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Zusammenfassung

Gewitterstiirme zahlen in Deutschland zu denjenigen Wetterereignissen nmit erheblichen
Schadenspotential. Besonders im Sommerhalbjahr kénnen sich GewittesZ@ngomplexen
ausbilden, die von starkem Regen, Windbéen, Tornados oder Hagkelitet werden. Gewitter
und deren Begleiterscheinungen ereignen sich mehrmals pro Jahr ircBlents und verursa-
chen Schaden an Autos, Gebauden und anderen Besitztimern. In-®adtt@mberg kénnen
fast 40% aller witterungsbedingter Schaden an Geb&auden auf Hagekgafiihrt werden (Pus-
keiler, 2009).

In den vergangenen Jahren konnte die SV SparkassenVersigh&@ieine Zunahme der Tage
beobachten, an denen Hagelschaden auftraten. Eine solche ZundirhmmufProblemen beson-
ders fur Versicherungen, das Baugewerbe und die Landwirtsdtzaft.des vierten Sachstands-
berichtes des ,Intergovernmental Panel on Climate Change* (IPCQ,|IRAD7) konnte im letz-
ten Jahrhundert (1906-2005) auch eine Zunahme der globalen Mittetlztopem ca. 0,74° C
(£0.18° C) beobachtet werden. Dies wirft die Fragen auf, ob die Amdeder Temperatur mit
den Anderungen der Haufigkeit von Hagelereignissen zusammenimigigtelche zukinftigen
Entwicklungen zu erwarten sind.

Problematisch ist allerdings, dass Gewitter nur lokal begrenzt aufti2iertypische horizontale
Ausdehnung liegt haufig bei weniger als einigen Kilometern. Daher kb@wssvitter von meteo-
rologischen Bodenstationen oft nicht erfasst werden. Auch Harndungsmessgeréate, wie z. B.
das Radar, sind noch nicht in der Lage Hagel zu registrieren, darlksheeindeutiger Zusam-
menhang zwischen Radarreflektivitat und Hagel bzw. Regen gefumerlen konnte (Kunz and
Puskeiler, 2010; Sauvageot, 1992). Zudem kénnen Gewitter von Klimglileachicht abgebil-
det werden, da deren horizontale Aufldésung meist geringer ist alsuligiche Ausdehnung der
Gewitterzellen. Aufgrund der Problematik bei der Erfassung von Gewslittenen stehen daher
keine ausreichend lange Zeitreihen zur Verfiigung um mogliche Anderuder Hageltage tiber
einen langen Zeitraum zu untersuchen.

Um dieses Problem zu umgehen werden im Folgenden fur die Auslésumboahreichender
Konvektion wichtige Parameter untersucht. Die Prozesse der Ausloguhgusn einen gut ver-
standen und zum anderen besser messbar. Parameter die die Aubléstimgiben sind die ther-
mische Schichtung der Atmosphéare, der Feuchtegehalt und die groRedtieliyng. Es wird
angenommen, dass Anderungen dieser Parameter die Wahrscheinlictikdgr Gewitter auf-
treten, beeinflussen. Unter Verwendung dieser Parameter lasserrsidveierlagen definieren,
welche dann zu einer gewissen Wahrscheinlichkeit auch Informatidmendas Hagelpotential
liefern.

Arbeiten von Bissolli et al. (2007) haben gezeigt, dass Wetterlagenrbadiauf den genannten
Parametern in engem Zusammenhang mit dem Auftreten von Tornados ircBlants stehen.
Ahnliche Ergebnisse erzielten Bardossy and Filiz (2005) in Bezug acifilasserereignisse und
Ehmann (2009) bezlglich Hagelschaden. Diese Untersuchungen diel€nundlage dieser Di-
plomarbeit.



In der vorliegenden Arbeit wird die langzeitliche Variabilitat der Wetterlagealysiert, die hau-
fig mit Hagelschaden in Verbindung stehen (hagelrelevant) und sol@audselten zusammen
mit Hagel auftreten (hagelirrelevant). Um langzeitliche Trends und mogheh@dizitaten zu
detektieren, werden Daten verschiedener Klimamodelle verwendet. [Ras bei der Analyse
liegt auf der Klarung zwei wichtiger Punkte: Zum einen muss die verwteridethode der Wet-
terlagenklassifikation (0WLK) des Deutschen Wetterdienstes (DWD) aeifihwendbarkeit auf
unterschiedliche Modelldaten untersucht werden. Zum anderen muassgastellt werden, dass
Klimamodelle in der Lage sind die Wetterlagen hinreichend gut wieder zu geben

Zur Klarung stehen Reanalysedaten des ECMWF (ERA40 und ERAf)tspwie Daten des
regionalen Klimamodells CCLM-ERAA4O fiir den Kontrollzeitraum C20 (197126i80) zur Ver-
fugung. Die CCLM-ERA40-Daten werden angetrieben von ERA40RBRlaenN, die als Anfangs-
und Randbedingungen genutzt wurden. Fir denselben Zeitraum sengehiedene Projektions-
zeitraume (2001-2048/2050 bzw. 2011-2050) liegen aulRerdem Datteweaschiedener Realisa-
tionen des regionalen Klimamodells COSMO-CLM vor. Diese unterschiedbnrsaer Version
des Regionalmodells COSMO-CLM (3.1 und 4.8), den antreibenden Globell@oECHAM5-
MPI/OM, CCCma3), den Anfangsbedingungen- und zeiten der Globalieodeauf 1 bis 3)
sowie den Emissionsszenarien (A1B und B1). Auf alle Daten wird die oWltkdas Untersu-
chungsgebiet Deutschland (ca. 4°E bis 16°E und 45°N bis 57°Nyaergiet und die Wetterlagen
bestimmt. Die oWLK bertcksichtigt die drei Parameter Advektionsrichtung didex) als in-
direktes Mal fur die thermische Stabilitat, Zyklonalitat in zwei Hohenschicfite@0 hPa und
500 hPa) als Index fiir groRraumige Hebung und Feuchte (niedeystiitiéges Wasser).

Mittels Hagelschadensdaten der SV und kategorischer Verifikation wemkhlielend Wetter-
lagen mit Hagelereignissen verknipft. Damit kann zwischen Lagen leégelnten und hagelir-
relevanten Lagen unterschieden werden. Diese bilden die Grundiagje Nariabilitatsanalyse.

Die Anwendbarkeit der Methode wird durch einen Vergleich der absolteahl der einzelnen
Wetterlagen aus ERA40, ERA-Interim und CLM-ERA40 fur den Kontraltazem C20 Uber-
pruft. Geringe Abweichungen zwischen den absoluten Anzahlen implizidess die oWLK auf
verschiedene Reanalysedaten anwendbar ist und dass eine uatiicdol Modellauflosung von
ERA40 (= 125 km), ERA-Interim £ 80 km) und CCLM-ERA404 50 km) nur einen geringen
Einfluss auf die Klassifikationsergebnisse hat. Unterschiede der Héitéig zwischen den Mo-
dellen «8%) kdnnen auf Unterschiede in der Windrichtungsbestimmungen zuwetidkg wer-
den. AuRRerdem st6l3t die oWLK vor allem bei indifferenten Wetterlageihr@nGrenzen, wenn
zum Beispiel die Zyklonalitat Werte nahe Null annimmt.

Weiterfihrend werden hagelrelevante Lagen und hagelirrelevanterlaigée mittels Heidke Skill
Score (HSS) unterteilt. Es kdnnen vier verschiedene hagelrelevashfénirhagelirrelevante La-
gen identifiziert werden. Drei dieser vier hagelrelevanten Wetterlagdrasif denselben meteo-
rologischen Prozess zuriick zu fuhren (,Spanish Plume*). Durabneimog Gber dem Nordat-
lantik und einem Rucken Uber Mitteleuropa kommt es zur Advektion feuchtiealLuft aus
dem Mittelmeerraum oder vom Atlantik. Die Advektion dieser energiereichgtmassen erhoht



das Potential fur hochreichende Konvektion und erklart, warum eddsegenannten Wetterla-
gen haufig zur Entwicklung kraftiger Gewitter und damit einhergehen&Hagnmt. Dies zeigt,
dass die oWLK nicht zwischen einzelnen meteorologischen Prozessasaheiden kann besta-
tigt aber, dass die klassifizierten Wetterlagen durchaus realistisch ssmdWLK ist damit eine
geeignete Methode flr die Untersuchung hagelrelevanter Wetterlagen.

Um zu zeigen, dass auch die jahrliche Variabilitéat der hagelrelevantenrlidgée unabhéangig
vom Modell und der Modellauflésung ist, wird die jahrliche Anzahl derdiggevanten Wetterla-
gen aus Reanalysedaten und CCLM-ERA40-Daten verglichen. Die iBburggen dieser Anzahl
zwischen den Modellen fir den Kontrollzeitraum sind - ausgenommen féelei@ Jahre - relativ
klein (<5%). Fur die hagelirrelevanten Lagen sind sie etwas gro0%o). Dies zeigt, dass die
Modellauflésung nur geringe Auswirkungen auf die Variabilitat hat.

Im Folgenden wird die oWLK durch Anwendung auf ein Ensemble aus\eerkthiedenen Rea-
lisationen des regionalen Klimamodells COSMO-CLM dazu benutzt um feslizmstd die Kli-
mamodelle in der Lage sind Wetterlagen hinreichend gut wieder zu gebeWaHidierung der
Modelle werden die aus den Klimamodellen errechneten Haufigkeitsverteiiuhey Wetterla-
gen mit denen des Referenzmodells CCLM-ERA40 fur den Kontrollzeitr@2® verglichen.
Die Ergebnisse sind Giberraschend: Obwohl keine Initialisierung der Kimdalldaten mit Beob-
achtungen stattfindet, sind die Wetterlagenverteilungen zwischen Klimamadisiteonen und
CCLM-ERA4O0 fast identisch. Abweichungen werden hauptsachlicbidden Zyklonalitatsindex
in 500 hPa verursacht, der wie oben erwahnt bei Werten um seinerzvi@e haufig zu Unter-
schieden in den Modellergebnissen fuhrt. Die geringen Unterschiedelmsm Referenzmodell
und den Klimamodellen zeigen, dass die Klimamodelle in der Lage sind Wetterlageithend
abzubilden. Dies ist eine wichtige Grundlage flr die Untersuchung dgzdattichen Variabilitat
der hagelrelevanten Wetterlagen.

Lineare Trends von Zeitreihen der hagelrelevanten Wetterlagen wanitlétilfe von Trendmatri-
zen analysiert, bei welchen Start- und Endzeiten der Zeitreihen sikkzesschoben wurden. Die
Signifikanz (80% Signifikanzniveau) wird mit Hilfe des Mann-Kendall{$dsestimmt. Signifi-
kante positive Trends von ca. neun Tagen kénnen wéahrend desoKogitraums fur Zeitreihen
der hagelrelevanten Wetterlagen von zwei Klimamodellen festgestellt wefderden Projek-
tionszeitraum zeigen drei der acht Klimamodelle statistisch signifikante po$itrels von bis
zu ca. 11 Tagen. AulRerdem kann in fast allen Modellrealisationen dunafendung einer Fast-
Fourier-Transformation eine Periodizitat von 12-16 sowie 2-5 Jahreittelt werden. Dies deutet
darauf hin, dass das Potential fir Hagel harmonisch schwankt. Bs strmerken, dass die er-
mittelten Trends sehr stark von Initialisierungszeit und -bedingungenrdiesizenden Globalm-
odells abhéngen, welche auch die gréf3ten Unterschiede in der abgdluégkeit der Wetter-
lagen verursachen. Weiterhin werden Unterschiede vom antreib&idbalmodell (ECHAM5,
CCCma3) selbst hervorgerufen, wohingegen die Version des Régiodells (3.1 und 4.8) so-
wie die verschiedenen Emissionsszenarien (A1B und B1) nur wenig Esrdluf die ermittelten
Trends haben. Diese Unterschiede deuten auf groRe Unsicherheden Klimaszenarien hin.



Aufgrunddessen sollten die acht verschiedenen ModellrealisationkhailgcKlimavorhersage,
sondern eher als mdgliche Entwicklung der hagelrelevanten Wetterlagentgewerden.

Um die potentielle Entwicklung der hagelrelevanten Wetterlagen der vedssteéa Realisationen
zusammenzufassen und die epistemischen Unsicherheiten (Unsichedieeliekannt, aber nicht
Messbar sind) zu bertcksichtigen, wurden die Zeitreihen der Wettarlageinem Ensemble ge-
bindelt (Mittelwert und Standardabweichung). Signifikante Langze@seind sowohl fir den
Kontrollzeitraum (von 35 auf 47 Tage), als auch fur den Projektionsagttr(von 39 auf 46 Tage)
zu erkennen. Die Zunahme der Tage mit hagelrelevanten Wetterlagert eekiautlich zum Teil
die Haufung der Hagelschaden, welche von der SV beobachtetmiendaten & 15 days). Dies
impliziert, dass die Ergebnisse durchaus reprasentabel sind.

Um die Ergebnisse verifizieren zu kénnen wird die Anzahl der Hagetsattage mit Hilfe eines
statistischen Modells modelliert, welches die Wetterlagen als EingabegroGet&er Vortell
dieser Methode besteht darin, dass alle 40 mdglichen Wetterlagen beeéssahBung der Tage
bertcksichtigt werden und nicht, wie vorher erértert, nur die vier Inalgeanten Lagen. Die Er-
gebnisse auf Grundlage der Wetterlagen von CCLM-ERA40, ERA4ERWH-Interim stimmen
sehr gut mit der Anzahl der Schadenstage der SV Uberein. Fir dezite 1986 bis 2000 wurden
an durchschnittlich 15 Tagen pro Sommerhalbjahr Hagelschaden an dienégung gemeldet,
welche vom Modell bestétigt werden. Die Wahrscheinlichkeitsverteilusgwizdells zeigt, dass
es auf Grundlage der Wetterlagen mit einer Wahrscheinlichkeit von 8émlindestens 13 und
héchstens 17 Hagelschadenstage gab.

Durch Anwendung des Modells auf die Klimamodelldaten kann auch die AdealiHagelscha-
denstage fir den Projektionszeitraum analysiert werden. Dazu wdrel&limamodelle fir den
Zeitraum 1986 bis 2000 mit der Verteilung der Hageltage von CCLM-ER/AsDefkorrigiert.
Auch mit dieser Methode kann eine Zunahme der Tage mit Hagelschadeadmet werden. Fir
drei der Modellrealisationen liegt die Wahrscheinlichkeit fur mehr als 1geage pro Sommer-
halbjahr fur die Jahre 2031-2045 tGber 90% und fur drei weitere NMedésationen sind es min-
destens 14 Tage. Es sollte bedacht werden, dass dies die minimale Aezblalgtltage darstellt
und daher oft eine hdhere Anzahl zu erwarten ist. Andererseitsreeigeye der Modellrealisa-
tionen trotz Fehlerkorrektur eine Abnahme der Hagelschadenstagenewi$©86 bis 2000 und
2001 bis 2015, was auf mehrjahrige Extrema in den Zeitreihen zurudkasfiist. Diese haben
einen starken Einfluss auf die Trends. Ob die Extrema auf Periodizitatehdresollte weiter
untersucht werden.

Es kann gezeigt werden, dass es moglich ist die oWLK auf verschiéBgrasatze anzuwenden.
Auch die regionalen Klimamodelle sind in der Lage Wetterlagen hinreicherabgrastellen, um
sie fur langzeitliche Analysen zu verwenden. Die Anwendung verseherdstatistischer Metho-
den macht es moglich die zukinftigen Entwicklungen von schadenstraci@igeitterstirmen
abzuschatzen. Daher kdnnten diese Methoden benutzt werden, iterevmeeteorologische Pha-
nomene [wie z.B. Tornados (Bissolli et al., 2007) oder Hochwassed@ay and Filiz, 2005)]
mit Wetterlagen zu untersuchen und die Wahrscheinlichkeit dieser Exegggnesse fir die Zu-



kunft abzuschatzen. Fur solche Studien sollten weitere regionale Klimdmaaie einbezogen
werden um die epistemische Unsicherheit zu minimieren. Dies stellt sicherdaasatirliche
Variabilitat untersucht wird und nicht nur die Modellphysik eines einzehegionalen Klimamo-
dells. Ein Ensemble sollte daher eine grol3e Anzahl von verschiedagienaken Klimamodellen
und unterschiedliche antreibende Globalmodelle berlcksichtigen.






Contents

Introduction

Theoretical Background

2.1 StaticStability . . . . . ...
2.2 Condensationlevels . . . . . . . ... .
2.3 Stability and thunderstormmeasures . . . . . . . . . ... ... ... ...
2.4 Development and characteristics of thunderstorms . . . . . .. ... ... ..
2.5 Developmentofhail . . . .. ... ... .

Data sets and methods

3.1 Datasets. . . . . . .
3.1.1 Reanalysis data and regional climate models . . . . ... ... ..
3.1.2 Objective weather type dataforGermany . . . . ... .......
3.1.3 Meteorological stationdata . . . . . ... ... ...........
3.1.4 Insurancedata . . .. ... . ...

3.2 Weather type classificationsschemes . . . . . .. ... ... ... .....
3.2.1 Subjective weather type classification after Hess and Brezowsky....
3.2.2 Objective weather type classification (0WLK) -DWD . . . . .. ..

3.3 Statisticalmethods . . . . . ...
3.3.1 Categorical verification . . . . . .. ... .. ... ... . ...,
3.3.2 Trend analysis and statistical significance . . . .. ... ... ...
3.3.3 Frequencyanalysis . . . . ... ... . ... ...
3.3.4 Probabilistic Forecast of hailstormevents . . . . . ... ... ...

Validation and detection of hail-related weather types

4.1 Validation of CLM-ERA40 derived weathertypes . . . . . . ... ... ...
4.2 Validation of the regional climate model realizations . . .. .. ... ...
4.3 Evaluation of a modified weather type classification . . . . . ... ... ..

Temporal variability of hail-related weather types

5.1 Temporal variability of hail-related weathertypes . . . . ... ... ... .
5.1.1 Detectionoflineartrends . . . . . ... ... ... ... .......
5.1.2 Detection of periodicities . . . . . . . . ... ..o



Contents

E

5.1.3 Variability of hail-related weather types in an ensemble of regional cli-

matemodels . . . . ... 74
5.2 Variability of hail-unrelated weathertypes . . . . .. .. .. ... ... .... 76
5.2.1 Detectionoflineartrends . . . .. ... ... ... ... .. ....... 76
5.2.2 Detection of periodicities . . . . . .. .. ... .. .. o0 79
5.2.3 \Variability of hail-unrelated weather types in an ensemble of regional cli-
mate models . . . . .. 80
Statistical modeling of hail damage days 85
6.1 Determination of hail damage day probabilites . . . . . . ... ... ... ... 85
6.2 Predictionof haildamagedays . . .. .. ... ... ... .. ... ...... 6 8
Summary and conclusion 93
Weather types 97
Skill Scores 101
Modified weather type classification 103
Analysis of hail-related weather types 105
D.1 Hail-related weathertypes . . . . . . . . . . . . . . .. e 510
D.2 Hail-unrelated weathertypes . . . . . . . . . . .. ... .. ... 071
Prediction of hail damage days 111

Literature 113



1. Introduction

Thunderstorms are one of the major natural hazards affecting Gernmmgcially during the

summer months, thunderstorms can develop to severe complexes thatoaiatadswvith heavy

rainfall, gusts, tornadoes or hail. These events, which occur sdirees each year in Germany,
pose a significant threat to humans and their assets. In the federalfdBatdem-Wirttemberg,

almost 40% of all damage to buildings can be attributed to large hailstones éfahRuskeiler,

2010).

In recent years, the number of days with hail damage occurrencevile¢et by the number of
settled claims of the SparkassenVersicherung AG insurance compasighdiEantly increased

(Fig. 1.1). This poses problems especially to insurance companies, thieumtion industry and

agriculture.

According to the fourth assessment report conducted by the Intergoeatal Panel on Climate
Change (IPCC; IPCC, 2007), the global mean temperature increasee liasthcentury (1906-

2005) by about 0.74C (+0.18C). This raises the question whether there is a link between tem-
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Figure 1.1: Number of hail damage days per year according to repattie &V building insur-
ance company in Baden-Wirttemberg. A hail damage day is defined asvdtdayore than 10
settled claims (Kunz et al., 2009). Indicated are the linear trend (solid) @a@5% confidence
intervals (dashed).
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perature and changes in the hail frequency, as well as what cactedger the future.

