2021 Pacific NorthWest Heat Wave. Firstly, the dry soil conditions

limited the amount of moisture available for evaporative cooling, which typically helps moderate

temperature fluctuations. With less moisture available, the surface heat flux was primarily driven

by the incoming solar radiation during the day and the upward sensible heating from the warm,

dry ground at night (Neal et al., 2022). Furthermore, we analyzed the negative relative humidity

column in Section 5.2, which suggests the upper-tropospheric heat and the presence of a persistent

high-pressure system during the heat wave likely contributed to the stable atmospheric conditions,

with clear skies and minimal cloud cover. This allowed for uninterrupted solar heating during
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5 Meteorological analysis of the 2021 Pacific Northwest Heat Wave

Figure 5.7: Time-height plots of specific humidity forecast anomalies, averaged over the domain from 24
June to 1 July, 2021, with respect to the June-July climatology (1979-2019) for deterministic
forecasts. The first row (a-d) shows IFS HRES, the second row (e-h) shows FCNV2 initialized
with IFS HRES initial conditions, and the third row (i-l) shows PanguWeather forecasts
initialized with IFS HRES initial conditions. Each column represents a different initialization
time from 18 June 00 UTC to 24 June 00 UTC. Note that IFS HRES has a temporal resolution of
24 h, while PanguWeather and FCNV2 have a resolution of 6 h.
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the day and efficient radiative cooling at night, resulting in a consistent diurnal temperature cycle

during the heat wave peak.

Next, we move attention to the differences in the forecast of the time evolution of two-meter

temperature among the IFS ENS, FCNV2, and Pangu-Weather. From the forecasts initialized on

20 June (Figure 5.8a), we can identify that the maximum temperatures after 28 June, shown in

the reanalysis, are significantly underestimated by all three models. The underestimation is most

pronounced at 00 UTC, with a difference of more than 12 K. At this initialization time (20 June), the

underestimation might largely be attributed to the misrepresentation of the large-scale circulation

pattern, where the forecast skill of the circulation pattern is still limited (Figure 4.2). However, we

can still observe that the underestimation between 28 June 00 UTC and 30 June 00 UTC is more

pronounced in FCNV2 (green line) and Pangu-Weather (orange line) compared to the IFS (blue

line). This underestimation in FCNV2 and PanguWeather is more evident at 00 UTC (16:00 local

time) but not as pronounced at 12 UTC (04:00 local time).

Based on the forecasts initialized on 22 June (Figure 5.8b), all three models (IFS ENS, FCNV2,

and PanguWeather) show significant improvement in their temperature forecasts compared to the

forecasts initialized two days earlier. The improvement in temperature evolution forecasts could be

largely due to the improved representation of large-scale circulation patterns in all three models at

the time of initialization. Despite the overall improvement, IFS and FCNV2 still underestimate

temperatures from June 28 to July 1, while the forecast of PanguWeather is closer to the time

evolution depicted in ERA5 reanalysis. Moving on to the forecast initialized on June 24 (Fig. 5.8c),

we see that all three models can reasonably predict the time evolution at the heat wave period.

As shown before, compared to IFS, Pangu-Weather and FCNV2 have a larger underestimation

of temperature at 00 UTC than at 12 UTC, resulting in a smaller diurnal temperature range. We

further analyze the diurnal evolution aggregated between 28 June 00 UTC and 30 June 00 UTC, as

shown in Figure 5.9. The composite diurnal evolution shows that from the forecast initialized on 20

June (Figure 5.9a), while all models underestimate the daytime peak temperature, PanguWeather

exhibits a smaller diurnal evolution than other two models. From the forecast initialized on 22 June

(Figure 5.9b), though all three models experience a smaller diurnal cycle than the ERA5 reanalysis,

Pangu-Weather depicts the diurnal evolution closer to ERA5 reanalysis. The forecast of FCNV2

has a smaller diurnal cycle than IFS and Pangu-Weather. From the forecast initialized on 24 June,

we can identify that three models all represent the diurnal evolution well match to ERA5 reanalysis

(Figure 5.9c).

The moisture overestimation observed in PanguWeather (see Figure 5.7(j)) may contribute to the

differences in the diurnal temperature evolution between PanguWeather and IFS in the forecast

initialized on June 20 ((Figure 5.9a). During the daytime, from 28 June to 30 June, the overestimated

moisture in the lower atmosphere by PanguWeather suggests the overestimation of evaporative

cooling, as it would overestimate the amount of energy consumed by evapotranspiration rather

than being used for sensible heating. This extra latent cooling may suppress daily maximum

temperatures more than what was observed (ERA5). Furthermore, the excessive moisture predicted

by PanguWeather may promote the formation of low clouds, which are effective at reflecting
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(a) Forecasts of time evolution initialized on 20 June 00UTC

(b) Forecasts of time evolution initialized on 22 June 00UTC

(c) Forecasts of time evolution initialized on 24 June 00UTC

Figure 5.8: Time evolution of 2-meter temperature during the heat wave period (24 June to 4 July). Lines
represent ensemble means: blue (IFS ENS), green (FourCastNet2 initialized with IFS), orange
(Pangu-Weather initialized with IFS HRES). Red line: ERA5 reanalysis. Shading: 10-90% range
of ensemble forecasts, light grey (FourCastNet2), dark grey (IFS ENS).
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incoming solar radiation. Compared to the clear sky situation during the 2021 Pacific Northwest

heat wave, this cloud radiative effect would reduce surface heating and hinder the rise in daily

maximum temperatures. Conversely, the overestimation of atmospheric moisture can reduce

radiative cooling of the surface at nighttime. Therefore, the overestimation of low-level atmospheric

moisture in PanguWeather from the forecast initialized on 20 June may indicated by the dampened

diurnal temperature evolution compared to IFS. Following the ’correction’ of the low-level moisture

forecast in Pangu-Weather at the initialization on June 22, the previously observed diurnal evolution

discrepancy between IFS and Pangu-Weather is no longer evident (Figure 5.9b).

Similarly, the dampened diurnal temperature evolution of FCNV2 can also be identified by compar-

ing it with IFS (Figure 5.9b), though the dampened diurnal evolution of FCNV2 is not evident as in

Pangu-Weather, this may mainly be because the aggregated time we choose (only the peak of heat

wave), as shown in Figure 5.8b, FCNV2 experienced a smaller diurnal evolution compared to IFS

is most evident between 28 June and till 7 July.
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(a) Composite diurnal evolution initialized on 20 June 00 UTC

(b) Composite diurnal evolution initialized on 22 June 00 UTC

(c) Composite diurnal evolution initialized on 24 June 00 UTC

Figure 5.9: Composite diurnal evolution initialized from 20 June 00UTC to 24 June 00UTC, aggregated
between 28 June 00 UTC and 30 June 00 UTC (included). Lines represent ensemble means:
blue (IFS ENS), green (FourCastNet2 initialized with IFS IC), orange (Pangu-Weather initialized
with IFS HRES IC). Red line: ERA5 reanalysis. Shading: 10-90% range of ensemble forecasts,
light grey (FourCastNet2), dark grey (IFS ENS)
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The development and maintenance of heat waves involve various drivers and their complex interplay

across different spatial and temporal scales. Moreover, in the context of climate change, the non-

linear effect of global warming increases the likelihood of unprecedented and more extreme heat

waves (Domeisen et al., 2022b). While state-of-the-art numerical weather prediction models

have shown significant improvement in heat wave prediction and even demonstrated potential for

extended-range forecasts on the time scale of 3-4 weeks, models still exhibit errors across the entire

range of heat wave drivers. Substantial improvements in heatwave prediction in the short term

remain unlikely (Barriopedro et al., 2023). In recent years, data-driven models have experienced

rapid advancements and demonstrated comparable performance to physics-based NWP models for

medium-range weather forecasting. Despite showing promising average performance, their ability

to predict extreme events is still uncertain, as these rare conditions often lie outside of the training

data distribution, limiting their ability to extrapolate reliably (Olivetti and Messori, 2024).