However, estimating the hazard associated with hailstorms is very difficult.uksliénstorms and
related hail streaks are often limited to a typical horizontal extent of onlyw&ifiemeters, they
are regularly not captured by current surface observations sysfesdgtionally, remote sensing
instruments, such as radars, are not yet able to detect hail, as no telafienship between radar
reflectivity and hail is established (Sauvageot, 1992; Kunz and Pusk2il20). Furthermore,
thunderstorms are mainly not captured in climate models because their hdrizdet# is less
than the spatial resolution of the model data. Hence, single- or multi-cell@thamesolved by
most models at all. Thus, there are basically no available time series of ttorderand hail
observations that would allow to analyze their changes over an adegisaiglyme period.

To overcome this problem, the parameters that are important for convegtig&éon, which are
better understood and better measurable, can be used to determine thi@lpaftémunderstorm
development. These parameters describe thermal stratification of the atmepspbisture con-
tent and meso-scale uplift. Changes in these parameters are assumed tatiepacbability
of thunderstorm occurrence. Furthermore, these parameters cakdxttindifferent large-scale
weather patterns, which then favor to a certain extent the developmeailsibhms.

Bissolli et al. (2007) found, for example, a strong relationship betweeredarge-scale weather
patterns, classified by the Deutscher Wetterdienst (DWD), and tornamorence in Germany.
Furthermore, Bardossy and Filiz (2005) found similar relations to floodiigednmann (2009) to
hail damage days in the recent decades. This diploma thesis builds up ersthdies. The over-
all goal is to examine to what extent specific weather patterns can be redadadhage-causing
hailstorms as well as to study the natural long-term variability and periodicitiiesfe specific
patterns in the past and in future decades. Two different classificatidimes are used to catego-
rize weather patterns determined by the relevant synoptic systems. Tloaéiis invented by the
DWD, while the second one is a modified version that is adjusted to hailstoranrence. Both
routines are applied to reanalysis data and a small ensemble of eightrdiffegional climate
model realizations.

There are several questions to face in order to reach the objectives.isQhe robustness of
the classification method when applied to different data sets with a speaia éochailstorms.
Reanalysis data (ERA40 and ERA-Interim) of the European Center fdiuvieRange Weather
Forecast (ECMWEF) and data of a regional climate model CCLM-ERAA40, lizitid by ERA40
reanalyses, are used to investigate whether these similar data sets (ak iobkedvations) ob-
tain similar distributions of the weather type frequency. The weather tygesa#egorized into
a subset that is frequently accompanied by hail damage (hail-relatedhigexamination, two
different statistical methods were used. Likewise, it is possible to deteathesetypes that are
only rarely accompanied by hail damage (hail-unrelated). The anragaléncy of these weather-
type groups derived from the three reanalysis data sets are compagadhii®ther in order to
determine if the method is applicable in terms of temporal variability. This kind of atadid is
fundamental as the indirect analysis regarding changes of damaginigimagiss more prone to



errors with regard to the realistic number of hail damage. However, it mightdood approach
since no hail observations are available for long time periods.

To investigate the temporal variability of the potential for hailstorm occugeard to identify
possible periodic behavior, data sets from different climate models ade bsdoing so, the un-
certainty of the results with regard to future reality is investigated. Data of diffjarent realiza-
tions of the regional climate model (RCM) COSMO-CLM for the time period 128%0 are used
to account for uncertainty. On the one hand, there is an uncertainty gwedesses or develop-
ments we cannot measure but know about (epistemic), for example,eshiariguman population
or economy. On the other hand, there is uncertainty due to events thatrhaply randomly
and cannot be quantified (aleatory). Thus, different realization€Gif\Care used, differing by
the COSMO-CLM version (3.1 and 4.8), the driving global climate model (EGIEAMPI/OM,
CCCmag), initialization times and initial conditions (Run 1 to 3) and the emissionisosifa1B
and B1). These data sets provide the basis for the analysis of nattieddiNiy, periodicity and
trends of weather patterns that favor or inhibit thunderstorm occceren

This thesis is organized as follows: Chapter 2 focuses on the theory mdehstorm develop-
ment including the different organization forms and explains the developofiéilstones. The
following Chapter 3 gives an overview of the data sets and methods us&dhabpter 4, the clas-
sified weather types derived from results of different climate modelsvataaed against reanal-
ysis data and hail-relevant weather types are identified. Additionally, a reddifassification
method, which aims at finding a better relationship between weather typesaarabihg hail-
storm occurrence, is introduced and applied. The analysis of temgiability of hail-relevant
and hail-irrelevant weather types is discussed in Chapter 5. Initially, thelmedlizations are
analyzed separately to determine model related differences of tempaedily. Afterwards,
the whole ensemble is considered. In Chapter 6, a statistical probabilistid taddentify the
number of hail damage days from specific weather types is introduceapgtidd to verify results
gained from previous chapters. Moreover, it is used to predict the eunfthail damage days
and to determine differences between various time periods. Finally, a sumaitlargonclusions
and a brief outlook is given in Chapter 7.






2. Theoretical Background

Thunderstorms develop in a convective atmosphere, where the motiord@ngrently vertical
and driven by buoyancy forces arising from static instability. This chiaigtsplit into three
sections. The first section of this chapter introduces the principal mischaand characteristics
of the atmosphere that are relevant for vertical motions. The secotidrsgtves an overview
about the different types of thunderstorms, while the third section exphainshail develops
within a cumulus cloud.

2.1 Static Stability

Whether convection can develop is dependent upon the vertical stitatificd the atmosphere.
Distinction is made between three different types of stratification: stablefanetit (neutral) or
unstable. If the atmosphere is stable, an air parcel that gets verticallyadidphall return to its
initial position. If the atmosphere is neutral or indifferent, the air parcgkstathe position where
it got moved to, while the atmosphere is called unstable when the displacedaet isafurther
accelerated in the direction of the initial displacement and does not returringiésposition.
These three mechanisms can be explained by the first law of thermodyna®ainsidering an
homogeneous system without irreversible processes like friction osaifiuthe change of the
internal energylu is given by:

du = dq + da (2.1)

with d¢ representing the rate of heat exchange amdhe rate of work on the system. These
are incomplete differentials and are therefore written withstead of ad. In the case of an air
parcel, this work is directly related to volume changes£ —pda with a = 1/p for the specific
volume). Internal energy changes are proportional to changes inripetaturedu = ¢,dT),
with ¢, as the specific heat capacity for a constant volume of air. With the enthatpy + pa,
the first law can be converted to

0q = dh — adp. (2.2)

Considering the change of the enthaly = c,dT" with ¢, as the specific heat capacity for
constant pressure and an adiabatic system, whetre0 (Eg. 2.2) gives:

dh = cpdT = adp. (2.3)



8 Chapter 2. Theoretical Background

To quantify changes in the temperature associated with vertical motion in aondeteous sys-
tem, that exhibits a vertical pressure gradient, the hydrostatic approximation
dp
9, — P9 (2.4)
z

is inserted into Eq. (2.3). If an air parcel is lifted and experiences a lpnassure, it expands
and, consequently, cools according to the dry adiabatic temperatuiergrad

oT
Pl = rg=-2 = 0.00908KmL. (2.5)
32 dry Cp

This gradient is valid for dry and also moist air with the specific heat capacity
Com = TouCpy + TyCpd, (2.6)

with the indexesn for moist air,v for water vapor for dry air andx,, for the mass fraction of
water vapor, ifc,,, ~ c,q and as long as condensation does not occur.

The relation between temperature gradient and upwards acceleratioaiofparcel follows from
the vertical component of the Eulerian equations of motion:

dw _10p

i —g (2.7)

poz
w is the vertical wind componeng, the density of the air parcel andthe air pressure. With the
equation of state

p=pR,T (2.8)

with Ry, = 287 Jkg! K~ = gas constant for dry air, the hydrostatic approximation for the envi-
ronment (index) and the quasi-static assumption that p., Eq. (2.7) yields

dw 1 e —
S =9t opg=g <p p) : (2.9)
p p

Insertion of the equation of state (Eq. 2.8) results in

dw T-T,
— = . 2.1
n g< - ) (2.10)

This equation shows that an air parcel is accelerated upwards if its tewmmeefas higher than
the environment temperaturé ¢ 7).

If the decrease in temperature of the environment is less than the dry &digbaperature gra-
dient, the lifted parcel will be colder than the environment. Due to its’ highesitie the parcel
experiences a negative acceleration according to Eq. (2.9) andsébuhe initial position, indi-
cating that the atmosphere is stable. If the temperature gradient of thereneimbis equal to the
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dry adiabatic gradient, the air parcel stays in the displaced position andtification is neutral.
If the temperature of the environment decreases more than the dry adtebgierature gradient,
the lifted air parcel will become warmer than the environment with a lower der@itysequently
it becomes positively accelerated. The atmosphere is unstable and theglifycan result into
convective activity.

For saturated air masses the examination of static stability is equivalent, bistethégeadiabatic
lapse rate has to be considered instead of the dry adiabatic one. If atedtair parcel is lifted,
the cooling rate is much lower compared to an unsaturated air parcel duertdethse of latent
heat through condensation. In this case the change in enthalpy is atsolledrby the rate of the
change in the saturation mixing rati:

dh = c,dT + ldr, (2.11)

wherel = 2.5 x 10% J kg~! is the specific latent heat of vaporization. Hence, the temperature
gradient is highly dependent on the humidity of the air volume and typically vaeéveen 0.4
and 0.98 K per 100 meter. In general, the pseudo adiabatic lapse ratensiawéne dry adiabatic

lapse rate, reaching
oT

— = -T4as (2.12)
0z ps

with «; = factor ranging between 0.3 and 1dif; converges against zero at low temperatures
(Kraus, 2004). The pseudo adiabatic lapse rate depends on the tampefahe air parcel and
the prevailing air pressure because there is more condensation of \aptarim a warmer air
parcel than it is in a colder one, according to the Clausius-ClapeyratiequAt very low tem-
perature and pressure, the dry and pseudo adiabatic temperatuesmgcadverge.

It is obvious that there is a thermal stratification which is stable without caadiem and unstable
with condensation. In this case the temperature gradient of the envirolsnresgtiveen the dry
adiabatic and pseudo adiabatic temperature gradient. This case is caltéiiooah instability
and stability/instability depends on whether condensation sets in. There is pdigntial during
these conditions that thunderstorms develop.

Triggering mechanisms of vertical air motion

Vertical motion can be triggered by several different processes witkimtimosphere. All these
processes are a result of the differential heating of the ground orrowgt layers in the atmo-
sphere (e.g. in the boundary layer), due to the terrestrial orbit ancttti@ation of the axis of the
earth (e.g. depending on the season). One region, where theserdifferare most pronounced,
is the temperate zone between 50-60°N, where the polar air mass and ttrefsoal air mass
converge. The resulting temperature and density gradients can leadttitiarinstability and
the formation of high- or low pressure systems.
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The characteristics affecting vertical motion can be explained by the omegéien Eq. (2.13). It

is a diagnostic equation, specifying the distribution of large-scale verticgmadn a system with
the pressure as vertical coordinapesf/stem) it can be written as following (cf. quasigeostrophic
theory):

<av,2, + f(?;;) w = —fogp (Vg Vp) (G + )] + V3 [(Vg V) <_gz>]

= (1) + (2) :

(2.13)

wherew is the vertical wind velocity in the p-system s a stability parameteyf,, the Coriolis pa-

rameter assumed to be constarttie pressurejq the geostrophic wind vectaf, the geostrophic
vorticity, f the planetary vorticity assumed to vary linearly along longitudesqatik geopoten-
tial. It is emphasized that diabatic effects are not depicted in Eq. (2.13ybueferred to in the
text.

The omega equation (2.13) is a result of the difference between the voetigigtion, which was
differentiated with respect tp (a%) and the Laplace operato¥¢) of the geostrophic approx-
imated heat equation. These assumptions are based on the experieribe tedstropic and
hydrostatic balance are good approximations for both the averaged-ramlil thermodynamic
conditions of the atmosphere (Beheng, 2007). According to Eq. (2.23pthe-scale uplift is
controlled by two mechanisms, given by the two terms on the right side of tlaiequThe first
term (1) controllingw is the differential vorticity advection and the second term (2) describes the
advection of the thickness of the atmospheric layer, equivalent to the nmeparure advection.

Note thatv can be putin relation to the vertical component of the velocity vegtorthe z-system
by:

_op op _
w—a—i—V'Vpr%— pgw (2.14)

dp _
dt

This approximation is made on the basis of an order of magnitude suggestince,Hie case of
lifting, w is negative, whilev is positive.

According to Eq. (2.13) lifting can be expected in a region with positive \itytiedvection
increasing with height (or decreasing negative vorticity advection), wtan occur downstream
of a trough. Or in an area with a maximum layer thickness advection due to ainadvection,
for example, in front of a warm front. Moreover, latent warming (Holth®72) can lead to lifting
as well. Hence, lifting is highest in the vicinity of a short-wave pressureesybecause of the
higher relative vorticity ;) advection compared to the planetary vorticity @dvection.
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2.2 Condensation levels

If an air parcel is accelerating, as described in the previous sectioan iteach a certain level
where condensation sets in. The different condensation levels, diepteon the trigger mech-
anism, will be explained in this section and an overview of the detection of teesks on the

thermodynamic diagram by Stiive will be given.

Lifting condensation level

If an air parcel is lifted dry adiabatically, for example when flowing oveoargraphic obstacle
or a front, the level where condensation starts is called the lifting conden$avel (LCL). Since

clouds can develop at this level, it is equivalent to the lowermost cloud I&vethermodynamic
charts (e.g. tephigram, skewT-logp or Stive) this level is located whemryhadiabatic curve,
based on the near-surface temperature, and the line of constantisatarxing ratio, based on
the dew-point at the surface, intersect (see Stlive diagram in Fig. 2.1).

pK

CT

LFC
LCL

Figure 2.1: Schematic of the lifting condensation level (LCL), the levelexd fronvection (LFC)
and the cloud top (CT) on the Stlve diagram. Green: dry adiabats; Redt ad@bats; Red
dotted: saturation mixing ratidly is the temperature ang the dew-point at the ground (Kunz
et al., 2006).

Convective condensation level

In contrast to the passive uplift, an air parcel can also actively becameht, by surface warm-
ing due to intensive solar irradiation or cooling aloft. This process cacegeb as follows. In
the morning, the atmosphere nearest to the surface is usually stably st@duiéie¢d long-wave
emissions. If the stratification close to the ground becomes adiabatic oadigistic, air parcels
can rise upwards resulting in vertical exchange of heat and humidity.blibgancy of the air
parcels will continue until the air parcel and the surrounding have the samperature. This is
the case when a slightly superadiabatic air parcel reaches a level ivhasethe same tempera-
ture as the environment. This level is termed convective condensatio@®k) and indicates
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the possibility of further ascent.

On the Stive diagram this level is the point where the line of constant saturationg ratio
(based on the dew-point temperature at the ground) intersects with tleaMeEmperature profile.
Following this level dry adiabatically to the ground gives the convective teatyer, which is the
minimum temperature that has to be reached on the ground for triggeringatimm:

Level of free convection

If the stratification of the atmosphere is conditional unstable and a volume &f Hired by
external forces, it may reach a certain height, where it is warmer thamti®ement and thus
becomes positively accelerated. This height is called the level of freecton (LFC). It is the
height where the moist adiabatic curve from the LCL and the vertical temypenarofile intersect
in the Stlve diagram (Fig. 2.1).

Equilibrium level

The equilibrium level (EL) or cloud top (CT) is defined as the level wheestémperature and
density of the air parcel become identical and, thus, the upwards aato@heis zero.

The EL is located where the moist adiabatic curve, based on the CCL, LCE®y intersects
with the temp curve. For deep convection this level is usually near the trapep@8ecause of
the inertia of the air parcels, the actual CT can be a few hundred metees lingim the EL, for
example when clouds overshoot into the tropopause. This is a chardctier@gure of intense
cumulonimbus clouds.

2.3 Stability and thunderstorm measures

The stability of the atmosphere can be described by various energy gararaed convective
indices. They are calculated from temperature and moisture, sometimes comiglemg kinetic
parameters, and give an idea about the atmospheric potential for tetordedevelopment ac-
cording to the properties of the prevailing air mass. For example, KunZ &@Yaluated which
of these indices and parameters are the best to predict isolated anel $eweterstorms. This
chapter will introduce convective indices considered in this thesis (cpteh 3).

Potential temperature

The potential temperature is defined as the temperature of an air pardsiriiated dry adiabat-
ically from the pressure levelto the levelpy = 1000 hPa. Itis a conserved quantity for adiabatic
processes and proportional to the entropy of an air parcel:

=T <’;’)H (2.15)

with py = 1000 hPa and = R/c, = 0.286.
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Equivalent potential temperature

The equivalent potential temperature, defined by

0, = 6 exp ( Irs ) (2.16)
cpyT

is the temperature of an air parcel that is lifted dry adiabatically until it reathe level of

condensation and pseudo adiabatically afterwards, until the whole wagter is condensated

assuming that all water instantaneously leaves the volume. Thereafter itésimligvadiabatically

down to the levepy = 1000 hPa. Consequently, this temperature reflects the latent energy of the

condensation process. During a moist adiabatic pro6gss constant with height.

Convective Available Potential Energy

The convective available potential energy (CAPE; Moncrieff and Mill&76) is the potential
energy a parcel would have, if lifted pseudo adiabatically from the LFC@L to the EL. It
measures the energy that is available for convection and describeslityecdlan air parcel to
become buoyant. The CAPE can be calculated as:
EL
CAPE = Rl/ (Ty —T,,)dInp (2.17)
LFC
with 7;, for the virtual temperature of the air parcel ahg for the virtual temperature of the
environment.

If an air parcel is lifting CAPE values are high and indicate a higher poteptigevere weather.
As CAPE transforms to kinetic energy, the vertical wind velocity can be chéted as

w = V2CAPE. (2.18)

In the skewT-logp thermodynamic diagram the CAEP is proportional to tre laseveen the
moist adiabatic lifting curve of an air parcel and the temp curve above the LFTable 2.1
characteristic values for the CAPE with respect to the thunderstorm ¢eneld are presented.

Table 2.1: CAPE values and thunderstorm probabilities for southern Ggrataording to Kunz
(2007a).

| CAPE inJkg~! | Thunderstorm probability \

<400 Thunderstorms unlikely
400 - 1500 Thunderstorms likely
> 1500 Severe thunderstorms with hail likely
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Lifted Index

The Lifted Index (LI; Galway, 1956) is the difference between the aipterature in 500 hPa and
the temperature of an air parcel that was lifted dry adiabatically from tHecsuito the LCL and
from there moist adiabatically to 500 hPa:

LI = TBOOhPa - Tsurface—>500hPa- (219)

If the equation yields a negative temperature, the air parcel in 500 hParisewthan the envi-
ronment and the atmosphere is assumed to be unstable. If LI is positivésrbspdere is stable
and thunderstorms are unlikely (cf. Table 2.2).

Table 2.2: LI values and thunderstorm probabilities for southern Gerraecgrding to Kunz
(2007a).

| LlinK | Thunderstorm probability |

>-1 Thunderstorms unlikely
(-1) - (-4) | Thunderstorms likely
<-4 Severe thunderstorms with hail likely

Showalter Index

The Showalter Index (SI; Showalter, 1953) is similar to the LI but refetheademperature dif-
ference between 500 hPa and of an air parcel lifted from 850 hPa thP®0

ST = Tso0nra — T850hPa—s500hPa- (2.20)

The advantage of this index is that it is less dependent on the surfguerfies, compared to the
LI. Negative values indicate that the lifted air parcel is warmer than the@mwient and becomes
positively accelerated (cf. Table 2.3).

Table 2.3: Sl values and thunderstorm probabilities for southern Gerarssording to Kunz
(2007a).

| Slin K | Thunderstorm probability \
>2 Thunderstorms unlikely
2-0 | Thunderstorms likely

<0 Severe thunderstorms with hail likely

Potential Instability Index

Van Delden (2001) introduced another thunderstorm index which isdb@s¢he fact that thun-
derstorm development is related to the potential instability of the atmosphehe datmosphere



2.3. Stability and thunderstorm measures 15

is unstablef. decreases with increasing height. This characteristic is used to definettei&l
Instability Index (PII)

PIT = (0e925nPa — es00nPa) / (Zsoonra — Z925hPa) - (2.21)

Z is the height of the pressure levels, the unit of Pll is KK¥mThe values of PII for southern
Germany can be seen in Table 2.4 (Kunz, 2007a).

Table 2.4: PII values and thunderstorm probabilities for southern Ggriaegording to Kunz
(2007a).

| Pllin Kkm ~! | Thunderstorm probability \

<0 Thunderstorms unlikely
0-1 Thunderstorms likely
>1 Severe thunderstorms with hail likely

Deep convective Index

This convective parameter, introduced by Barlow (1993), is basedeohlthnd combines the
properties of equivalent potential temperature at 850 hPa with the lateéabiiity at the surface

(Haklander and Delden, 2003). The Deep convective Index (D€$)gihed to predict severe
thunderstorms is defined by:

DCT = (T + 70)gsonpa — L1 (2.22)

with 79 as dew-point temperature. The higher the values of DCI the higher is dhalpiity for
deep convection to occur (cf. Table 2.5).

Table 2.5: DCI values and thunderstorm probabilities for southern Gegrarording to Kunz
(2007a).

| DClin K | Thunderstorm probability \

<21 Thunderstorms unlikely
22 - 24 | Thunderstorms likely
>24 Severe thunderstorms with hail likely

Vertical Totals

The Vertical Totals (VT; Miller, 1972) is defined as the vertical temperadiifference between
850 and 500 hPa
VT = Tgs0nra — T500nPa- (2.23)
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If the temperature difference is higher than 28 K, thunderstorms are likellge VT in south-
ern Germany reaches values larger than 30 K, the potential for thtoaerdevelopment is high
(Kunz, 2007a).

2.4 Development and characteristics of thunderstorms

Severe thunderstorms occur above all during the summer months in CemtogleE They are
often accompanied by weather phenomena such as wind gusts, hedail, f&gihtning or even
hail and tornadoes. They are a manifestation of deep convection asdstiangly rely on condi-
tional instability, the moisture content (especially in the lowermost layers oftthesphere) and
a triggering mechanism that lifts an air parcel to the LFC or CCL (cf. Seg. 2riggering mech-
anisms may comprise buoyancy related to solar radiation at surface laveptsyscale uplift in
front of a trough (cf. omega equation), forced uplift due to flow oveuntains, uplift on frontal
zones (cf. Eqg. 2.13) or convergence zones developing in the carftdydrmal direct circulations
like land sea circulations or mountain and valley winds. Furthermore, aniotipartant factor
controlling the kind of storm organization is the vertical shear of the hot@anind (Weisman
and Klemp, 1986). Depending on the strength of the vertical wind shearnts tef speed and
directional shear and the amount of convective energy, some typasnofdistorms may exist for
several hours.

Single-cell thunderstorms

Single-cells thunderstorms are the most frequent types of thunderstoaingcttur in Central
Europe during the summer months. They usually develop during calm corsddiento a weak
pressure gradient and weak vertical wind shear. When solar radiegéia the ground and accord-
ingly the adjacent atmospheric layers up to higher levels, the stratification ecayrie unstable
and single-cells may develop. In the mean, the horizontal extent of a ngksgrom one to ten
kilometer and the lifetime is between 30 minutes and one hour. Because of tbdififgtime
they are usually not associated with considerable damage.

Conceptually, a single-cell thunderstorm passes through three sfad@getopment. In the first
stage, (cumulus or developing stage; Fig. 2.2) a bubble of moist and waisreacending until

it reaches the CCL or LFC, where clouds of the cumulus type can deveiophis process,
latent heat of condensation is released and the air parcel is able taldacder. Hence, the
cloud is growing vertically. If the air parcel crosses thei€btherm, cloud droplets can freeze
and effectively grow, for example due to collision with supercooled liquitewedrops forming
graupel and eventually hail particles.

During the mature stage (Fig. 2.2), ice particles and rain drops descentb doeir mass and
induce a downdraft through frictional forces. This downdraft getsher accelerated by additional
cooling due to melting/evaporation processes during sedimentation of thenhgtors.

After some time, the downdraft cuts off the cell from the warm and moist infbwir at lower
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levels. This is the stage of dissipation (Fig. 2.2) when the development oélihe finished and
the single-cell dissolves.

km

. Dissipating stage

= 0°C Mature stage

| A
va
Sﬁ--*/m\k--“ // STl
/m\ /fﬂg?:v 7T

© 2007 Thomsen Higher Education

Altitude

q,

Figure 2.2: Life cycle of a single-cell including cumulus stage, mature stagjdiasipating stage.
Red arrows show the updraft areas, blue arrows the downdrafihenolack dotted line the®®
isotherm (http://www.atmos.albany.edu).

Multi-cell thunderstorms

A multi-cell thunderstorm is a cluster of short-living single-cell thunderasothat are in different

stages of development. Multi-cells have a horizontal extent of more thaniltenekters and a

lifetime of several hours. They develop in an environment with consitkekegstical wind shear,

in particular speed shear. The vertical shear of the horizontal winditxeleads to a separation
between the areas of up- and downdraft. Hence, the downdrafhdbest off the updraft and the
cell complex can develop further. Due to this process, the downdrafte@wlon the rear side of
the cell complex stretches underneath the warm and moist air on the gtababk{l as gust front)
and, hence, triggers a new updraft in front of the multi-cell, where neglescells can develop
(Fig. 2.3). Because of these characteristics, multi-cells are usually aecdedpby heavy rain,

hail and gusts.

Squall lines

Squall lines are lines of severe thunderstorms that usually form in chonewith a cold front
or convergence line. The mechanism maintaining this system is similar to that wiuitiecells
with a strong gust front several kilometers ahead of the system. Squalhiwesa high length-to-
width ratio with a horizontal extent of more than 100 km; they may exist forraéheurs. They
are characterized by a narrow region with heavy convective precipitatiaybe hail and a broad
stratiform precipitation area in the rear.
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Figure 2.3: Life cycle of individual cells as part of a multi-cell complex. ©ek is in the cumulus
stage, cell two and three are in the mature stage and cell four in the dissigt@ifeg The inflow
of moist and warm air leads to an updraft (red arrow) while there is aatuhdowndraft in the
back of the cell (blue arrow). The dotted line indicates the gust fronteagtbund (from Kunz
et al., 2006).

Mesoscale convective systems and complexes

A meso-scale convective system (MCS) usually develops in front of #érenvsector of a low
pressure system downstream of a mid-level trough, where synoplied#fting prevails. Houze
(1993) defined a mesoscale convective system as an ensemble ofrttormds with a horizontal
precipitation area of at least 100 Knwhich also comprises squall lines. In contrast, a meso-scale
convective complex (MCC) is defined after Maddox (1980) by a cloueléhvith a horizontal
extent of more than 100,000 Knon the < -32°C temperature level. In addition, the interior
cold cloud region with a temperature f-52°C must have an area larger than 50,006 kamd
must persist for more than six hours. Both, MCS and MCC, are chaizadely widespread
precipitation areas with embedded convection cells and can exist foatboeeirs.

Super-cell thunderstorms

A super-cell thunderstorm develops in connection with meso-scale liftimgnstoeam of an
upper-air trough in an environment with strong vertical wind shear of bpéed and directional
shear. It can be interpreted as a very large and strong single-cell vatidwndraft regions that
additionally rotates (Fig. 2.4). The rotation is triggered by the directionarshiethe horizontal
wind that induces vorticity to the flow, such that air in the updraft is verticallydjligith the
consequence that the horizontal axis of the vorticity component relatee twitld speed shear
becomes vertically orientated (i.e. tilting). Due to the strong acceleration in thaftipthe air
parcels are vertically stretched, further increasing the horizontal coem® of the vorticity (with
a vertical axis) due to the conservation of angular momentum (i.e. stretctfiegdrding to the
vorticity equation (e.g., Dutton, 1986), these two mechanisms lead to a sighificaease of
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horizontal vorticity on a local scale, a feature that may also lead to the formatia tornado.
The wind shear separates the regions of up- and downdraft allowipgramanent energy supply.
Thus, super-cells may exist for several hours. A lifted inversionek@ample, favors the devel-
opment of super-cells, as it acts to block the triggering during lower teryvegainitially. Only
when the heating reaches its maximum triggering of convection sets in, leadamgascent of
very warm energetic air. The development is forced by a low level jet iriativer troposphere
(up to 700 hPa) that transports moist and warm air into the thunderstorm cell.

Super-cells are the most dangerous thunderstorms and always atithigh wind gusts, large
hail, heavy precipitation and sometimes a tornado (Weisman and Klemp, 1986).
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Figure 2.4: Vertical cross-section through a super-cell. The bold esva marks the rotating
updraft and the inflow of moist and warm air to the super-cell, while the hita@va show the
separated downdrafts at the and in the rear of the cell (after BluestiRaks, 1983, modified
by Kunz et al., 2006).

2.5 Development of halil

Hailstones are large ice hydrometeors with a bulk density of usually less tBap ¢h1> and
hence, less dense than pure ice (0.9 géntist, 1958a and 1958b). A hailstone has per def-
inition (Houze, 1993) a minimum dimension of 5 mm and is thus, larger than snystats,
graupel (snow pellets) and ice pellets. The largest hailstone, for exawgddound on July 23rd,
2010 in Vivian, South Dakota (US), and had a diameter of more than 20 @ARN). Due to
their dimension and density, hailstones can cause major damage to buildisgmdagriculture.

http://www2.ucar.edu/magazine/features/all-hail
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For the evolution of hailstones a strong updraft in a thunderstorm is segesUpdraft speeds
of up to 40 m s! have been observed in deep convective storms (Crook, 1996; XRandhll,
2001). Within the updraft, cloud droplets and small raindrops are rapiahsported to regions
with cold temperatures. However, these drops do not freeze at amicegrbain liquid down to
temperatures of less than -20°C, due to the limited number of ice nuclei; theeka@wn as su-
percooled droplets. Supercooled droplets may collide with ice particlesrthat@ing from the
rear downdraft region to the updraft region, causing them to fregae the ice surfaces. Through
this process ice particles grow to sizes of one to five millimeters, which arefloytiba, graupel
particles. This type of growth is called collection growth or riming and increabarply with
drop size (Pruppacher and Klett, 1997). These and irregular grpapicles are the basis for
further development of hail and are therefore defined as hail embryos

Because of the vertical wind shear in a thunderstorm cell, graupel lpartiay get into the up-
draft of the cloud. At the lateral sides of the rotating updraft of the thistdem (red line in

Fig. 2.4) the updraft is only slightly larger than the gravitational force, mattirgyertical motion

of the particles very slow. Accordingly, many ice crystals and superdookger droplets can
accumulate on a graupel particle allowing hailstones to grow very fast. Tocegs is particu-
larly effective in the region of the cloud where temperatures range bet@#&2and~ -15°C and

many of the supercooled droplets can be found. Sometimes, hailstonesonatpgliameters of
several centimeters. Thus, the size of a hailstone is dependent upcerticalwind speed and
the time span the hail embryos stay in the updraft region containing supedarops.

The properties of a hailstone are defined by two different kinds of d@legrowth (riming). Dur-
ing dry growth, the surface temperature of the hail embryos does nee¢ésxthbe freezing/melting
point, even if the water droplets release latent heat due to surfacanfyjeerthe graupel particles.
Hence, the structure of the hailstone becomes opaque because okaitspgrobedded within the
growth layer.

If the surface temperature of the hailstone rises over the freezing/meltingdae to the release
of latent heat freezing of the supercooled droplets, the growth mechasisalled wet growth.
Because of this process, the hailstone can evolve into a water-ice systeroabed spongy ice
(Strangeways, 2007). The liquid water can flow into the air pockets arstiiheture of the hail-
stone becomes transparent. Remaining water splits off the surface ofildterfain the form of
liquid drops and may form a new hail embryo (shedding). Due to the chafrige different types
of growth and the permanent change between growth and melting in the blailstpnes often
have a layered structure (Fig. 2.5).

When reaching the upper levels of a convective cloud, the hailstonesertegnisported by strong
winds to the front side of the thunderstorm. While the thunderstorm is movimgafd, the hail-
stones pass a region with a maximum updraft and are accelerated fifteeteaving the updraft
at the front of the thunderstorm, hailstones precipitate due to their large mass
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Figure 2.5: Profile of a hailstone, showing the layer structure causedebghtinge between
growth and melt (http://www.martin-wagner.org).

The terminal fall velocity of hailstones depends on their diameter. Theidspeges between 10
and 50 m s! and can be described empirically by an equation of Pruppacher and K96,
valid for an air pressure of 800 hPa, a temperature of 0°C and a dianetterdn 0.1 and 8 cm:

v~ 9D, (2.24)

with D for the diameter in cm andin m s1.






3. Data sets and methods

To categorize the relevant synoptic systems, the objective weather tygséicktion of the Ger-

man Weather Service (Deutscher Wetterdienst, DWD) is used and applieghialysis data from
the European Center for Medium-Range Weather Forecast (ECMVdRpam ensemble of eight
different regional climate model (RCM) runs. The investigation area isn@ny, but the methods
applied are tested and adjusted for the German federal state of Baddteiierg only, where

comprehensive loss data from a building insurance company is available.

In the first section, a short overview of the model and observatiortalidagiven, followed by
an introduction of the weather type classification scheme of DWD and its afiptida model

data. In the second part, methods to categorize the weather types into heilstated types and
hailstorm-unrelated types are outlined. Furthermore, the methods usedypeattee temporal
variability of specific weather types are described.

3.1 Data sets

3.1.1 Reanalysis data and regional climate models

For the determination of specific weather types, both reanalysis and climats dadd are used.

In the climate model data, the control runs include the years from 1971 @ 200le the future
projections are available for the years from 2001 or 2011 to 2050 fdPBE emission-scenarios
A1B and B1 (IPCC, 2007). The different scenarios estimate possibleefulevelopments of
economy and population in the 2Xentury. The scenarios used for this thesis can be described
as follows (IPCC, 2007):

» A1B: Future world with rapid economic growth and an increasing global populatitih
the mid of the 21 century and a decreasing population afterwards. A quick spread of
new and efficient technologies is assumed, as well as a balanced ukerafrgy sources.
The income and way of life converges between regions and there arsigrtsocial and
cultural interactions worldwide.

« B1: Same population changes and growth of the economy as in A1B, but chimvegrds
a service and information economy. The introduction of new clean andnesefficient
technologies is expected and emphasis is put on global solutions to ecosogial,and
environmental stability.

23
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CCLM-KL

The Consortium for Small-scale Modeling in Climate Mode (COSMO-CLM, alibted by
CCLM), developed and applied by DWD, is a non-hydrostatic local climateet@drian and
Frihwald, 2002). The CCLM consortial runs, hereinafter refetoems CCLM-KL, are based on
the CCLM model version 3.1. Their horizontal spatial resolution is 0.16718 km) and they
are available for the control period C20 and the IPCC scenarios A1Baridr the time period
from 2001 to 2048/50 (the A1B scenario is just available until 2048). Thdetnig driven by
the global coupled atmospheric-ocean model ECHAM5/MPI-OM (Eunogeenter/HAmburg
Model Version 5/Max Planck Institute - Ocean Model) developed by the-Rlarck Institute for
Meteorology, Hamburg (Germany). The ECHAM5 model is based on théheeforecast model
of the ECMWF at T63 spectral resolution, while several parameterizatians been adjusted
especially for the modeling of climate. Further details can be found, for eeanmpRoeckner
et al. (2003). The calculations of the CCLM-KL were performed for tharg 1950 to 2100 on a
rotated grid and for two model runs. The thesis considers the period éetk@¥1 and 2048/50.
The two runs are driven by two different realizations of ECHAMS, whiliffier by about their
starting point for 25 years.

CCLM-ECHAMS

These CCLM runs are driven by the initial and boundary conditions ofkbleal climate model
ECHAMS. In comparison to the CCLM-KL runs the CCLM version 4.8 wasduskhis data set
was calculated by the Institute for Meteorology and Climate Research (IR&)Tof the Karl-
sruhe Institute of Technology (KIT) within the project "Herausforayilimawandel", funded
by the Ministry of the Environment, Nature Conservation and TranspodeBaVirttemberg.
The data sets of the first nesting step of two have a temporal resolution ludsis and a spatial
horizontal resolution of 0.44°x 50 km). They are available for the European area from 1968
to 2000 and 2008 to 2050 and on four different pressure levels (1B&P850 hPa, 700 hPa and
500 hPa). The data of the first three years of each time period areettlus to the spin-up time
of the model. Three different realizations of ECHAMS for the A1B and Bé&rarios are used
(cf. Table 3.1).

The values are available only on a rotated grid and the grid has to be rotatéatitade/longitude
grid, as in the following the wind direction needs to be calculated from the weotbys. The re-
rotation is performed by applying the Climate Data Operator (&0ftware.

CCLM-CCCma3

For the CCLM-CCCma3 model runs, the CCLM version 4.8 was initialized aivérdiby the
third generation of coupled Global Climate Model (CGCM3) of the Canademte? for Climate
Modeling and Analysis (CCCma). The CGCM3 couples the third generation gxhesic Gen-
eral Circulation Model (AGCM; McFarlane et al. 2005, Scinocca et @& of the CCCma and

http://www.mpimet.mpg.de/fileadmin/software/cdo/cdo.pdf
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the three-dimensional Modular Ocean Mcd@OM) of the Geophysical Fluid Dynamics Lab-
oratory (GFDL). The coupling between those models happened daily aludiéd monthly flux
adjustments for heat and fresh water as well as a monthly ocean sunfgoeréure adjustment
(Flato et al., 2000). The spatial horizontal resolution of the AGCM is 2.8flenthe resolution
of the ocean model is approximately 1.4°, and thus, each atmospheric ljids® underlying
ocean grids celld.

The model runs of the CCLM-CCCma3 again were accomplished by IMK-TR@ data sets
have the same horizontal spatial and temporal resolution as the CCLM-EGH#odel runs and
are available on a rotated grid. Likewise the IPCC scenario A1B was simulated

Table 3.1: Overview of the regional climate models used in this thesis.

] \ CCLM-KL \ CCLM-ECHAM5 \ CCLM-CCCma3
Model-version COSMO-CLM 3.1| COSMO-CLM 4.8 | COSMO-CLM 4.8
Forcing ECHAM5run 1, 2| ECHAM5run 1, 2, 3| CCCma3
Emission-scenario | A1B, B1 AlB AlB
Horizontal resolution| 0.167°~ 18km 0.44°~ 50km 0.44~ 50km
Simulation period 1971-2048/50 1971-2000 1971-2050

2011-2050
Referred to as CKLC20R1 CE5C20R1 CC3C20R1
CKLA1BR1 CE5SA1BR1 CC3A1BR1
CKLB1R1, ... CESA1BR2, ...

ERA40/ERA-Interim

The ERA40 and ERA-Interim reanalysis, released by ECMWF, werelleaéd backdated with a
current model version and include a large set of measurements, fopex&om radio soundings,
satellites, buoys, airplanes and synoptic stations. The ERA40 reanedpsesents the climate of
the period 1971 to 2001 and is available every six hours and with a spatizbhtal resolution of
1.25°, which is approximately 125 km, on a reduced Gaussian grid on 88yseelevels (Uppala
and coauthors, 2005).

ERA-Interim is an interim reanalyses from 1989 onwards and is develop&CMWF in prepa-
ration to the next generation of reanalysis that is planned to replace thd ERAportant im-
provements compared to ERA40 are, among others, a new and better humédjsis, improved
model physics and improvements due to observational systems. Thetedrngdrological cycle
leads to a better precipitation-evaporation ratio, which is globally closer thimezomparison
to the ERA40 reanalyses (Simmons et al., 2007). This makes this new generfatiata more
reliable than its proceeding version.

2http://www.gfdl.noaa.gov/ocean-model
Shttp://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=12$9%529
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These data from these reanalysis are used for the determination of grewkifiveather types and
for the evaluation of the control runs of the different climate models. As #neyincorporating
observations, the two data sets are also used for evaluation purpbsesaté sets were obtained
at different pressure levels at 12 UTC from the Climate and Environm&ateving Archive
(CERAY data center. A problem, related to all model data downloaded from the GERMbase,
was negative values of humidity. Since these values almost exclusivaly atindividual grid
points at the uppermost pressure levels, they most likely result from thipataion from model
to pressure levels. To avoid any loss of data, the values are set cla=® fio this study.

CCLM-ERA40

For the CCLM-ERA40 model runs the CCLM version 4.8 was used anckulry initial and
boundary condition of ERA40 (ECMWEF; Par. 3.1.1) reanalyses. Theeskt was calculated on a
rotated grid by IMK-TRO. The horizontal spatial resolution again of thet fiesting step is 50 km
and the data is available for 1968 to 2000. Again, the first three yearmao®nsidered. Due to
the rotation of the grid, the same routine as for the CCLM-ECHAMS data is apfuiee-rotate
the grid to a latitude/longitude grid.