The main research aim of this thesis is to investigate the uncertainty and potential of data-driven

models in predicting extreme heat events and to compare their performance with a state-of-the-art

NWP model through a case study that is totally out-of-sample. More importantly, this thesis aims

to evaluate the performance of data-driven models in capturing and representing the key drivers

and important processes that contribute to the development of heat waves. The record-breaking

2021 Pacific Northwest Heat Wave is selected as the case study because it was so extreme that it

far exceeded the range of historical temperature observations, making it even more challenging to

define the return period with confidence (Philip et al., 2022). To quantify uncertainty in heat wave

prediction using data-driven models, ensemble forecasts are generated from two versions of the

FourCastNet using IFS initial conditions and Gaussian noise initial conditions to compare with IFS

ENS. Additionally, the Pangu-Weather deterministic forecasts are included for inter-comparison

between models. After a detailed evaluation of the predictive skill for the magnitude of the heat

wave peak, the representation of the large-scale circulation pattern and local thermodynamic

processes in data-driven models is investigated. In the following discussion, the research questions

raised in Chapter 1 are addressed:

1. At what lead time do data-driven models start providing skillful predictions of the inten-
sity for the peak of the heat wave and the associated anomalous atmospheric circulation
pattern, and how do they compare with numerical weather prediction models?

In predicting the peak magnitude during the 2021 PNW Heat Wave, all models (FourCastNet1,

FourCastNet2, Pangu-Weather, and IFS) were not accurately capturing the extreme magnitude
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beyond the lead time of 7 days, and they all experienced significant improvement before they

could capture the extreme magnitude.

When comparing the lead times at which their forecast bias of two-meter temperature started

to become less than 5 K (considered skillful for predicting the heat wave peak magnitude),

ensemble forecasts of FourCastNet2, initialized with either IFS initial conditions or Gaussian

noise initial conditions, demonstrated similar forecast skill. They could predict the peak

magnitude 7 days ahead of the peak, comparable to the performance of the IFS ensembles.

For Pangu-Weather, its bias falls below 5 K around 8 days before the peak of the heat wave.

However, at a longer lead time of 10 days, Pangu-Weather experienced the largest errors

compared to IFS and FourCastNet2. In contrast, FourCastNet1 performed the worst, only

capturing the peak magnitude 5 days ahead of the peak. At the lead time of 6 days, all models

except FourCastNet1 could accurately predict the peak magnitude of this heat wave.

In predicting the associated anomalous atmospheric circulation pattern, represented by the

500 hPa geopotential height anomaly, IFS ensemble forecasts showed a skillful representation

of this pattern at a lead time of 8 days. FourCastNet2 performed slightly worse, demonstrating

skillful predictions around 7 days before the peak. Pangu-Weather demonstrated a skillful

representation of this anomalous circulation pattern as early as 9 days but showed almost no

skill at the lead time of 10 days. FourCastNet1 struggled the most, failing to represent this

circulation pattern accurately, even at short lead times (5 days).

2. To what extent can data-driven model capture the relationship between extreme tem-
perature anomalies and the associated anomalous large-scale atmospheric circulation
patterns?

By grouping the ensemble members of FourCastNet2 based on their predictive skill for

near-surface air temperatures and categorizing them as "good members" and "bad members,"

it is found that those members that more accurately predict near-surface air temperatures

during the heat wave period also better represent the position and magnitude of the anoma-

lous large-scale circulation patterns. This implies that FourCastNet2 may have learned the

link between the high surface temperature anomaly and this large-scale circulation pattern.

Additionally, the location of the high near-surface temperature anomalies predicted by Four-

CastNet2 aligned well with the high-pressure center. However, while the "good members" of

FourCastNet2 performed comparably to the "good members" of the IFS ensemble, the "bad

members" of FourCastNet2 struggled more with capturing high-temperature anomalies and

associated circulation patterns compared to the "bad members" of IFS.

3. How do data-driven models represent the local thermodynamical processes during the
heat wave?

Several thermodynamical processes involving upper-tropospheric heat and land-atmosphere

feedback represented by data-driven models are investigated indirectly by examining the
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forecasts of the vertical profiles of temperature and specific humidity anomalies. First, the

data-driven models (Pangu-Weather and FourCastNet2) have the ability to predict the upper-

tropospheric heat and the subsequent heat development in the lower atmosphere, but the

timing of their predictions differs. For FourCastNet2, while it captures the upper-tropospheric

heat signal at earlier initialization times, it only predicts the magnitude of upper-tropospheric

heat and lower-atmosphere heat development at later initialization times (24 June). Pangu-

Weather predicts both upper-tropospheric heat and lower-level heat development earlier

than FourCastNet2 (22 June). In contrast, IFS consistently depicts the vertical temperature

anomaly profile, capturing upper-tropospheric heat and subsequent lower-atmosphere heat

development earlier (20 June) than both FourCastNet2 and Pangu-Weather. For FourCast-

Net1, although it captures the upper-tropospheric heat signal, the magnitude is significantly

underestimated, and it fails to capture the subsequent heat development in the lower-level

atmosphere.

Notably, the investigation of the forecast evolution of the vertical moisture anomaly profile

reveals that FourCastNet2 and Pangu-Weather tend to overestimate low-level atmospheric

moisture at certain initialization times (20 June for Pangu-Weather, 22 June for FourCast-

Net2). In contrast, IFS does not exhibit this overestimation of moisture across lead times.

This discrepancy is further indicated by the difference in their forecasts of the diurnal evo-

lution of near-surface air temperature, where Pangu-Weather and FourCastNet2 predict a

smaller diurnal temperature range than IFS when the overestimation of moisture occurs.

The overestimation of low-level atmospheric moisture by Pangu-Weather and FourCastNet2

suggests that these models may not adequately represent the land-atmosphere feedback and

the surface energy budget. During daytime, the overestimated moisture suggests that models

tend to predict more evaporative cooling, resulting in less energy available for sensible

heating. Additionally, the overestimated moisture favors cloud formation, reducing incoming

solar radiation and decreasing the energy available for surface heating. At night, the overesti-

mated low-level moisture contributes to higher minimum temperatures due to an enhanced

greenhouse effect trapping outgoing longwave radiation.

By evaluating the predictive skill of data-driven models and investigating their representation of

large-scale circulation patterns and local thermodynamical processes, this thesis provides unique

insights into the potential strengths and weaknesses of data-driven models in an out-of-sample case.

During the 2021 PNW Heat Wave, FourCastNet2 and Pangu-Weather showed comparable skill to

IFS ENS in predicting the peak magnitude of the heat wave and the associated large-scale circulation

pattern. However, the investigation into the representation of local thermodynamic processes in

data-driven models suggests that the IFS provides more robust and consistent predictions in terms

of the vertical profile of temperature and moisture anomalies. In contrast, data-driven models tend

to struggle with vertical profiling of moisture and overestimate low-level atmospheric moisture

at certain initialization times. This limitation suggests that these models might not effectively

capture the feedback between the surface and the atmosphere, as they do not include meteorological

variables related to surface conditions. On the other hand, the IFS explicitly includes a scheme

(TESSEL) (see Section 2.3.1) to represent the coupling between the surface and the atmosphere,
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6 Conclusions

leading to a more accurate representations of low-level moisture. However, the findings only

indirectly link the overestimation of moisture in data-driven models to near-surface air temperature

by suggesting its impact on the diurnal evolution of temperature, rather than establishing a direct

causal relationship. Thus, future studies involving comprehensive sensitivity testing of data-driven

models are crucial to understand the dependency between predicted variables and the underlying

physical processes represented by data-driven models.

Pasche et al. (2024) also evaluated data-driven models and compared them to IFS HRES during the

2021 PNW Heat Wave, focusing only on deterministic forecasts rather than probabilistic forecasts.

They found that although Pangu-Weather and GraphCast provided comparable forecasts during the

heat wave when compared to IFS HRES, data-driven models struggled more with extrapolating

such extreme conditions. They pointed out that the models faced the most difficulty on the peak

heatwave days, not primarily due to longer lead times from their initialization but because of the

inherent predictability barrier of the extreme situation itself, regardless of the initialization time.

This finding aligns with the finding of this thesis, which observed that all models experienced

significant improvement in their forecast evolution around one week before the heat wave peak.

This further illustrates that the extreme nature of the heat wave itself posed the biggest challenge to

predictability for both data-driven and NWP models.