3.1.2 Objective weather type data for Germany

The DWD calculated objective weather types according to the classificatitochéhat will
be presented in paragraph 3.2.2. The time series starts on July 1st, IDigb@ased on three
different operational weather forecast models. Until the end of 188l weather types were
calculated on the basis of the BKF (German for baroclinic-humid: 'bardklircht’) model which
had a coarse spatial horizontal resolution of 254 km and a small numbertwial layers. Hence,
the 1000 hPa level instead of the 950 and the 550 hPa instead of the 50@d&Rabe used. The
BKF model was replaced in 1999 by the DWD European model (EM) with adiatal resolution
of approximately 55 km. Since 22 November 1999, the present operatjlofiel model GME is
used, which is available on an icosahedral-hexagonal grid. Due toifigdetices, the GME grid
was interpolated to the grid of the EM (Bissolli and Dittmann, 2001). Weathestgglculated
by the DWD are available from their website

3.1.3 Meteorological station data

To compare statistical distributions of stability indices derived from the maddeallations for
past decades with observations, data of the radiosonde station of Stunt§aden-Wirttemberg
are used. The station is operated by the DWD and located at an altitude of 854. The values
for temperature, mixing ratio and pressure at 12 UTC and the time periodt@20D0 are used
to calculate the Lifted Index according to Eq. (2.19) in Section 2.3, startimg fhe surface. The
values are merely used as estimates rather than to verify model results.

*http://cera-www.dkrz.de
5http://www.dwd.de - Klima und Umwelt; 29/03/2010
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3.1.4 Insurance data

For the analysis of hailstorm-related weather types, loss data providea bg\thSparkassen-
Versicherung AG’ building insurance company (hereafter referred 8V) is used for the period
from 1986 to 2008. The data is resolved in 5-digit postal code zonesadé®BWirttemberg
(Fig. 3.1) and includes the number of claims, value of reimbursement assibk @otal number
of contracts and the insured values per year, which are important forection of the data set.
Even if the insurance data is strongly limited to settled regions that are affegtealistorms and
rely on the vulnerability of the buildings, they are currently the best availabbemation about
severe hailstorms.

In this thesis, a hail day is classified if more than 10 claims were settled on &liaydefinition
prevents non-severe hail days to enter the sample as well as failuresalugong assignment of
the day.

From 1960 to 1994, an insurance for natural hazards was obligatorgnfy building (private
and commercial) in Baden-Wirttemberg, exclusively offered by the "Gadbéersicherung”. But
in 1994 this obligation was abolished. Nevertheless, approximately 70% biiiddings were
still insured by the successor, the SV, until 2009. Due to the temperedelanhe number of
contracts, the loss data were annually normalized by mean value (Webéj, 20doing so, it is
assumed that the portfolio remained constant over the entire time period.

Damage to buildings caused by hailstones

The degree of damage and thus the amount of claims are controlled by thataanduhe maxi-
mum size of the hailstones, the wind speed (hailstones get acceleratealsdhby the exposure
of the buildings. Newer buildings often feature a higher vulnerability dueotd windows or
additional constructions such as solar panels, winter gardens or rtiids bOther factors that
influence the damage on buildings are shadowing effects by trees otoilings and the used
construction materials. Analyses by Stucki and Egli (2007), for exangblewed that in the
Switzerland 90% of all claimed damages are on residential buildings and eabtgh on roofs
or claddings.

3.2 Weather type classifications schemes

3.2.1 Subjective weather type classification after Hess ari8rezowsky

The subjective weather type classification is based on the calendarefeate weather types of
Europe, created by Baur (1947). He defined large-scale weathess &gthe air-pressure distribu-
tion with at least the size of Central Europe that persists for several @aur analyzed surface
weather charts and classified the prevailing cyclonic or anticyclonic webjpes according to
the geographical location of the pressure centers as well as the locatidheaextension of the
frontal zones, yielding 21 different weather types.
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Figure 3.1: Number of days with hail damage claims in the correspondingl gosta area be-
tween April and September of the years 1986 to 2000.

Due to improvements in meteorological observations, for example by addifienalbgical mea-
surements, several changes in this classification method were condudiedand Brezowksy
(1952). They published the "Catalogue of larg-scale weather typesiropE" in 1952, which
contains all weather types from 1881 to 1950. Important for the modifiessifilzation meth-
ods are the pressure distribution at sea level and the 500 hPa geopdteigi charts, where
troughs and ridges and the extension of the frontal zones are analpgdhdays, 30 different
weather types are distinguished (Appendix A.1) according to Gerstemgerd Werner (2005).
The weather types can be grouped into the three main categories of zondlpned and mixed-
type circulations.

Since the subjective weather type classification is highly dependent onahesg this method is
not used in this thesis. Nevertheless, it is the pioneer method in this area.

3.2.2 Objective weather type classification (0WLK) - DWD

The objective weather type classification (0WLK) by DWD considers thoriéeria that are com-
bined into 40 different weather types. This includes the general flowtirein 700 hPa, which
can give information about the potential stability of the atmosphere regatidingrigin of the
air mass, the vorticity in the lower and middle troposphere, which gives intmabout meso-
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scale uplift, and the humidity in the entire troposphere. These propertiesabndated on a
selected grid of the DWD European model (EM) that covers Germany favd adjacent regions.
Since the target area is Germany, the grid points are weighted non-uniftorralpid emphasis
on grid points that are very close to the borders of the area, but alregawyt the borders of
Germany. Hence, the grid points in the center of the domain are weightedaxyom 6f three,
the surroundings by a factor of two, whereas the ones that are closzhortler of Germany are
not weighted. The remaining grid points are not included in the calculation3rR2gBissolli and
Dittmann, 2001). The resulting weather types are classified by a five digiifide as follows:

AACy50Cs00H

with AA for the general flow direction (NE, SE, SW, NW, XX) g6 and G for vorticity in 950
and 500 hPa (C = cyclonal, A = anticyclonal) and H for the humidity (W = wet, dy.

5 T4 4
AT
[
| [
~L A e |
A1
BTN T Al N T [
HELEI
w RN N,
.l|‘4u'|'.'?“%f”i¥§f
A N AR

Figure 3.2: Classification area of the DWD objective weather type clag&ficacluding three
different weighted subareas. Within the central frame the grid point wéesghree, within the
surrounding frame it is two and the other gray shaded area has a gridtwéimne. The grid area
itself is based on the former DWD model EM (Bissolli and Dittmann, 2001).
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Advection type/ flow direction

The advection type (wind index) is derived from threandv-components of the wind vector at
the 700 hPa level at each grid point considered by the weighting. Taletethe wind direction,
the wind rose (360°) is split into 36 direction sectors where each is 90° avideshifted by 10°
from each other (first sector is between 0° and 90°, second sedtoedre 10° and 100°, last
sector analogously between 350° and 80°). For each sector the nofged points with a
corresponding wind direction are counted and added up consideringtiteweight. The sector
with the maximum number of grid points is defined as wind index, if at least twostbirthe grid
points are attributed to this sector. If these requirements are fulfilled, tter géth the maximum
grid points is assigned to the main direction intervals:

NE = northeast = [0°, 90°)

SE = southeast = [90°, 180°)

SW = southwest = [180°, 270°)

NW = northwest = [270°, 360°)

If the threshold of 66.7% is not exceeded at any sector, the advectiercymot be clearly de-
fined and is labelled by XX.

An example is the following: If the wind direction at a grid point with a grid poiright of three
is 185°, it can be assigned to 9 different sectors ([180°, 270°) t0°[1100°)) and shows up in
these sectors for three times. In the case, the maximum wind sector is the[$86r270°),
including more than 2/3 of all grid points, the corresponding wind directioreindd as the
center of this sector, thus 205° and accordingly SW.

Cyclonality

The cyclonality index gives information about the bending of the geopotanéal at the 950 and
500 hPa levels. It is similar to the geostrophic vorticity in the p-system

2 2
Cg:1V2¢:1<8¢+8¢>

! f\ox2 0y (3.1)
1o+ 1,5) + 06— 1,5) + (6,5 + 1) + (6,5 — 1) — 46(i, j)
T f (Az)?

calculated for every grid poirit, j) and averaged for each separate level, while is the geopo-
tential. Note that\z = Ay because of the equidistant grid so thAtzc)2 occurs in the denomina-
tor. The calculated values are indicators for the cyclonality index. A pesi@ue is equivalent
to cyclonality (C; positive vorticity), a negative one is equivalent to antamyality (A; negative
vorticity).



3.2. Weather type classifications schemes 31

Humidity

The humidity index compares the precipitable water (PW) content of the pbpos on each day
with a long-term mean. Therefore, the weighted areal mean of the PW idataftas the integral
of the mixing ratio from the lowermost (950 hPa) up to the uppermost pressiel (300 hPa):

P300 5
1 1 1
PW = 3 / rdp = EZ 5 (ris1 +73) (i1 — pi) (3.2)
D950 =1
wherer is the mixing ratio
RyE
=0.622——— 3.3
r D RyE (3-3)

Ry the relative humidityE the saturation vapor pressure (in hPa) aade the different pressure
levels starting with the lowermost level. The PW values are calculated from tatapeand rel-
ative humidity. Since the PW shows an inter-annual variation, correspptalitne temperature,
the actual value is compared to an approximately 18 year daily average(¥alyel979 to De-
cember 1996). If the value of PW is exceeding the average value, theptaeress denoted to
as wet (W), if not, it is denoted to as dry (D). A list of all existing weatheetypan be found in
Table A.2 in the Appendix.

Adjustments of the oWLK software and its application to model da&a

For the classification of the different weather types, the geopotentiaifisgeumidity and tem-

perature at four pressure levels (1000, 850, 700 and 500 hPayiaddon one pressure level
(700 hPa) are used due to data availability. Hence, the cyclonality indéxedower troposphere
is calculated at 1000 instead of 925 hPa. Accordingly, only the air-colushnegn 1000 and
500 hPa is considered for computing PW. Furthermore, the specific humidiset to calcu-

late PW because the relative humidity downloaded from the CERA databasermaeous for

ERAA40 (cf. Sec. 3.1). Hence, the mixing ratio is computed from the specifidity ¢, as:

1
1

Qv

T =

(3.4)

All model data considered are interpolated on a uniform grid since the mexleilsit a different
resolution and use different grids. The uniform grid has:6200 grid points, which corresponds
to a horizontal spatial resolution of 0.66°. The used interpolation methodlie@ds interpolation
conducted with the CDO routine "remapbil”. After interpolation and re-rotaifdhe wind fields,
an area including Germany and adjacent regions is cut out, using the @iGer"selindexbox".
The area includes 29 grid points in zonal direction and 21 grid points in meabdirection,
starting in the lower left corner with the longitude 44.333°N and latitude 0.66HitE 3.3).

Since the interpolated grid of the data is cylindric equidistant, the oWLK (P212)3requires an
additional routine to calculate the geometrical distances between the grid gdiigs$s necessary
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to compute the cyclonality, which is derived by the horizontal Laplace ¢mesathe geopotential
(see Eq. 3.1) evaluated by the following numerical expression

o, 0% 0%
V=59t g0

i+ 1,5) + o0 —1,7) — 2¢(i,5) n P(i,j +1) + (i, j — 1) — 2¢(i, j)
- (Az)? (Ay)? 7

(3.5)

where¢(i, j) is the geopotential at the respective grid point; 1 or i 4+ 1 are the neighboring
grid points in zonal direction angd+ 1 or j — 1 are the neighboring grid points in meridional
direction. At the lateral sides, the values of the nearest calculated gnits poe used.

The geometrical distances between the grid points are derived from tiziat (Eq. 3.6) of
distances on a circle:

& = rarccos [sin @1 sin pa + cos 1 cos 3 cos(A; — A\a)] (3.6)

wherer = 6371 km is the radius of the Eartly, the latitude and\ the longitude.

During the evaluation it turned out that an error in the routine which calautateflow direction

in the original oWLK software, operationally applied by the DWD, slightly modifikee results.
Thus, all o WLK data provided by DWD may be affected by this error (thisravas communi-
cated and is now corrected in the DWD software). To avoid wrong vathesnethod has been
modified. Instead of using the 3®0° sections as described in Paragraph 3.2.2, the wind rose
is split into four mean wind directions ([0°-90°), [90°-180°), [180r62) and [270°-360°)). If at
least 66% of the grid points exhibit a wind direction in one of these sectassythd direction is
selected accordingly (NE, SE, SW or NW).

3.3 Statistical methods

3.3.1 Categorical verification

To determine the prediction skill of the various weather type classificationsreggrd to their
forecast skills of hailstorms, the methods of categorical verification goieap(Wilks, 1995).
Table 3.2 shows the 2 2 contingency table with the four elementdo d which are related
to whether an event is observed (Yes/No) and/or predicted (Yes/Nbg wiord "categorical”
indicates that one and only one of these sets of possible events will ddeuice, it does not
contain expressions of uncertainties.

Assume, e.g., the weather type SWCAW (south-westerly flow direction, y@sitrticity in
1000 hPa and negative vorticity in 500 hPa, wet in comparison to the climatalog&an) pre-
vailed for 20 days out of a total of 100 days and hailstorm occurreithgldiO of these 20 days,
then the correct event forecastds= 10, while the false alarm forecast és= 10. During the
remaining days there are= 5 surprise events and the corresponding none everis’5 days.
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Figure 3.3: Interpolated and selected<Zd grid, used for the weather type classification. Shaded
areas give information about the grid point weight as in Fig. 3.2.

Table 3.2: Contingency table for a dichotomous categorical verificatiooretésts.

Observation

Yes No

Yes a b

Forecast
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Normalized by the total number of dayis= a + b + ¢ + d = 100, the relative frequency of the
"Yes" or "No" forecasts or observation can be calculated.

According to the contingency table, a perfectly forecast goes along eithfalse alarms as well

as zero surprise events, i.6.= ¢ = 0. Besides this, several other accuracy measures of the
forecast can be defined. A detailed description of these methods cauri for example, in
Wilks (1995). The most important skill scores are briefly discussed indlfaifing and listed in
Appendix B.

Heidke Skill Score

When the fraction of hailstorm observations to no hailstorm observationgécted to be very
small, the use of conventional accuracy measures does lead to highaimezs. A combination
of these skill scores, such as the Heidke skill score (HSS Heidke,) 16R@&s more reliable
estimates (Doswell et al., 1990), as it also considers random "Yes'Noiddrecasts.

(a+d)/n—[(a+Db)(a+c)+ (b+d)(c+d)]/n?
1—[(a+b)(a+c)+ (b+4d)(c+d)]/n?
The reference accuracy measure used for the Heidke skill scorelifittRate (Appendix B.1).
The HSS computes the relation between the true "Yes" and "No" foregasth@randomly cor-
rect forecasts. The probability of a correct "Yes" forecast by ncka is
Pyes = [(a + b)/n][(a + ¢)/n)] = (a + b)(a + ¢)/n?, while the probability of a correct "No"

forecast by chance is,, = (b + d)(c + d)/n? (Wilks, 1995). This simplifies Eq. (3.7) to:

HSS =

(3.7)

HSS:M, (3.8)
n—R

whereR is the random chance that the forecast is correct:
b d)(b+d
R:(a+ Y(a+c)+ (c+d)(b+ ) (3.9)

n

Thus, a perfect forecast has a HSS of one, while a forecast that imjudomly correct receives a
negative HSS.

Threshold detection

To improve the weather type classification method with regard to hailstorm poedicategorical
verification is used. A combination of skill scores (Appendix refapp:skiliss) is a common
method to detect thresholds of, for example, thunderstorm indices (se2.3gthat relate higher
(or lower) values of several indices with a higher thunderstorm potdiiiaiz, 2007a; Haklander
and Delden, 2003).

The aim is to find a value of an index, for which the correct forecastnfd) are maximized,
while the wrong forecasts are minimizeldandc; Tab. 3.2). An example for such verification is
shown in Fig. 3.4 for the Lifted Index. Note that the lower this index, the higdthe potential
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for thunderstorm occurrence. The threshold is fixed for a value oivhere the HSS reaches its
maximum (here fol.] = 1), the Probability of Detection (POD; Appendix B) index has relatively
high values and the False Alarm Rate (FAR) index is relatively low.
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Figure 3.4: Skill scores as a function of the Lifted Indéx{yy = vertical profile averaged over
the lowest 100 hPa) according to Kunz (2007a).

Detection of hailstorm related weather types

Categorical verification is also used to detect weather types that aredridtee most common
occurrence of hail damage on buildings. It is assumed that a certainevégbe was predicted
and occurred in conjunction with hail damagg 6r without damagedt). Weather types with
high HSS (HSS> 0.04) are considered as hail-related weather types, while those with low HSS
(HSS< 0.04) are considered as hail-unrelated. Those are categorized into tbrgesgincluding

a group of those with an HSS of approximately zero. This group is calleshirgng types’ and
indicates weather types that are only infrequently accompanied by hail.

3.3.2 Trend analysis and statistical significance

To detect linear, monotonic trends in the time series of the categorized wégther the rank
based non-parametric Mann-Kendall (MK) statistical test is applied. Thisidewidely used
for the detection of linear trends in hydrological and meteorological timess@dann, 1945;
Kendall, 1975). It computes the probability that the null hypothesis (the lgaimjindependent
and identically distributed) can be rejected against the alternative hymothas a monotonic
trend exists. Advantage of this test is the independence to any specifibudistr, such as the
normal distribution. In this thesis a trend is defined as significant if the nplbtesis can be
rejected on the 80% significance level.

To detect trends in series, each data value is compared to each sutistajaesalue. The MK
statisticS is computed as (Yue et al., 2002)

n—1

S = Z i sgn(xj — x;), (3.10)

i=1 j=i+1
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wherez; are the sequential data values,the subsequent valuesthe length of the data set and

sgn(zj —x)) =4 0 if (z;j —2;)=0. (3.11)

Hence, negative values 6findicate a decreasing trend and positive ones an increasing trend.

Since S approximately follows a standard normal distribution for> 8 (Kendall, 1975), the
significance is tested by using the me#(§) = 0) and the variancel{(5)):

n

n(n—1)(2n+5) — 3 tii(i — 1)(2i + 5)

V(S) = =1 (3.12)

wheret; is number of tied group (set of sample data with same valddgbg number of values

in the corresponding tied group amdthe length of the time series. If, for example, a data set
contains the values [1, 2, 3, 2, 2, 3],is equal two 2, because there are two groups of the same
values.

The standardized MK statisti€, which follows a standard normal distribution, is computed by:

S1jf§ >0
V(S)
Z=4 0 ifS=0. (3.13)
Sl G <
JV(S)

To compute the probability that the null-hypothesis is rejected, a standantahcumulative
distribution function is used

1 [ e
P=—— [ et /2. 3.14
V2T / ( )

The probabilityP assumes a value of 1 if the time series exhibits a positive trend, a value of 0.0
if a negative trend exists and 0.5 if the sample is without any trend.

Prewhitening

Any auto-correlation in time series increases the variance of the Mandalestatistic and, con-
sequently, increases the probability of the detection of a significant tasrghown, for example,
by Von Storch and Navarra (1995) and Yue et al. (2002). A positvialscorrelation leads to an
overestimation of the probability of significant trends, while negative seoiaklation (autocor-
relation) tends to underestimate the probability of detecting trends. Furtherthertrend itself
has an impact on the Mann-Kendall statistics. If the time series has no treneljgtan incorrect
rejection of the null hypothesis, meaning an overestimation of a trend (Tgpe). If a trend
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exists, there is an incorrect acceptance of the null hypothesis (Tygreol; Bayazit and Onoz,
2007). Hence, a data correction method referred to as prewhiteniotdgbeapplied to the time
series prior applying the MK test.

Corresponding to the method introduced by Yue et al. (2002) and implyvBayazit and Onoz
(2007), the time series of the weather types are prewhitened if the numyesirsfis less than 50,
if the slope of the trend is less than 0.01 and if the coefficient of variatighi@dnore than 0.1
(C, is the relative standard deviation of the time series).

For the prewhitening procedure, the linear trénd

b= Median <‘T§:‘;”> Vo ol<j (3.15)
which is a robust estimate for the magnitude of a trend (Theil, 1950; Se8) i®6moved and

thelag-1 (r = 0 = time shift) correlation coefficient of the detrended series is computed as

n—1
i 2 (@ = T) (i1 — )
rr) = i=1 , (3.16)

\/é i (i — T:)* ni (i —77)°
i=1 i=1

wherer is the rank correlation coefficient,; the detrended time series; the mean of the de-
trended time series andthe number of values. This term (3.16) is used to reduce the detrended
time seriese; by the auto regression function, if an autocorrelation exists,

Yi = Ti — TiTi-1 (3.17)

wherey; is the resulting, independent time series. The fourth and last step bgiolséng the
MK test is to add the identified trend, which was removed at the beginning.rédudting time
series is not longer influenced by the effects of autocorrelation, ansighdicance of the MK
test is less erroneous.

3.3.3 Frequency analysis

A common method to detect periodicity in time series is spectral analysis. Usingri@iFdrans-
formation (FT), the signal is broken down into its harmonic parts by

N—-1
F(f) =Y ape ™! (3.18)
n=0
with
>t = cos 2 ft + isin 27 ft, (3.19)

N for the length of the time serieg,for the sampling frequency ardor the sampling time. The
FT is applicable to any continuous, infinite and periodic time series and ablea&down the
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time series into its harmonic parts up to the Nyquist frequency of

fNyquist - g (320)

Due to the remarkable computing time for the FT, a Fast Fourier Transforn{&#ar) algorithm
according to Cooley and Tukey (1965) is applied. The FFT is based ocotindition that the
FT of each finite time series is, under certain conditions, computable as tweadive FTs of
shorter sequences with the lengths\of= M x K = 2", whereM and K are the lengths of the
shorter sequences (Von Storch and Zwiers, 2003) and n a randoirenuApplying this leads to
a significantly shorter computing time.

As the used time series for this thesis are discrete, finite and not harmopiectausn can only
be estimated. To minimize the uncertainty of estimation, several steps are appiiedtime

series prior to the FFT analysis. To avoid the effect of a linear trend osphetral analysis,
each time series is detrended as described in the previous section. rorhethe effects of
'spectral leakad® and discontinuities (e.g., phase shifts), are reduced by application &Ffe
to the autocorrelation function (ACF) of the time series (Eq. 3.16) insteadeofirtie series
itself. Additionally, the ACF is filtered with a 'Thamming-windowk(i) to avoid spectral leakage

(Schénwiese, 2000)
271

h(i) = 0.54 — 0.46 cos <M) (3.21)

for 0 < i < M, with M for the maximal shift of the ACF (Oppenheim and Schafer, 1989). The
maximum time shift of the ACF is chosen to be the half of the length of each time segasure

a sufficient long period of examination, but also to avoid the spectrum tonbeainstable for
high M-values (Schénwiese, 2000). Another effect that can be reducegilying a window
function is "aliasing’. The finite spacing of the measurements may lead to a migtiion of

the frequencies, as shown in Fig. 3.5, where the sampled signal indicsigsah with a lower
frequency than the original one. To avoid aliasing, a low pass filter neduks applied, which is
also achieved by use of the hamming-window.

3.3.4 Probabilistic Forecast of hailstorm events

Application of categorical verification to the classified weather types yigldsic weather types
that occur most frequently on days with damaging hail events. Howevsrriéthod cannot
give an appropriate estimate about the uncertainty, with which hailstorms deang a certain
weather pattern. Hence, a statistical model is used to quantify uncertathty predict the future
number of hail days.

The requirements of the model are:

®Due to the finiteness of the time series and the corresponding cutting offrwfomic periods, the discrete time
spectrum appears as a smeared version of a continuous spectreeneisargy of the cutoff signal "leaks’ into neigh-
boring frequencies (Schénwiese, 2000).
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Figure 3.5: Amplitude of a signal vs. time. The black line shows the original sig-
nal, while the back circles indicate the sampled data. Aliasing occurs whenathe s
pling frequency is too low with respect to the frequency content in the @idime series
(http://lwww.cbi.dongnocchi.it/glossary/Aliasing.html).

» the model must be able to deal with a small sample size since hailstorms aregare e
(222 hail days out of 2745 days in this study);

* it needs to take weather types into account that never occurred alting hailstorm in the
past;

* it must be able to dismiss weather types that never occurred at all.

Model description

The chosen model is a binomial distribution (Vitolo and Economou, 2011, utdighed) defined
by

Prob(H,|p:) = Bin(N;, p;) = @f)pgﬂ (1 — o)t i=1,..38  (3.22)
pi ~ Beta(a, B) = [lm} P i1 —p)ﬂfl a, >0 (3.23)

with N; for the total number of days where weather typeccurred,H; as the number of hail
damage days that occurred during the weather tygeadp; as the probability with which hail
damage does occur during the weather typé& is the gamma function (Wilks, 1995). Thus,
the Prob(H;|p;) is the statistical distribution of the number of hail damage days according to the
statistical probability;. While N; is known for every weather type, the probabiligywith which

hail damage days occurred during a certain weather types is unkn@mceHstatistical methods
are used to estimate a value fgrfor each weather type and, thus, to use the model to predict the
number of hail damage days in the climate models.
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The method used to fit the model is Bayesian: A Beta-distribution (Eq. 3.23eid to model

the probabilities with which hail damage days occurred during the diffeveather patterns. The
Beta-distribution has the advantage that it ranges between [0,1]. The nudtivalkov chain
Monte Carlo (MCMC; Wilks, 1938) is used to estimate the distribution of the parsweandg

and hence each;. The Monte Carlo technique allows to approximate properties of a probability
distribution by drawing independently identically distributed samplgesXs, ... X,,. The sample
mean is an approximation for the original expectation (hgje The used MCMC method is
similar, with the only difference that the samples are not independent. Thedependent and
generated by a Markov chain.



4. Validation and detection of
hail-related weather types

To identify specific weather types (WTSs) that are associated with a higgmuéncy of hailstorm
damage, the simulation results of the CCLM-ERA40 model were used. Bethese model
runs were initialized by ERA40 reanalysis data, the results can be evaldtethe original
ERA40 and ERA-Interim and with the WTs operationally determined by DWDRerAdvaluating
the weather patterns derived from the CCLM-ERA40 data hail-relatedWwi¥llise identified and
discussed. Subsequently, differences between the WTs derivee lojffrent climate models
will be discussed. Furthermore, a modified WT classification scheme thest gibetter correla-
tion between hailstorm occurrence and WTs is introduced and evaluated.

4.1 Validation of CLM-ERA40 derived weather types

First, to what extend the spatial resolution of the models modifies the weattenngaletermined
by the oWLK method is evaluated. For this purpose, the WTs derived frenlC@LM-ERA40
with a horizontal resolution of 0.44° are compared with those obtained frelBRA40 reanalysis
with a resolution of approximately 2.5° (Fig. 4.1). The total number of dayehath the corre-
sponding WT prevailed in the years 1971 to 2000 (April to September) isrsiied: ERA40;
blue: CLM-ERAA40) in Fig. 4.1. It is evident that the distributions are venyilar, showing that
WTs with general flow directions from NW and SW or indifferent directiatX] occur more
often than WTs with NE or SE flow directions. Of course, this fact can lage@ to the main flow
direction in the west-wind zone of Central Europe with prevailing westerhdsirAdditionally,
WTSs with negative vorticity in the lower troposphere (in 1000 hPa) prevaierotien than others.

Both data sets show similar overall distributions, even if large relative deng@abetween them
are found (right panel of Fig. 4.1). The bars indicate the relative tewiaf the number of
days of each particular WT derived from CCLM-ERA40 and normalizgdhlat obtained from
ERA40. Apparently, WTs with northerly advection types are overestimaged@lM-ERA40,
while southerly types are underestimated. Nevertheless, the overéstidextion is mostly less
than 50%, or even less than 25% in most of the cases. Higher differencesed only in cases
of rare WTs (e.g., NWCAW, NWCCD, NWCCW, SWCCD).

41
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weather type
weather type

0 200 400 600 -100 -50 0 50 100

Absolute frequency in days Relative fraction in %

Figure 4.1: Left: Number of days WTs prevailed during the summer monttms #pril to
September between 1971 and 2000 derived from ERA40 reanalydjsi(ré from CCLM-ERA40
(blue). Right: deviation of WTs derived from CCLM-ERA40 and ERA#Ght red bars indicate
weather patterns that occurred less than 50 days in the whole period.

The reasons behind that differences are further investigated byradghistograms of the partic-
ular parameters considered in the classification method (Fig. 4.2). NW aratidd€tion types
occur more often in the data of the CCLM-ERA40 model, but are still within anracy level
of 8% compared to the ERA40. Accordingly, other advection types ocsarftequently in both
models. As evident from Fig. 4.1, all WTs with positive vorticity in 1000 hRa@rerestimated
by the CCLM-ERA40 model. This cannot be explained by the distribution of yictonality.
However, within scope of this thesis, it will be shown that the differenceydatonality and also
in other parameters can often be explained by specific cases, wheetimewdated parameter is
very sensitive to a slight shift, for example, when the vorticity is near arthis case, the spatial
resolution of the models may modify the results due to the matching in a dichotontmmec

The distribution of the humidity in terms of precipitable water (PW) shows majoerdiffces
particularly at higher values between the two data sets. In general, CERA%O has a higher
PW content than ERA40. This effect, however, is mitigated to a large exésatuse the actual
PW values are normalized by the model climatology in the oWLK scheme. On thehathd,
the annual cycle of PW agrees well with both models.

According to these analysis, the differences in the classification of thedil@etion are largest.
Hence, these cause the main deviations in the frequency of the WTs bdtveeRCM realiza-
tions, as shown in Fig. 4.1.
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Figure 4.2: Relative distribution of the parameters used for weather tygsifdation as derived
from CCLM-ERAA4O0 (red) and ERA40 (blue) in the same period as Fig. Pof: wind direction,

middle: vorticity in 1000 (left) and in 500 hPa (right), bottom: precipitable watetent (PW;

left) and daily mean of precipitable water content vs. the day of the yedut)rig

Identification of hail-related weather types

As the overall distribution of WTs determined from CCLM-ERA40 data shawsod agreement
to that derived from ERA40 reanalyses, only the WTs derived frorhMI<ERA40 were used to
relate them to hailstorm occurence. This is done by comparing them with lyaibdadetermined
from the SV data for the federal state of Baden-Wurttemberg.

First, the fractional occurrence of hailstorms per WT is discussed, aarthlgsis identifies the
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strength and weaknesses related to the application of the oWLK to diffdegatsets. It also
gives information on the validation of the CCLM-ERA40 data set. Additionallgxjilains why
categorical verification is applied.

According to the fraction of hail-days on each WT and the number of dagsAfi occurred
during the whole observational period of the SV (referring to the monthg @September from
1986 to 2000), five of the 40 WTs can be considered as the most haildéis (Fig. 4.3).
With a frequency of over 15%, the types SWCCW, SWCAW, SECAD, SWAakd XXCAW
are related to hail (Fig. 4.3, right). This conforms well with findings of Biissbal. (2007), who
found a relationship between three of those WTs and tornadoes in Geriftaiayis not surpris-
ing since tornadoes often accompany thunderstorms, as does hail. l6R&@is that are only
very infrequent accompanied by hail can be detected. For example, TR\NWWAAW, XXAAD,
NWAAD and NWACD all prevail more than 150 days within the whole perioddratonly 2% of
the days accompanied by hail damage.

The reasons the five mentioned WTs are forcing the development of haitstan be explained
by the general atmospheric conditions necessary for thunderstoraogeent. As discussed
in Section 2.4 the triggering mechanisms for thunderstorm development atatios, synoptic
scale ascent in front of a trough, forced ascent due to overflowrogentains, uplift on frontal
zones or convergence zones. With the oWLK just the meso-scale mauisazas be captured.

YR B e
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ECGD _l
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Figure 4.3: Number of days each WT occurred (left) and the probabilityanhage causing
hailstorms to occur during each WT (right) according to the CCLM-ERA48.da
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Of additional importance and indirectly coupled with those properties, is thdistaf the at-
mosphere and the amount of water in the lower troposphere. Hence, ¥WiTthare most likely
linked to those properties.

Three of the five WTs that have a high fraction of occurrence along vaitistorms feature SW
advection, and one of them an indifferent advection type, which cowdiply include south-
westerly features as well. However, advection of an air-mass from SWymaiplies the trans-
port of moist and warm air from the Mediterranean or, through Frarama the Atlantic. High
temperatures increase the probability of the surface temperature to metice convective tem-
perature necessary for thermal convection. Furthermore, the high neaistotent of the air-mass
allows the formation of heavy rain and hail.

The general flow direction is mainly determined by large-scale pressatensy. Those are al-
ready captured by the cyclonality index in the oWLK. Three of the five padtare characterized
by cyclonality at the 1000 hPa level and anticyclonality at 500 hPa, whidbdtes that those con-
ditions favor thunderstorm development. A typical condition favoring tleustdrms in summer is
a slow eastwards moving upper air ridge, followed by a low pressurersysben the west. First
the pressure drops close to the surface, inducing convergencegeaadarge-scale lifting and,
hence, thunderstorm development. This constellation is also know ags§gdame’, introduced
by Morris (1986).

On the other hand, the frequent occurrence of the patterns SWAAVGARUICW on hail dam-
age days indicates that the cyclonality is not as important as the generalifestion and the
humidity. For example, the WT SWAAW prevailed on 218 days (out of 2,74/ datotal) and
with 18% of those days came damage causing hailstorms. To answer the moéstioether the
cyclonality has an influence on hail damage occurence and to identify ky@dstorm condi-
tions with regard to the cyclonality, the geopotential fields (cyclonality) of \ttiés are related to
hailstorms are shown in Figures 4.4 - 4.6.

For the mean patterns of SWCAW (Fig. 4.4) and SWAAW (Fig. 4.5) the aeeragopotential
fields in 500 hPa are almost similar, differing by a geopotential differefhabaut 4 gpdm. The
standard deviation indicates that there is just a slight change in the locatiba bigh pressure
ridge southwest of Germany. For the SWCCW (Fig. 4.6) pattern, the wgipgough is closer to
Germany (lower values of the geopotential) and affects the largest fpidue area, leading into
a positive cyclonality index. It is remarkable that for this case the stardiasidtion west of the
area is highest with 10 gpdm. This is most likely due to the meridional extensithe afough.

For the patterns SWCAW and SWCCW it is evident that the upper air ridgaetddsouthwest of
Germany, is followed by a low pressure system in the lower layers. Thigemthe hypothesis
of the 'Spanish Plume’ and explains why thunderstorms tend to occur dilm@sg conditions.
This is also valid for the WT XXCAW (Fig. 4.7), where the upper air ridge is kithted with its

center over Germany and the 1000 hPa trough has a location west oé¢hdais is an indication
that these three WTSs, even if classified as different WTs, are a rddié same setting of the
synoptic systems just at different points in time. However, the theory ofSpariish Plume’ is
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Figure 4.4. Mean geopotential fields in gpdm (left) in 1000 (top) and 5G0 (hBttom) with
standard deviation (right) on all days the WT SWCAW prevailed and hailroed.

not valid for the SWAAW condition. Here, a high pressure system at h®@0is located over the
European Alps as shown in the mean fields in Fig. 4.5. Hail damage ocanrgd days when
this WT prevailed £ 17%).

Case study - SECAD

The last hailstorm favoring WT according to Fig. 4.3 is the WT SECAD. ForMfilshail damage
has a probability of 18% to occur together with this WT. Physically, with a dry sfrhere and
advection of south-easterly air masses (continental, not extraordirang @ moist) hailstorm
development would not be forced by this WT. However, the high probaislitgnited by the total
number of occurence for this type. It prevailed for just eleven daystah émd for just two days
together with hail damage claims. Furthermore, those two days occured wiiihie @eriod of
three days and were forced by a long-lasting high pressure systanicelend (Fig. 4.8). The
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Figure 4.5: Same as Fig. 4.4 but for the SWAAW pattern.

weather on May 10 1993 was dominated by high pressure, with its centbesstiof Iceland and
low pressure over the Azores. The high pressure predominant irugaréstical layers extended
over the south and middle of Scandinavia through the west of Russia. Ggmaa located be-
tween those two pressure systems with easterly to southeasterly flow disecAcnording to
CCLM-ERAA40, the vorticity at 1000 hPa (12 UTC) indicated a cyclonic beha (Table 4.1),
while at the 500 hPa height indifferent conditions prevailed. Slightly difieralues of the vor-
ticity between ERA40 and CLM-ERA40 lead to different values for the ayality index, which
is important for the WT classification. Hence, the reanalysis data showl@daycotation, while
the CCLM-ERA40 data result in anticyclonic behavior. The magnitude of #heeg, however,
indicate (ERA-Interim: 0.9 at 500 hPa) that during this day a slightly diffecenstellation on
the location would lead to another WT. This indicates that the WT classificatioreadyto dif-
ferences between data sets. Similarly, consideration of humidity may lead to siesildts. For
example, on May 10, PW in the CLM-ERA40 was 16.4 mm and only marignally loaempared
to the 10-day running climatological average (16.6 mm).
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Table 4.1: Parameters of the oWLK on May 10 (upper part) and May B8 (1® UTC) according
to the ECMWEF reanalysis and CLM-ERA40 model data. PW (mean) is the climatalagean
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Figure 4.6: Same as Fig. 4.4 but for the SWCCW pattern.

of the precipitable water on that day of the year.

Day Model oWLK Cyc.Ind.| Cyc. Ind.| PW | PW (mean)
of year 1000 hPal 500 hPa | in mm inmm
CLM-ERA40 | SECAD 9.6 -5.0 16.4 16.6
May 10 | ERA40 SECCW/| 20.0 3.1 18.3 16.0
ERA-Interim | SECCW 19.3 0.9 19.0 16.4
CLM-ERA40 | SECAD 10.5 -7.9 14.2 16.9
May 12 | ERA40 SECCW/| 24.6 1.8 18.6 16.3
ERA-Interim | SECCW| 26.6 0.7 19.0 16.6
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Figure 4.7: Same as Fig. 4.4 but for the XXCAW pattern.

Categorical verification

These examples illustrate the strength, but also the limits of the WT classificatiemeawith
regard to the predictability of hail days, especially at indifferent weatbaditions. It also ex-
plains the differences in the distribution of the WTs (Fig. 4.1), but doeslhmt/ an assessment
about which of the data sets is more reliable.

Hence, categorical verification is used, as this method considers the nafrds/s where each
weather pattern occurred during the whole time period. In the following aisalyne weather pat-
terns with the highest skill to detect/predict the occurrence of damagangehaistorms accord-
ing to the SV data are identified over a reference period from 1986 to &8f¥ding to the HSS
introduced in Paragraph 3.3.1. The highest HSS (E#S%04) with values up to 0.162 is found
for the weather types SWCAW, SWAAW, SWCCW and XXCAW, which areeregd to as hail-
related WTs in the following discussion. Based on the same approachetmmnts’ in terms of
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Figure 4.8: NCEP reanalysis of the geopotential at 500 hPa in gpdm &adespressure in hPa
for May 15, 1993 (http://www.wetterzentrale.de).

Table 4.2: Skill scores of hailstorm-related and hailstorm-unrelated wegtbes, determined
from the CLM-ERA40 and SV data between 1986 and 2000.

| Weather typef POD | FAR | CSI | HSS | a| b | ¢ | d
Hailstorm- SWCAW 0.239| 0.775| 0.131| 0.162 | 53| 183 | 169 | 2340
related SWAAW 0.176| 0.821| 0.097| 0.106 | 39| 179 | 183 | 2344
SWCCW | 0.086| 0.771| 0.066| 0.084 | 19| 64 | 203 | 2459
XXCAW 0.090| 0.831| 0.062| 0.065 | 20 | 98 | 202 | 2425

Hailstorm- SWACD 0.005| 0.989| 0.003 | -0.044 93 | 221 | 2430
unrelated | NWAAW 0.018| 0.974| 0.011 | -0.048 149 | 218 | 2374
NWAAD 0.023| 0.980| 0.011| -0.071 249 | 217 | 2274
NWACD 0.023| 0.978| 0.011 | -0.065 221 | 217 | 2302
XXAAD 0.023| 0.973| 0.012 | -0.053 180 | 217 | 2343

[2RNE NG EC

specific weather patterns with no hail damage are determined. Lowestskiélss(HSS< -0.04)
are found for the weather types SWACD, NWAAW, NWAAD, NWACD and XXD, referred to
hereinafter as hail-unrelated WTs (HIWT,; see Table 4.2).