In addition to comparing data-driven models and NWP models, this thesis compared two versions

of the FourCastNet model. In the evaluation of FourCastNet1, it was discovered that its fore-

casts contained significant outliers (not shown in the thesis). These outliers were later identified

as artifacts resulting from issues with the model architecture. By improving the architecture in

FourCastNet2, the model demonstrated increased stability over longer lead times. Another key

difference between FourCastNet1 and FourCastNet2 was the input data, particularly regarding ver-

tical level information. Although both models underwent the same training process, FourCastNet2

had access to more detailed vertical level data as inputs. This additional input information likely

contributed to the improved performance of FourCastNet2, especially in cases where the vertical

temperature profile was critical for surface heat development.

In this thesis, the evaluation has only focused on forecasts initialized at 00 UTC, using ERA5 as the

ground truth for validating the forecasts. However, it is important to note that ERA5 initialized at 00

UTC has a larger assimilation window (9 hours) compared to the IFS forecasts (3 hours). To enable

a more comprehensive and fair comparison between NWP models and data-driven models, future

studies should extend the analysis to include forecasts initialized at different times. Additionally,

instead of using ERA5 as the ground truth, the forecasts of NWP models should consider comparing

against their own analysis, which would give a more fair comparison for IFS, especially at a short

lead time.

This thesis employed two initial conditions to generate ensemble forecasts in a data-driven weather

prediction model. Both approaches rely on running the model multiple times with slightly varying

initial conditions. Consequently, the resulting ensembles can only capture uncertainties arising from

the initial conditions but fail to account for uncertainties inherent in the model itself (Bülte et al.,

2024). In contrast, NWP models include stochastic schemes to represent uncertainties due to model
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integration, leading to more reliable probabilistic forecasts, which are especially crucial for extreme

events (Leutbecher et al., 2017). Thus, the development of ensemble forecasting techniques for

data-driven models is still in its early stages. Future research is still needed to explore ensemble

forecasting in data-driven models and evaluate its effectiveness in predicting extreme events.
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7 Abbreviations

NWP Numerical Weather Prediction

IFS Integrated Forecasting System

HRES high-resolution forecast

ENS ensemble forecast

ECMWF European Centre for Medium-Range Weather Forecasts

PNW Pacific Northwest

WCB Warm Conveyor Belt

WCBs Warm Conveyor Belts

ML Machine Learning

DL Deep Learning

GCM Global Circulation Model

GCMs Global Circulation Models

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

NN Neural Network

NWP Numerical Weather Prediction

S2S subseasonal-to-seasonal

GNN Graph Neural Network

GNNs Graph Neural Networks

ACC Anomaly Correlation Coefficient

ARs Atmopsheric Rivers
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7 Abbreviations

PBL Planetary Boundary Layer

TESSEL Tiled ECMWF Scheme for Surface Exchanges over Land

SPPT Stochastically Perturbed Parametrisation Tendencies

PDEs Partial Differential Equations

RMSE Root Mean square Error
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Appendix

Figure A.1: Control forecast and deterministic forecast evolution of two-meter temperature bias with respect
to ERA5 reanalysis valid on 29 June 00UTC, initialized from 14 days to 1 day prior to 29 June
00UTC. The solid marked line represents the control forecast and deterministic forecast (red
line: operational Pangu-Weather); The two-meter temperature bias averaged over 20° latitude by
20° longitude box. The dashed line represents a 5 K bias baseline.

Figure A.2: Same as Figure A.1 but for ACC of 500 hPa geopotential height averaged over the region
(145◦W-95◦W, 30◦N-75◦N).
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7 Abbreviations

(a) FCNV2Good initialized on 18 June (b) FCNV2Bad initialized on 18 June

Figure A.3: Time-height plots of temperature forecast anomalies (24 June - 1 July), comparison of
FCNV2Good and FCNV2Bad initialized on 18 June, scatter points represent FCNV1 forecast.

(a) FCNV2Good initialized on 18 June (b) FCNV2Bad initialized on 18 June

Figure A.4: Time-height plots of specific humidity forecast anomalies (24 June - 1 July), comparison of
FCNV2Good and FCNV2Bad initialized on 18 June, scatter points represent FCNV1 forecast.
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