In order to determine to what extent the long-term variability of hailstorm-rgMté&s of the ref-
erence model CCLM-ERAA40 corresponds with the ECMWF reanalysis tietaelative fraction
of hailstorm-related weather patterns of each year are compared (BigDe@iations between
the relative fraction of WTs derived by CCLM-ERA40 and ERA40 amdamalues between 0%
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(e.g., in 1994 and 1997) and 19% (1983), but mostly remain in the rangesfian 5%. For
some exceptions, the overall variability is reproduced well by the diffeteta sets. Even the low
number of hail-related WTs in 1984 is reproduced by all models. To atdouthe uncertainty
of ERA40, which is known to have uncertainties in some of the atmospherimpéaes (precip-
itation and humidity according to Simmons et al., 2007), WTs operationally detedrbin¢he
DWD (GME) and by ERA-Interim reanalyses are additionally displayede d&ta sets confirm
that the CCLM-ERA40 model can be considered a reliable referencelmdttieregard to the
analysis of long-term variability of the WTs.

Similar statements can be deduced for hailstorm-unrelated WTs (Fig. 4.&0)ifelie deviation
between the different data sets is larger. In some years, the diffecéribe relative fraction
of hailstorm-unrelated WTs amounts to up to 10%, and is therefore highefdhaail-related
WTs. This is due to the more frequent occurence of those WTs (ongeje6d days of the
summer half-year according to CCLM-ERA40) compared to the hail-relafgest{on average,
42 days of the summer half-year). Hence, even higher deviationsiard for the remaining WTs,
which occured during the remaining days (80 days per summer half-ydavertheless, a good
corrlation between ERA40 and CCLM-ERA40 was found (Fig. 4.11). Niblie are the greater
deviations between the DWD data and the others between 1980 and 198&ight result from
the use of the BKF model in these years until 1991, which had a coarsal sizaizontal resultion
of 254 km. Furthermore, the erronous classification of the advection typtha consideration of
different pressure levels, which were discussed in Paragraph g2 lead to those differences.
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Figure 4.9: Relative fraction of hailstorm-related WTs per year determired the CCLM-
ERA40 data (red), ERA40 reanalysis (blue), ERA-Interim reanalysange) and DWD (green).
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4.2 Validation of the regional climate model realizations

Reliable reproduction of synoptic weather patterns by climate models is limited, $iag are
not driven by real weather data. Most climate models are able to regtdestatistical distribu-
tion of various meteorological variables over an adequate long time-pétbdannot reproduce
the temporal course of the synoptic fields, for example, on an annual bdsnce, the valida-
tion of the WTs determined from the different climate models is limited to the compaoisthie
distributions of the weather patterns and their occurrence during the eatiteol period C20
(1971-2000).

Comparing the three CCLM runs driven by ECHAMS and calculated by KIEZC20 run 1-
3; cf. Table 3.1) with the CCLM-ERA40 (Fig. 4.12) shows very good agrent between the
modeled distributions of the WTs. The distributions show minor differences) i the relative
deviations for WTs that occur more than 50 times in the summer months rangeshdd®eand
approximately 100%. The 100% deviation is valid only for the weather type BWGvhich
seems to be an exception. While WTs with flow directions from NE or no cleafiyned di-
rection seem to be underestimated by all three runs, the other flow direetmotcbe clearly
considered as over- or underestimated (Fig. 4.13). By evaluating thitilists of the vorticity
at both levels and the PW index (Fig. 4.16), the vorticity in 500 hPa might beestirnated by
all three RCM runs, which would lead to less cyclonal WTs. This could bedkse for the WTs
NWACD, NWCCD and SWCCW, where the three CE5C20 runs overestimatgbks. Accord-
ingly, the type NWAAD is underestimated, while there is no evidence of anrastimation of
the types NWCAD or SWCAW. The distributions for the PW index are confand show just
minor differences.

Same comparison were performed for the CCLM consortium runs (CKRCZR3; cf. Table 3.1)
and the CCLM run driven by the GCM of the Canadian Center for Climate Nugland Analysis
(CC3C20R1; Fig. 4.14). These climate model scenarios achieve a simildrcgo@spondence
to the CCLM-ERA40, but the CC3C20R1 shows the largest deviationsAMH@roccurring more
than 50 times, the CC3C20R1 run clearly overestimates the northerly WTs 1p%b, for WTs
occurring more than 50 times, but underestimate the southerly types. ThEZIR1 run shows
reverse patterns, but less deviations. For the second run of the GCQLiedel, the variations
are less distinct and within a range of 25%. Additionally, the CCLM-KL rundarestimate the
humidity of the south-westerly WTs (especially Run 1). Considering the disitits of the WTs
parameters, larger deviations between CCLM-ERA40 and the CCLM-K& can be recognized
(Fig. 4.17). The vorticity in 500 hPa shows larger deviations between tfexefit model runs,
especially in the range between anticyclonic and cyclonic. This indicates tiiglter potential for
differences of the determined WTs exists. Furthermore, the humidity distniisusiobstantially
differ as well. CKLC20R2 and CC3C20R1 are dryer than the other modis as the PW is
normalized by the long-term mean, this parameter is less sensitive againstomadeteristics.
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In summary, all climate models reflect the overall distribution of the WTs well, wb@8C20R1
shows the largest differences compared to CCLM-ERA40. This implicatgd#viations are
mainly caused by the different forcing GCMs (ECHAM5, CCCma3). Havethe distribution
of WTs that occur rarely and those occurring frequently is especigipdriced well by all mod-
els. Nevertheless, the under- or overestimation of certain WTs of diffenedel runs has to be
considered with regard to the interpretation of the long-term variability. A summagiven in
Table 4.3.

Table 4.3: Summary of the validation for the WTs derived from differentvRe@alizations.
Over- or underestimations are considered due to the comparison with thd&tiled by CCLM-
ERA40.

Model Advection Cyclonality | Cyclonality
realization type 1000 hPa 500 hPa
CCLM-ECHAM5 NE, XX - slightly
(Run1,2and3) | underestimated overestimated
CCLM-KL NW, SW - slightly
(Run 1 and Run 2) overestimated overestimated
CCLM-CCma3 SE, SW - overestimated
underestimated
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Figure 4.16: Same as Fig. 4.2 but for CCLM-ERA40 (red), CE5C20REfpCE5C20R2 (light

blue) and CE5C20R3 (orange).

0.1 . . . 0.1 . , , ,
! —— CCLM-ERA40 ! —— CCLM-ERA40
0.09 /é\‘ | ——CKLC20R1 - 0.09r ! ——CKLC20R1
‘ CKLC20R2 | CKLC20R2
0.08f ) CC3C20R1 0.08- ! CC3C20R1 1
{
0.07f h 1 0.07r 1
g : é 0.06
§ 0.06+ ! R E A
b b ! 4 o005} 1
0% -\ E
K] L | | = L ]
T 0.04 : 3 0.04
@ ! \ [vd
0.031 i 4 0.03f 1
! \
0.02f | \ 1 0.02 / 1
| \
0.01f ! A 1 0.01} 1
O = | L L L L == 0 L —
-60 -40 -20 0 20 40 60 80 -50 0 50 100
Cyclonality—Index at 1000 hPa Cyclonality—Index at 500 hPa
0.1 T T 260 - -
—— CCLM-ERA40 —— CCLM-ERA40
0.09F ——CKLC20R1 240} == CKLC20R1 1
CKLC20R2 CKLC20R2
0.08F CC3C20R1 220 CC3C20R1
0.07F 1
s 200
G 0.06f 1 E
I E 180
o 0.05F 1=
= £
= 160
% 0.04 H
ox 0.03- ] 140
0.02- 4 120 /
0.01+ 1 100F 4
50 100 150 200 250 300 350 400 80y 50 100 50 200 250 200 250
PW in 10mm Day of the year

Figure 4.17: Same as Fig. 4.2 but for CCLM-ERA40 (red), CKLC20Rdg} CKLC20R2 (light

blue) and CC3C20R1 (orange).
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4.3 Evaluation of a modified weather type classification

In addition to the operational oWLK of DWD, an own classification schemedeasloped that
considers the mechanisms decisive for thunderstorm development. Uitirgeroonsiders weather
types (WT) that are specifically adjusted to predict damaging hailstorms.pditzeneters and
methods used to design the weather types are introduced and explainetbiiothiag.

Stability index

Kunz (2007a) identified several convective indices that allow to aghesgotential for severe
thunderstorms. Based on this study, convective and stability indices thabarputable on the
basis of model data on pressure levels are analyzed to determine thetipreglicll of WTs
derived from a modified weather type classification scheme. The indi¢&d,l®PIl, DCI and VT
(introduced in Chapter 2) are calculated for the federal state of Badattemberg, for which
hail damage data (SV) are available.

Dynamic parameter

The second parameter that is used in the new classification scheme of Wibsé&ndo describe
large-scale lifting related to a mid-tropospheric trough or front. The edpr¥-potential temper-
ature (EPT) at 1000 and 850 hPa, the dew point difference (DD)ahB&, the wind shear (WS)
and the vorticity advection (VA) were examined with regard to the best grediskills.

While EPT displays the latent energy of the condensation process that gareel stores, the
DD gives an estimate about undersaturation of the atmosphere and theoMAckianges in the
bending of the geopotential and uplift. Vertical wind shear (directionabghis important for
the organization of the convective cells or systems (single cells, multicellsyelfs) and conse-
quently the severity of the convection (Sec. 2.1).

Determination of a MoWLK with the best prediction skill for hail

To derive the modified classification scheme (MoWLK) with the best predictialihfor dam-
age causing hailstorms, the original parameters used for the oWLK areremith the two
additional parameters. This new classification scheme considers the thgegitrg mechanisms
necessary for thunderstorm development: conditional instability, moisbumtet and large-scale
lifting. Hence, the modified WT includes at least three parameters thatiloesdr these pro-
cesses. One example of a MoOWLK classification is the combination of the @litjoat two
layers as lifting parameter, the precipitable water (PW) as measure for taeagatent and the
LI as indicator for the static stability. To use the additional parameters agftme classifica-
tion method, appropriate thresholds need to be defined in order to sefpanmaderstorm forcing
from thunderstorm inhibition conditions. For the stability index, for examplehsa separation
defines stable and unstable atmospheric conditions. To adjust theseltisastih regard to the
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prediction skill for damage causing hailstorms, thresholds are choserdatg to the modified
WT that has the highest value of the HSS (Par. 3.3.1).

Table 4.4 gives examples for MoOWLKs and shows the WT, derived bgrdifft MOWLKSs, that re-
ceives the best prediction skill according to the HSS. Picking up on the@edor the MoWLK
from above (cyclonality, humidity, stability), the highest HSS is receivedtie weather type
CAWL, indicating cyclonic rotation in 1000 hPa, anticyclonic rotation in 500, rPeelatively
high water content in the atmosphere compared to the climatological mean asthblerstrat-
ification according to the LI. The highest skill is achieved for a threshbld & —1 K and the
HSS attains a maximum value of 0.252, which is already high for rare eventslilstorms. This
value is even higher than the maximum HSS of 0.162 achieved for the weateeSWCAW
from the original classification method.

According to this method several MOWLKs are designed that have a higb@rfét specific WTs
compared to those from the original method. The highest HSS of 0.342 chiésved for the
MoWLK considering humidity (PW), stability (LI) and VA, for the weather typ4_P. This WT
indicates a high water content, unstable stratification (according to a lowllg)Vand positive
VA (lifting). However, this MOWLK only includes eight different WTs in totals each parameter
holds two classification choices. This low total number of WTs within the MoWI4¢ affects
the HSS and, hence, the value of the HSS needs to be evaluated relatabstiute number of
WTs (8 for the MoWLK and 40 for the oWLK).

A decrease in the number of WTs leads to an increase in the number of dagseach individual
WT occurs. This implies that the probability of hail occurrence during theiW¢feases when
the hail events are equally distributed over the 8 WTs. Hence, a highedbkSnhot necessarily
mean that the new MoWLK improves the relationship between hail damagerescarand WT
occurrence. To clarify this argumentation, a simple example is used: Assenecatfe two WTs
that are combined to a single one. The resultis an increased HSS, buduenty the reduction of

Table 4.4: Parameters that are combined resulting in different MoWLKstkajood predictors
of damage causing hailstorms (SV insurance data). The advection, alsiand humidity are
the same as for the oWLK. Parameter 1 is an additional stability index(S = stablenstable).
Parameter 2 contains processes that force thunderstorm developepenidihg on the chosen
threshold. VA = vorticity advection (P = positive, N = negative), EPT =iegjent-potential
temperature in 1000 hPa (H = high, L = low).

Weather Parameter 1 Parameter 1| Parameter Parameter HSS
type Threshold 21 Thresholdﬁ
SWCAW - - - - 0.162
CAWL LI —-1K - - 0.252
WLP LI —1K VA 0s2 0.342
CAWLP LI —1K VA —0.5s2 | 0.252
CAWLH LI —1K EPT 315 K 0.266
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WTs. Similarly does an increase in the number of WTs not necessarily leaddettrease in the
HSS. Conversely, assume that one WT is split into two, with both occurringllcas often and
also equally as often accompanied by hail. The result would be a dedre&® of zero. Now
assume that one WT favors the development of hailstorms. Due to the splittingld still occur
less often, but is relatively more often accompanied by damage causingimgs Consequently,
the HSS would increase even though the total number of WTs is higher.

To account for the potential misinterpretation of the HSS, the VA was tespatately to de-
termine whether this parameter leads to an increase of the prediction skill. VAtle added
to another modified WT, it can be studied how the HSS changes when thietaelhsomber of
WTs increases. An increase in the HSS, when increasing the absolute mof@ather types,
would indicate a better prediction skill for this WT and, thus, imply that the VA &@g@®sitive
effect on the hailstorm-WT relationship. To test this the VA was added to tadwetype CAWL
(HSS =0.252; Table 4.4). Adding the VA as additional parameter (CAWLSS H 0.252) did not
increase the prediction skill for hail significantly. Hence, VA does notdase the performance
of the MoWLK.

Considering all possible combinations and regarding the increase/dednghe absolute number
of WTs within the MoWLK, the best result of the HSS are obtained with a conibimaf the
five parameters: cyclonality in 1000 and 500 hPa, humidity (PW), LI and &AD00 hPa. The
resulting classification scheme is a five character identifier:

C1000C500HSE

with Cigpp and Csgp for the cyclonality (relative vorticity() in 1000 and 500 hPakl for the
humidity, S for the Stability according to LI (S = stable, L = unstable) aidor EPT (H = high,
L = Low). This MoWLK, comprising 32 different WTs, is used for furth@nalyses. An entire
list of the weather types of this MOWLK can be found in Appendix A.3.

Validation of MoWLK

Several WTs of the MoWLK do not occur in the C20 period from 1971 tB@based on the
CCLM-ERA40 and ERA40 data (Fig. 4.18). It is evident that WTs with a highue of LI
(LI > —1 K) and those with a low EPTH{ < 315 K) occur more often. This is plausible as
the parameters characterizing this classification method are chosen wittht@gdetter forecast
skill of hailstorms. Hence, thresholds are chosen at the tail of the distrilsutifcithe parameters
causing a disproportionate occurrence of hail-related WTs to be exbecte

Large deviations in the absolute fraction of the WTs derived from CCLRAEO and ERA40 are
evident in Fig. 4.18 (right). Some deviations are far more than 100% for $W@ire (AAWLH

and AAWSL) and some WTs, particularly those with a high EPT and a low ldwslarge de-
viations between CCLM-ERA40 and ERA40. Thus, this method seems notapieable to
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Figure 4.18: Same as Fig. 4.1 but for MOWLK. Light red colors mark WT$ tlcaurred less
than 100 times between 1971 and 2000 (summer).
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Figure 4.19: Distributions of LI and EPT in 1000 hPa derived by ERA468)(r€CLM-ERA40
(blue) and by radiosonde measurements in Stuttgart (green). Dotted ldieaténthe chosen
thresholds.

different models. But what causes those differences? In ordeatoate the reasons behind these
differences, the distributions of LI and EPT obbtained from both reaismtata and radiosonde
data are shown in Fig. 4.19. The distributions of the LI (left) generally aptmeconform well.
However, there are larger deviations for values in the range betwekrarl 1 K, the region
that separates unstable from stable WTs. The CLM-ERA40 data hold mysevith an unstable
atmosphere compared to those of the ERA40. Hence, there is a highetigidterhail-related
WTs to occur in the CCLM-ERA40 data set compared to the ERA40 dataube@n unstable
atmosphere supports thunderstorm and hailstorm development. To estimadéatioaship of
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the distributions, they are compared with LI derived from the radiosoatke taken in Stuttgart
(Par. 3.1.3).

The radiosonde station in Stuttgart is the only one in Baden-Wirttemberg asdttie entire
region is limited to being represented by a single point measurement. HoBewathach (2010)
showed that LI and Sl derived from reanalyses are almost homogslyetstributed over Baden-
Wirttemberg. Additionally, the pressure level used to derive LI is the h@@0Jevel, which is less
dependent on the surface layer. The ERA40 reanalyses have amdysecpatial horizontal reso-
lution. Hence, complex orography is not resolved and does not dffestalue of LI. This allows
the use of LI derived from the Stuttgart sounding as representatiihdoBaden-Wirttemberg
region. This is confirmed by the fact that even if the LI distributions, @éetifrom the reanalysis
and CCLM-ERA40 are determined from average values for Badent®@¥iinerg, they are unex-
pected conform with the distribution of the LI in Stuttgart. However, especialthe range of
instability of the distributions, the LI from the CLM-ERA40 data conforms muettdy with the
observations than that from the ERA40 reanalyses. As such, it caqpbeted that the LI, derived
from the CLM-ERA40 model data, is more reliable, but it also indicates thdtltisea source of
error in the MoWLK and reduces its applicability when considering diffenendel realizations.
Similar results are also evident in the histograms of EPT (Fig. 4.18, right)e¥altilEPT derived
from CLM-ERA40 and ERA40 show larger deviations in the relative feauy, especially in the
range around the chosen threshold (315 K). Hence, the potentiaé¥aatens between the re-
sulting WTs is higher.

In summary, the introduced method leads to higher forecast skill of sp¥¢ife describing the
occurrence of hail, but the applicability to different data sets is problematgarticular due to
the thresholds defined for the convective parameters. The hail-relaisd @AWLH, AAWLH,
CCWLH and AAWSL,; Appendix C) are especially overestimated in their feeqy by CCLM-
ERA40 in comparison to ERA40, implying that especially those types cannog¢freduced
well by different models or realizations. Additionally, some of the hail-urieel&VTs (AAWSL,
AADSL, ACDSL, CCDSL) are also significantly overestimated by CCLM-ERAFig. 4.18).
Due to these large deviations, the respective hail-related and hail-udréldeare only analyzed
for the CCLM-ERA40 data set, as the modification of the weather type clagificscheme is
adjusted to this data set. However, with more investigations regarding thetialidéthis method
(e.g., bias corrections or exchange of some parameters), the methodeanproved to provide
more robust results when applied to different climate models.

Temporal variability of hail-related weather types

To determine the temporal variability of hail-related WTs and, thus, the clsangiee occurrence
of hail damage, linear trends over variable periods were calculatedrérias were calculated for
periods of at least 10 years and visualized by trend-matrices. Therratnites are structured as
follows: The entire time series of hail-related WTs is split into many subsegsefitie start year
of those subsequences is given on the abscissa, while the end yestgimed®on the ordinate. The
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Figure 4.20: Absolute frequency of hail-related WTs derived from BIEERA40 and obtained
with the modified classification method. The black line shows the 5-year runméag.

linear trend of the number of hail-related WTs is computed for each subsegand displayed as
colored box. Those boxes indicate an increase or decrease in themafrhbd-related WTs per
year (red/yellow: positive, blue/green: negative). Furthermoresideration ofn >= 10 years
allows the use of the Mann-Kendall significance test (Par. 3.3.2) to d&tguficant changes.
Accordingly, insignificant changes are plotted as white boxes.

Figure 4.20 shows the time series of the hail-related WTs derived from GERM40. The
mean number of these WTs according to the MoWLK is 24 days. Large dewafiiom this
mean are evident in the time series{Z4days), with a minimum number of only eight days and
a maximum of up to 39 days. Between 1970 and 1976, a significant dedredse number of
days can be observed in the time series, which is also evident in the trendamé&trian period of
10years (Fig. 4.21). After this decrease, the number of hail-relatediNgiieases significantly by
9 days between 1972 and 2000. However, no significant trends acarsbeved with the start year
later than 1978. This is interesting as the observations (SV data) indicateificaigt increase
(Chap. 1; Fig. 1.1). However, the time series of WTs indicate that the tremdprobably not
significant due to the large inter-annual variations, especially in 1984 294

As the time series is very short, no proper statistical analyses of periodavioe, such as the
application of an FFT, can be applied. To get an estimation of certain patjodie 5-year run-
ning mean is plotted in Fig. 4.20. Interestingly, this mean indicates a continuaesasecin the
number of hail-related WTSs, beginning in the year 1975. An increasembajmately 10 days
can be observed. Disregarding the trend, the 5-year running mean iraplague periodic be-
havior of approximately 15 years, recognizable by the two minimums in 1973%9@and three
maximums (1973, 1984 and 1994).
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Figure 4.21: Linear trend matrices of hail-related weather types determimadiCLM-ERA40
between 1971 and 2048. In the right panel only trends are displayeldaaa statistical signifi-
cance of more than 80% according to the MK trend test.

Temporal variability of hail-unrelated weather types

An increasing number in hail-related WTs may lead to a more frequent ecmerof damage-
causing hailstorms. Likewise would a decrease in the number of hail-urd&éals likely affect
the thunderstorm frequency. To investigate this further, a time seriesafibuitrelated WTs is
analyzed to determine the changes in the thunderstorm potential.

The number of days with prevailing hail-unrelated WTs is much higher (9%,dday. 4.22) com-
pared to the number of hail-related WTs. This is because the classificationdristhdjusted
towards a good correlation between hail damage days and WTs. Thhail damage days are
relatively rare (15 days per summer half-year according to SV loss,da@nhumber of hail-
unrelated WTs is higher. Large inter-annual variability can be seenngfiggm 71 days in the
year 2000 to 110 days in the year 1974, which also indicates a higheastashelviation (9312
days). However, a remarkable negative trend between the 1970080dcan be recognized,
which is statistically significant (Fig. 4.23). The trend amounts to nearly onp@eiayear, a total
decrease of 24 days (1976-2000) which is larger compared to thevpdsé&nds for hail-related
WTs. This indicates that the potential for the occurrence of damage gahbailstorms is not
just increasing due to a more frequent number of hail-related WTs, lutlaksto an even more
pronounced decrease in the number of days that do not favor thlopeent of thunderstorms.
Even if the probability is smaller for thunderstorms to occur during the pregailémaining’
WTs (those that are classified neither as hail-related nor as hail-unjeiateas to be taken into
account when estimating the number of hail damage days.

Investigations of the periodicity by analyzing the 5-year running mean {F&?) yields results
similar to those derived for the hail-related WTs. Some harmonic behavioigbf gears is
indicated, but is not as pronounced as in the other time series. Additionallysttotiyg-term

periodicity derived from the 5-year running mean, there are short@dieities noticeable in the
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Figure 4.22: Same as Fig. 4.20 but for hail-unrelated weather types.
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Figure 4.23: Same as Fig. 4.21 but for hail-unrelated weather types.

original signal. Regular maximum peaks in the years 1984, 1987, 199G, dr8&d 1996 indicate
some shorter periodicity between the years 1983 and 2000. Howevegnthligsis is only an
estimation and would need to be verified by statistical methods.

In summary, an increase in the frequency of hail-related WTs and aadecie the number of
hail-unrelated WTs imply a significant increase for the potential of damaggirgahailstorm

occurrence in the past. This conforms well with the trends derived bgresisons of the SV
and indicates an adequate relationship between WTs and hailstorm oceurfdus, the method
seems to be a good estimate for the climatological analyses of hailstorms, althnagtis to be

improved with regard to its applicability to different data sets.






5. Temporal variability of hail-related
weather types

This chapter will focus on long-term variability of hail-related and hail-latesl WTs, including
the detection of possible linear trends and periodicities. As the RCMs aableoto reproduce
the course and development of real synoptic systems, it is important tazarhbydifferent mod-
els with regard to their individual epistemic uncertainty.

To assess epistemic uncertainty, eight different RCM realizations astdevad comprising dif-
ferent initialization times and initial conditions (Run 1, 2 and 3 of the GCM), emissienarios
(Al1B, B1), RCM realizations (CCLM versions 4.8 and 3.1) and forcindpglanodels (ECHAM5,
CGCMB3). Unfortunately, a comparison between the CCLM and other RCAgsat possible due
to limited availability of model data on different levels, which are necessaryaWifi classifi-
cation routine. Note that this is important regarding the interpretation of thiéiseas variability
might be caused by the model physics.

5.1 Temporal variability of hail-related weather types

To determine the temporal variability of hail-related WTs according to the oWibhKar trends
over variable periods were calculated and displayed in trend matricesredla Section 4.3.

5.1.1 Detection of linear trends

The upper panel of Fig. 5.1 shows the trend matrix from 1971 to 2048 #eftthe correspond-
ing significance (right) at the 80% confidence level according to the MHKifeaggnce test for
CKLA1BR1. Over the whole time period displayed, a positive linear trendadfrielated WTs
can be noticed, but this trend is not significant. A significant linear trenddeet until the early
2010s, with an increase of less than one day per year or approximatajs9ad the period 1971
to 2002. This positive trend possibly already affects past hailstornri@we, as the fraction of
hail damage days on the hail-related WTs was around 20% in the past20989. Larger signif-
icant linear trends of more than three days per year can be identifiedavrdigdrter time periods
of approximately 12 years, for example from 1975 to 1987 or from 198®0®. Those positive
trends persist for approximately 5-6 years (1971-1978, 19881829 until the trend changes

67
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Figure 5.1: Linear trend matrices of hail-related WTs determined from CKIR12CKLA1BR1
(top) and CKLC20R2/CKLA1BR2 (bottom) between 1971 and 2048. In iyt panel, only
trends are displayed that have a statistical significance of more than &@dimg to the MK
trend test.

its algebraic sign and becomes negative. These periodic changes ddritie &re indicated by
several peaks in the time series which cause also significant negatige between 1980 and the
late 2030s, as evident in the matrices for CKLA1BR1 and CKLB1R1 (FigaBd.Fig. 5.2, top
panels). The decrease in the number of hail-related WTs sums up to a tefgbrmikimately 9
days (1982 to 2039). Furthermore, another positive significant treawident in the CKLA1BR1,
beginning in 2005.

Those 'time blocks’ of trends with a statistical significance of > 80% lead to thestoppn of
whether a kind of periodicity in the occurrence of hail-related WTs candbected. To answer
this question, it is important to determine if those potential periodicity patterrelsoevident in
the other models. By considering several RCM results, epistemic uncerntaimtye assessed.

The trends of the time series of hail-related WTs derived from Run 2 of &4 and CKLB1
(Fig. 5.1 and Fig. 5.2, bottom) indicate similar significant short-term trends ifuthees projec-
tions, similar to those of Run 1. These positive significant trends of morettinaa days again
occur for approximately 5 to 6 years in the time series. This implied periodicity itirtteeseries
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CKLBL1. Except for negative trends over shorter periods (e.g., 1987991, 2018 to 2038), which
are not significant, most of the long-term trends are positive by less tieday per year. Over

the whole period from 1971 to 2048, the trend is positive with a total increbapproximately

11 days. Interestingly, the trends before 2010 are not significaiL(i®2010) as well as those

after 2010 (2010 to 2048). This indicates that there is a difference inhdw@cteristics of hail-

related WTs between 1971 to 2010 and 2011 to 2048. To find the reasdhssfabrupt gradient
in the significance of the positive trends, the time series is split into two seegsi@i¢he year

2010 (the year with the largest gradient). Figure 5.3 shows the time serietheithean of the

number of hail-related WTs for the two separated time periods. A 'step’tsteiof the mean can

be detected, which causes those gradients in the trend matrices. WhetPsefhistructure is
due to natural variability or climate model characteristics can be clarified &lyzng the whole

ensemble of climate models (Par. 5.1.3); this emphasizes the importance of tiangmsemble

of RCM (even if the used ensemble is a mini-ensemble comprising only a limited nwindight

possible realizations).
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Figure 5.3: Absolute frequency of hail-related WTSs, derived from CROR2/CKLB1R2 and the
mean values (dashed) of the two time periods 1971-2010 and 2011-2048.

The results of the CKLA1BR1/R2 and CKLB1R1/R2 (cf. Table 3.1) shobstantial differences
in the trends of the number of hail-related WTs between Run 1 and Run 2oiyast, differ-

ences between the emission scenarios A1B and B1 are not evident.(FandFig. 5.2). This
indicates that the year, where the GCM was initialized is of major importanceddrditrelated

WT climatology, while the emission scenarios have no strong influence on tdevepatterns
over Germany at least for the nearer future until 2050.

As the CCLM-ECHAMS runs are only available for the time periods 1971 td29td 2011 to
2050, the trends were calculated separately for the control periodutun@ forojections. These
two investigation periods are compared with the CCLM-KL model runs to dericertainties
induced by the use of different RCMs. Both models are driven by the géwhal climate model
ECHAMS5, but use different RCM versions of the CCLM. By comparingrémgults obtained from
these two RCM runs, the impact of the RCM on the linear trends is evaluategteFgt shows
the trend matrices of CESA1BR1 for the control period C20 (top) and theedyprojection (bot-
tom). The positive trends of the control periods until 1994 are similar cozapar CKLA1BR1,
while those determined from the CCLM-ECHAMS5 are not significant for mbthe sequences.
Likewise, trends for the series beginning in 1980 are negative in both maoalele most of
them are not significant as well. However, the long-term trends defreed CKLC20R1 and
CES5C20R1 show several differences. For time series of hail-relatestid&t begin in 1971-1979
and end in 2000 the trends determined from CKLC20R1 are positive ard ffmm CE5C20R1
are negative. This can be explained by the difference of the relatigaeéncy of hail-related WTs
of those models (Fig. 5.1.1) in the mid to end of the 1990s. Even if the numbeiilefhated
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Figure 5.4: Same as Fig. 5.1 but for the control period C20 (top) and tBes8é&nario (bottom)
of the model CLM-ECHAMS5.

WTs conforms well between the two model versions, the correspondiray lireand is affected by
some peaks in the time series. Therefore, these trends are statisticallynifidasidg. Moreover,
the trends of the future projections conform well between both models #wedinear trends of
the second model runs (cf. Appendix D).

The results obtained by using another driving GCM (CCLM-CCCmag3) siowar characteris-
tics of the linear trends. But they also feature some differences in compadaghe CCLM-KL
(Fig. 5.6 and Fig. 5.2). The trends at the beginning of the control peuiotil 1998) are almost
positive, but very small and not significant. Considering a longer pédraod 1971/1990 to 2006
yields significant positive trends with an increase of maximal two days per ygom 1990 or
2000 until 2028, the trends are significantly negative by less than ongedggar. This variability
and the magnitude of the trends are similar to CCLM-KL, but the time period offisigince is
much shorter. Additionally, the mentioned block-wise significant trendsiauitasto the CCLM-
KL (Fig. 5.6) but less distinctive.

The analysis of the trend matrices show that there are differences in the ieads due to the
RCM versions and different forcing GCMs. These differences aresiigated in the following.
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Figure 5.6: Same as Fig. 5.1 but for the hail-related WTs derived fron02CR1/CC3A1BR1.

As a comparison between the RCMs is difficult because of the different tameds of CCLM-
KL and CCLM-ECHAMS5, the absolute fraction of the WTs derived fromnfr CKLA1BR1/R2
and CE5A1BR1/R2 for a 30 year time period within the future projections iyaea for the pe-
riod 2019-2048 (Fig. 5.7). The time period is chosen according to othéiestusing ensembles
of climate models (e.g., Mayer et al., 2010) but, due to the data availability of thévckL
data sets, the period is shifted by two years. The absolute fraction ofeteatiéd WTs for the
second model run differs just slightly between the different RCM modwsiaes. The maximum
difference is 51 days or 11% for the WT SWAAW. Similar results can be difa@m the absolute
frequency of hail-related WTs for the first model run, but the relatireiations are higher (41
days or 18% for SWCCW). Concluding, the different versions of thé&/Rfave only a marginal
influence on the frequency and linear trends of hail-related WTs. idlyethe absolute fre-
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Figure 5.7: Absolute frequency of hail-related WTs per summer half-gisived from
CKLA1BR1 (red), CKLA1BR2 (green), CE5A1BR1 (blue), CE5A1BR(orange) and
CC3A1BR1 (yellow) for the years 2019 to 2048.

guencies from CKLA1BR1 and CE5A1BR2 conform well. This implies thatdifierent model
resolutions (0.167for CCLM-KL and 0.44 for CCCLM-ECHAMD5) play only a minor role for
the determination of hail-related WTs.

The influences of the different GCMs on the trends can be confirmedebglisitribution of the
absolute frequency of hail-related WTs from CC3A1BR1 for the peratb22048 (cf. Fig. 5.7).
Maximum deviations of nearly 40% for the WT SWAAW are evident, indicating ppmafluence
of the GCM on the frequency of hail-related WTs.

In summary, the largest difference between the linear trends of haildelsies are found for
different realizations of the GCM (ECHAMS5) in terms of different initial citions. This indi-
cates that the model climate with regard to the WTs is highly dependent on the iatt@lizime
and the initial conditions of the GCM. Furthermore, differences are algsechby the individ-
ual GCMs. Trend patterns of CCLM-KL, driven by ECHAMS, are alsaent in the CCCmas3,
but are less pronounced in the CCLM-KL. Differences due to the RG#®lglifficult to examine,
since the period of 2001 to 2010 is missing in CCLM-ECHAM5 and may resultsigmificance
of trends for these sequences. Disregarding the statistical significheaesults for the WTs of
the C20 and the future projections obtained from the two CCLM model vexsiod runs conform
well, even though the resolution differs. In all cases, the trends arensaulginally affected by
the underlying emission scenarios.
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5.1.2 Detection of periodicities

As discussed in the previous paragraph, most of the models indicatetsthmontariability in the
trends of the time series, which may be due to a certain harmonic behavior in theetiee To
analyze possible periodicities the results obtained from the RCMs with anaelgngth and
without gaps, e.g. CCLM-KL and CCLM-CCma3, were transformed to tegufiency space by
applying an FFT algorithm to the autocorrelation function (ACF; see Ch&ptear. 3.3.3). Fig-
ure 5.8 (top) shows the relative variance of CKLA1BR1 vs. frequéiadt) and the corresponding
time axis (right).

As expected and discussed earlier, some peaks in the relative varidioagearthat the mentioned
short-term trends can be related to periodic behavior of hail-related Whs.spectra indicate
some shorter periodicity of approximately 2 to 4.5 years in the time series ofetaiiéd WTs
derived by CKLA1BR1, CKLB1R1 and CC3A1BR1. Furthermore, thedNdllow a periodicity
of 12 to 16 years.

A periodicity of approximately 14 to 18 years is detected also in the secorsdofuBCLM-KL
(Appendix D.3). The relative variance of CKLA1BR2 shows an additipeak at approximately
7 years. Whether this maximum is due to periodicity or caused by a convolutioagtn the
transformation into the frequency space cannot be determined. Acgdodine fact that all max-
ima of the variance occur at a multiple of the same frequency, convoluticsedduy spectral
'leakage’ is most likely and the results of this spectrum should be handleccatith However,
the power spectra determined from the results of the second GCM ruwssgindar results for
the variability of the hail-related WTs in comparison to the first runs with only fésebof ap-
proximately three years towards a longer periodicity. This indicates thaiffeestices between
the first and second GCM/RCM runs impact the magnitude and direction of & lirends, but
not the periodicity of hail-related WTs.

5.1.3 \Variability of hail-related weather types in an enserble of regional climate
models

The differences between the model realizations illustrate why it is importaoiisider not only
one RCM run, but to use an ensemble of different model realizationscamaigos to determine
temporal variability of hail-related weather patterns. Since it is not possibleterrdine the
'best’ model run, each model needs to be taken into account with the saitvegity to predict
the future climate. Hence, a mini-ensemble of eight members with the RCM of CECMAMS5,
CCLM-KL and CCLM-CC3ma, different initialization times (R1,R2,R3) and emissicenarios
(A1B, B1) is created for the time periods 1971 to 2000 and 2011 to 2048examination of
periodicity is not possible due to the short length of CCLM-ECHAMS runisiciv are integrated
in the mini-ensemble.

Figure 5.9 shows the frequency of the hail-related WTs from the ensemtdenis of mean and
standard deviation. The mean of WTs for C20 amounts to 41 days, with a maxaibdndays
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Figure 5.8: Frequency spectra of the autocorrelation function of Hailect WTs. Top:
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(right).

and a minimum of 26 days. Those large fluctuations lead to statistically insignitresuls for
many of the sequences within the time series between 1979 and 2000, whials@amobvious
in the trend matrices (Fig. 5.10, top). Furthermore, large standard dewaifamp to 25 days
indicate that there are large differences in the number of hail-related \&fi&d by the different
RCMs, implying a large uncertainty. However, significant trends are atfdethe entire time se-
ries, as well as in the first part of C20 (Fig. 5.10). The number of daysaecurring hail-related
WTs increases by 12 days between 1971 and 2000 from approximatey3=days. This leads
to a higher potential for the occurrence of damage causing hailstorms.

In the year 2011, the number of hail-related WTs is lower than in the late 1880gr a decrease

of hail-related WTs cannot be identified due to the missing period betwedna2@D2010, or the
models indicate a different WT climatology of those WTs which are related toHailever, the
mean number of hail-related WTs for the future projection is just about 8 bigher than the
mean for C20. The annual fluctuations are similar to C20 with a range of Watal indicate
high uncertainties between single years. The standard deviation resutimgtie differences
between the model realizations is lower for the future projection petigg.( = 26) compared

to this of C20 ¢,,.. = 17). This indicates that the emission scenarios have no influence on
the frequency of hail-related WTs until 2048. However, positive traardsevident in the future
projections of hail-related WTs derived from the ensemble. While there@reends for the
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Figure 5.9: Number of hail-related WTs for the control period C20 and titerd projection
period derived from CCLM-ECHAMS5, CCLM-KL and CCLM-CC3ma with mesalues (black
line) and standard deviation (gray).

first 20 years, a significant trend for time series longer than approxima@ejyars can be seen
(Fig. 5.10). According to the linear regression the number of hail-relatéd WWcreases from
39 days in 2011 to 46 days in 2048. Note that the analysis is limited to the mears ealde
that the mentioned uncertainty caused by the standard deviations betwediffarent RCM
realizations is not considered.

5.2 Variability of hail-unrelated weather types

5.2.1 Detection of linear trends

As a decrease in the number of hail-unrelated WTs may probably affecténall thunderstorm
probability, the time series for these WTs are analyzed with respect to @eddseriodicity.

The trend analysis of the time series, derived from CCLM-ECHAMS shsigsificant trends

only for very short subsequences of the control period (Appendd).Orhis is due to the higher
annual variability compared to the number of hail-related WTs (Fig. 5.11)9%Y, for example,

85 days with hail-unrelated WTs occurred according to Run 1, while in 188 WTs prevailed
just for 42 days.

Some significant negative trends for subsequences between 20202h¢{Run 1) or 2026 (Run
2) are evident in the future projection (Appendix D.4), mainly due to a verglisnumber of

hail-unrelated WTs in 2039. Run 3 does not show any significant tremdisgothis period at all,

indicating that initial conditions are decisive for the variability of hail-unrelatéTs.



5.2. Variability of hail-unrelated weather types 77

2000 3 2000 3
| [] []
1998 ‘ 4 1998 ‘ 1
* 2 2
1996 g 1996
1994 ’5! g 1994
1 1
1992 3 1992 8
. - g
g > g >
2 1990 g 0 & 21990 0o g
g 2 B 2
w
1988 8 1088 3
T . -1 | e -1
1986 g 1986
1984 E 1984
5 -2
1982—— E 1982——
1980 : : : : -3 1980 : : : ; -3
1975 1980 1985 1990 1975 1980 1985 1990
Start year Start year
2050 T T T T T 3 2050 T T T T T 3
11
[}
2045 Hooo{ B2 2045 .
2040 : g 1 2040 1 1
5 g 5 §
g > g >
2 2035 ] : g 0 & 2203 1 0o g
[ = v [= 1
w I g W =
] =] o
2030 : : g -1 2030 : 1 -1
2025 : : E -2 2025 ‘ : 1 -2
2020——1 ‘ ‘ ‘ ‘ -3 2020 ‘ ‘ ‘ ‘ ‘ -3
2015 2020 2025 2030 2035 2015 2020 2025 2030 2035
Start year Start year
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\,
T

a
o

Absolute frequency in days
[2]
o

N
o

RS RANREN RN RN RN RAN RN AR
N O M O O AN O~ NOMOWOANLW O — I NO M O o
N IS 00 0 00 0 O O O O O - - - D M M I < <
3D OO OO0 OO OO OO0 0O OO0 OO OO OO O O o
- - - - - - - - — ~ A NN AN AN AN AN AN NN NN AN NN NN
Year
— CE5A1BR1 — CE5A1BR2 - CE5A1BR3

Figure 5.11: Absolute frequency of hail-unrelated WTs derived frof5C20R1/CE5A1BR1
(red), CE5C20R2/CE5A1BR2 (blue) and CE5C20R3/CE5A1BR3 (Qree



78 Chapter 5. Temporal variability of hail-related weather types

Trends of hail-unrelated WTs, derived from the CCLM-KL data, are sintiathose of the
hail-related WTs, but are reverse and more distinct, especially for thedimgFig. 5.12; Ap-
pendix D.6). Positive trends in the subsequences of the time series froti2000 until 2050
remain significant throughout the entire time period and the subsequeBeesthose trends
are probably misleading as they are due to an abrupt decrease of f@#itad WTs between
1993 and 2001 from approximately 70 days to roughly 35 days (Fig. SN@)e of the CCLM-
ECHAMS runs indicate such a decrease in hail-unrelated days. To deeewhich of the pa-
rameters in the oWLK leads to this decreased number of WTs between 182Dah, the dis-
tributions of the vorticity (not shown) as well as the PW values are comg&igd5.14). Time
blocks of 8 years within the control period are chosen to compare the disrib of the values
of the CCLM-KL runs, but also to evaluate what differences appeanéad the other model re-
alizations (CCLM-ECHAMS5 or CCLM-CCma3). The green line in Fig. 5.14resents a period
with the minimum of hail-unrelated WTs in CKLC20R1, while the other two period&/18984
(blue) and 1985-1992 (red) represent an average occurrétioese WTs. As evident, the PW is
much higher for the years 1993 to 2000 by up to 30% of the median compatezidther periods
(1977-1984: 18.8 mm; 1993-2000: 26.6 mm). This increase of the PW isidletre in WTs from
CKLC20R2. The reasons for this large discrepancy in the CCLM-KL rhagdeare not clear, as
the model physics and the forcing GCM are the same for all three time peAddgionally, an
overproportionate amount of water in the CCLM-KL cannot be confirmedther studies, for
example, in the precipitation study over Baden-Wirttemberg by Feldmann(2040).

The second run of the CCLM-KL (Fig. 5.12) shows negative trendadfunrelated WTs for the
same periods, where positive trends for the hail-related WTs were ditddie linear trend for
the entire period from 1971 to 2048 amounts to 14 days for WTs derioed @€KLA1BR2 and
11 days for those from CKLB1R2. These trends are very similar, betse, in comparison to the
trends analyzed for the hail-related WTs. This is interesting as it revealsditaelated WTs and
hail-unrelated WTs depend on each other, at least statistically over Ipageds. Even if there
are 31 remaining types that were considered neither as hail-related hail-asirelated, there
seems to be a direct relationship between the occurrence of hail-relatedralated WTs. This
is supported by the trend matrices of the remaining 31 WTs, where no signifieads are evi-
dent in the entire time periods (Appendix D.7). Hail-unrelated WTs derirad CCLM-CC3ma
do not show noticeable significant trends.

In summary, almost the same conclusions as for the hail-related WTs caawe dere. The
largest differences in the trends are evident for the different madged of the RCMs due to
different initialization times and conditions. Second, the forcing global marelse differences,
while for the CKLC20R1 the largest deviations are due to the unusual Mgdtues between
1993 and 2001. The emission scenarios have little influence on the sign wétitebut small
influence on the overall number of hail-unrelated WTs per time period.



5.2. Variability of hail-unrelated weather types 79

2050

2040

2030 B A A AR A e e : J 2030 AR AR A AR e

2020

2010

o
Days per year
End year
o
Days per year

2000 FEEEEECE .

-2 -2

I I I I I I I -3 1980 B I I I I I I I
1980 1990 2000 2010 2020 2030 2040 1980 1990 2000 2010 2020 2030 2040
Start year Start year

2050

2050
2040 2040
2030 : 1 2030
Pl 1
@ 2020 - 2020 g
[ > ®© >
S g 2 5
- o 8 3 0o &
= v [= g
L0 2010 % W 2010 )
[a] [a]
[ Y -1
2000 q 2000
1990 FHE : 1 2 1990 2
1980 5:7 L L L L L L L -3 1980 5:7 L L L L L L L -3
1980 1990 2000 2010 2020 2030 2040 1980 1990 2000 2010 2020 2030 2040
Start year Start year

Figure 5.12: Trend matrices of hail-unrelated WTs from CKLC20R1/CKLR1B(top) and
CKLC20R2/CKLA1BR2 (bottom) from 1971 to 2048. Right panels show tbeesponding
significant trends.

5.2.2 Detection of periodicities

As discussed for the hail-related WTs, short-term variability of hail-uted|&/Ts are apparent
in the trend matrices as well, but less pronounced but statistically signifizantseveral peri-
ods. Similar to the hail-related WTs, also those with infrequent hail ococererere analyzed
for periodicity (Fig. 5.15). Especially the spectrum for WTs derivedfi©C3A1BR1 (Fig. 5.12,
bottom, right) shows that no harmonic behavior with a period of approximaglyp 16 years
is evident. However, there is an increased variance for shorter pdrtdveen 2.5 and 3 years,
which was not detectable for the hail-related WTs by CC3A1BR1. Thussttitement about
the direct relationship between hail-related and hail-unrelated WTs nebésstftened, as this
would imply that they hold the same harmonic behavior. Thus, this hypothegipasently not
valid for the CC3A1BR1.

Nearly all other model realizations show an enhanced variance for the jgariods as found for
hail-related WTs, but the variance is less pronounced (Fig. 5.15). &hidtrwas expected as it
was already visible in the trend matrices. It indicates that there is some pevitiwior in the



80 Chapter 5. Temporal variability of hail-related weather types

100

© ©
o o

~
o

[o2]
o

i,
|

(o))
o

N
o

W
o

Absolute frequency in days

N
o

_
o

o

———————

—_— T T T T T T — T— T— — ——

= CKLA1BR1 = CKLA1BR2

Figure 5.13: Absolute frequency of hail-unrelated WTs per summer lealf-pccording to
CKLC20R1/CKLA1BRL1 (red) and CKLC20R2/CKLA1BR2 (blue) from2Bto 2048.

0.12

—— CKLC20R2 (1977-1984)
—— CKLC20R2 (1985-1992)
——— CKLC20R2 (1993-2000) |

—— CKLC20R1 (1977-1984)
—— CKLC20R1 (1985-1992)
0.1r ——— CKLC20R1 (1993-2000) ] 0.1t

Relative fraction
o
o
(22}
Relative fraction
o
o
(o)}

Q : : : : : 0 : : : : :
50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
PW in 10mm PW in 10mm

Figure 5.14: Distributions of PW for three sequenced time periods of & yean CKLC20R1
(left) and CKLC20R2 (right). Blue: 1977-1984; Red: 1985-1992&r. 1993-2000.

time series of hail-unrelated WTs, but it probably interferes more with rawsmbnic oscillations.
For the CCLM-KL realizations the direct relationship between hail-relatet Femil-unrelated
WTs can be confirmed. In years with less hail-related WTs, the numberilairralated WTs
increases, instead of the number of remaining 31 WTSs.

5.2.3 \Variability of hail-unrelated weather types in an engmble of regional climate
models

Finally, to account for epistemic uncertainty, the ensemble mean of the diffeR@M realizations
is analyzed for the hail-unrelated WTs in accordance to the hail-related(RArs5.1.3). The
average number for hail-unrelated WTs in the control period is%6ays, while a minimum
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of 49 days is reached in 1976 and a maximum of 80 days in 1971 (Fig. 5Tt83. indicates
that the number of hail-unrelated WTs fluctuates a lot for the control peeggecially in the
1970s (Fig. 5.16). From the year 1980 a decreasing humber of délgharyear 2000 is evident
(Fig. 5.17, top). The large standard deviation (up to 45%) in the late 1990® i the minimum
number of hail-unrelated WTs according to CKLA1BR1, as discussedeabeyinning of this
section.

The future projection period starts with a higher number of days, whese W&'s prevail. An
increase is visible until 2040, where the number of hail-unrelated WTs\azhiés minimum
of 48+16 days. A standard deviation of more than 30% indicates large diffesdretereen the
RCM realizations and, thus, a high uncertainty. The trend matrices (Fig) &ohfirm these
characteristics. The control period holds significant negative tremdbké entire time period, but
not for periods ending prior to 1994, where large fluctuations ocdue. tfends amount between
-0.4 days (1971-2000) and -2.2 days (1989-1999) per year. redse of 12 days is observed for
the years 1971 to 2000. A decrease of the hail-unrelated WTs implies thaishraore potential
for the occrrence of more days with severe thunderstorms. Due to tieerargber of remaining
WTs where hail occurrence might be possible and due to the high unt¢grianquantitative
statement can be made about an increase in the number of hail damage days.
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For the future projections, statistically significant trends are very rdage 8§17, bottom). This
can be ascribed to the high annual variability, particularly to the high numbleaibtinrelated
WTs in 2041 and 2042. Even though the values seem abnormally&ighdays), the very small
standard deviations of roughly 5% indicate a low uncertainty since all modetsdsred show
almost the same results. Considering this finding, the trends are signifcagittfer the entire
time series or mainly periods that do not include those two years. For examgégrease of
7 days is evident from 2011 to 2048 and 11 days for 2011 to 2040.
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6. Statistical modeling of hail damage
days

The statistical probability model, introduced in Paragraph 3.3.4, is used eméieand to verify

the results of categorical verification, in terms of the HSS, and on the o#imet, Iit is used as a
predictor for the number of hail damage days based on the derived kihsdifferent climate

models. One advantage of the model is that all WTs are considered ajgsntite four hail-

related WTs discussed in previous chapters. Furthermore, the unteitathe predictions of

hail damage days is properly accounted for. In this section, the poteatidlbfl damage day
occurrence will be discussed, according to all 40 WTs of oWLK.

6.1 Determination of hail damage day probabilities

To derive the number of hail damage days, the probabilities of damagmgadnasistorms occur-
rence during a certain WT have to be derived first. For this, the statisticé¢in®used. The
output of the statistical model is a distribution for each probabijljtgf hail damage occurrence
during thei-th WT. A summary of these distributions and their 95% prediction intervals axersho
in Figure 6.1. Red markers show the fraction of hail damage days acgdalihe SV insurance
data during each WT (further referred to as empirical values) defieed CCLM-ERA40 (1986-
2000; see Fig. 4.3). Black markers indicate the point estimates for thelplites p; derived
from the statistical model, and the brackets show the corresponding 9dicton intervals.
This diagram illustrates that the model gives very good estimates for thalplitbs p; as all
empirical values are within the 95% prediction interval. Note that just 38 Wa sliaplayed, as
two WTs never occured in the past, according to CCLM-ERA40. The numidlrms the results
of the categorical verification and indicates that the four WTs SWCAW, SWCSWAAW and
XXCAW are most likely accompanied by damage causing hailstorms with a gtidpaletween
10% and 25%. Furthermore, the statistical model seems to confirm thatmsitiedng the WT
SECAD (cf. Sec. 4.1) as hail-related WT is justified. The WT occurs onlyrés in total and is
accompanied twice by hail and, thus, the absolute fraction of hail damagerence isx 18%.
However, this rare occurrence of the WT implies a high statistical uncertaihigh is well de-
scribed by the model. The point value foris statistically smaller than the empirical value and
afflicted with high uncertainty according to the 95% prediction interval.
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Figure 6.1: Point estimates (black dots) and 95% prediction intervals forrtilpilitiesp; of
having hail during days with the— th WT. The estimates are computed from WTs derived from
CCLM-ERA40 and hail damage days of the SV data. Red points indicate eaigirababilities,
derived from the same data sets.

But the model also has some problems. Especially those WTs with an empiricgiyplaare

under-predicted, meaning that the point estimates for the probabilities aee fomwthe model
predictions than they are for the empirical values. Similarly, WTs that aracemmpanied by
hail and have an empirical of zero are over-predicted.

6.2 Prediction of hail damage days

A great advantage of the statistical model is that it is possible to statisticallicptibe number

of hail damage days from it by using the time series of all WTs. For predittiagVTs de-
rived from the reference model CCLM-ERA40, reanalysis and climatestsddf. Table 3.1) are
used to count the number of days where each WT prevailgll (Second, for each, one sam-
ple for p; is drawn andK = 200 values from the binomial distributio®(V;, p;) are sampled.
These processes are repeated 200 times, which gives a good approximation for the predictive
distribution of the number of hail damage dal/sfor each WT. The sampling of the (S) in-
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corporates the epistemic uncertainty in the estimatign ,of/hile the sampling of the distribution
(K) represents the aleatory uncertainty of hail-generating processes.

Validation of the statistical model

To determine how well the model fits with observations, the predictive distribofibail damage
days derived from CCLM-ERA40 is compared with the empirically obsemaddes. For this,
all 38 samples with the number of hail damage days for each Ay &re incorporated to one
predictive distribution. Dividing this by the total number of days results in &ildigion of the
frequency of hail damage days as shown in Fig. 6.2. The frequertwgilalamage days between
the statistical model and the empirically derived frequency conform velly. Wlence, statistically
there is a chance between approximately 7% to 9% that damage causing mmailst@ur during
a summer day in the federal state of Baden-Wurttemberg, which is on avepggoximately
15 days per summer half-year.
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Validation of CCLM-ERA40 derived hail damage days

For prediction of the number of hail damage days, a consideration of thethidt never occurred
in the CCLM-ERA40 (SEACD, NECAW) is necessary, as those couldraodihe ERA40/ERA-
Interim reanalyses or in the different climate models (see below). Thus,pilubdabilities are
sampled from the overall, unconditional distribution of the hail damage ddy§if. 6.2). To
derive the number of hail damage days, the probabilitiesd the occurrence of each WN; are
used as input for the model. Finally, the probabilities are used to derivaithber of hail damage
days per summer half-year. Figure 6.3 shows the predictive distributfidhe bail damage days
per year for the period 1986 to 2000 derived by WTs from the ERAMEERRA-Interim reanalysis
and the CCLM-ERAA40. The accordance of the hail damage days is rablar&nd confirms that
the CCLM-ERA4O is an appropriate model, when considering WTs appliecetérélquency of
hailstorms. All data sets give an approximate number of 15 hail damage eaysay, which is in
very good agreement to the number of hail days according to the SV datiayk). All models
indicate that there is a high probability (>90%) of having more than 13 hail dardays and less
than 17 days per year.

Prediction of hail damage days in climate models

To evaluate whether the climate models (Table 3.1) are capable to reprodutd thand hence,
the same number of hail damage days for the past decades, the distrilditioesiumber of hail
damage days are computed for the model realizations CKLC20R1, CKLZ206&8 CC3C20R1
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Table 6.1: Values used for the bias correction of the predictive distribubibtiiee number of hail
damage days shown in Fig. 6.4 (and in the Appendix E.2).

Model realization Number of hail damage days

CKLC20R1 -0.7

CKLC20R2 +0.4
CC3C20R1 +1.4
CES5C20R1 +0.7
CE5C20R2 +0.9
CES5C20R3 +0.9

as well as for CCLM-ECHAMS5 (Appendix E.2). According to Table 6.1 jtdargest deviations
to the CCLM-ERAA40 results are evident for CC3C20R1, while the deviabenseen the differ-
ent model runs are again largest for the forcing global model (CCRC2@. CKLC20R1) and
the initial conditions (CKLC20R1 vs. CKLC20R2). The reasons of thediffices in the distribu-
tions are due to both epistemic and aleatory uncertainty. Unfortunately, due gap in the time
series of the other RCM realization, no statement can be made in respectegitheal models.
To predict the number of hail damage days that can be expected in the, fathfas correction
for the three different model realization towards the CCLM-ERA40 distidgiouis accomplished.
For this, the distributions of the RCM realizations are shifted by the amountsie Bal. After
applying this correction, it is possible to evaluate future changes in thalpitiip of hail damage
days and to consider the bias of the statistical model in regards to the bias aintate model
realizations.

The computation of the distributions of hail damage days for the entire futojegtion period
(2001 to 2048) indicates that the CKLA1BR2, CC3A1BR1 (Fig. 6.4), CKRR (not shown) and
CE5A1BR1-R3 (Appendix E.2) show an increase in the number of dayie the CKLA1BR1
(and CKLB1R1; not shown) indicates a decrease. This is very integes$ira positive trend for
the hail-related WTs was also observed in the trend matrices (Fig. 5.1 in.$ecTbis raises the
question why there is an expected decrease in the number of hail danysg&tden considering
all WTs of the CKLA1BR1.

In Figure 6.4, the distributions for CKLA1BR1, CKLA1BR2 and CC3A1B&® split into three
different time periods with a length of 15 years each, which was chosemding to the 15 year
observation period of the SV data. For the years 2001-2015, the digiritaf CKLA1BR1 indi-
cates a significant smaller number of hail damage days compared to the ottedrreadizations
and to the number of days in the past (1986-2000). This reveals thatttire projection of this
model realization seems to have a different distribution of those WTs thatairdy forcing hail
development, while this difference is not reflected within the control peribe:. differences are
also not visible in the trend matrices, because a positive trend in the numieit damage days
is also obvious in the distributions for the periods 2016-2030 and 208%-2T0hose shifts to-
wards a decreased number of hail damage days are probably indueadricreased number of
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hail-related WTs in the late 1990s (Fig. 5.1.1), which have significant infe®ion the trends.
Similar shifts are evident for CE5C20R2 and CE5C20R3 (Appendix EW)die to the lack of
data between 2001 and 2010 there is a potential for misinterpretation. EQuease realizations
show a tendency to a higher number of hail damage days in the projectiahg floiture.

For the time period from 2001-2015, CKLA1BR2 and CC3A1BR1 indicateoaability of more
than 90% that the number of hail damage days per summer half-year exic®ddys, which con-
forms to CCLM-ERA40 in the control period (1986-200). As mentionedaalyethe probability
of having more than 13 days according to CKLA1BR1 is much smaller and astwuwalues
of approximately 20%. For the next period of 15 years (2016-2030; 6=y bottom, left) all
means of the distributions indicate an increase in the number of days fromsatl@ hail dam-
age days (1986-2000; 2001-2015) up to a minimum of 15 days. Thelpitil of having more
than 14 hail damage days according to CKLA1BR?2 is still more than 90%. &pid increase is
probably caused by the 'step’ in the time series of hail-related WTs, asieaglan Section 5.1.
Note that only the minimum number of hail damage days according to the 90%lplipof hail
occurrence is discussed. The variance of the distribution is much langesiraounts to values
of approximately 7 days. Thus, a larger number of hail damage dayssabe expected to a
certain probability.

In the period from 2031 to 2045 (Fig. 6.4, bottom right) positive trends inntlmaber of halil
damage days are evident again in all model realizations. According to CBRA CKLA1BR2
and CE5A1BR1-R3, the probability of having more than 14 damage daysipaner half-year is
more than 90%. For the CKLB1R1 and CKLB1R2 model realizations similatteese achieved,
but not shown. Table 6.2 summarizes the findings.

Table 6.2: Minimum number of days during which hail damage can be expadteda 90%
probability derived from the statistical model and different climate moddizegeons. All values
are corrected for a systematic bias according data of CCLM-ERA40 @anithé control period
1986-2000.

Model realization 1986-2000 2001-2015 2016-2030 2031-2045

CKLA1BR1 13 10 10 11
CKLA1BR2 13 13 13 15
CC3A1BR1 13 13 14 14
CES5A1BR1 13 - 13 14
CE5A1BR2 13 - 14 15
CES5A1BR3 13 - 14 14

The results of the statistical modeling of hail damage days confirm that thesenaf the four se-
lected hail-related WTs already gives a good estimate about the variabilityl @fdmage events.
However, the use of this method has some advantages. The analysistsaberen if the con-
trol periods (1986 to 2000) conform well to both reanalysis and climate motlere are re-
markable differences in the future projections of the climate models (CKLA1BRE5A1BR2,
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CE5A1BR2) that affect the number of hail-related WTs per year ana;dyehe number of halil
damage days. Those can be attributed to aleatory uncertainty, as difet@® mainly due to the
different initialization times and initial conditions of the forcing global climate modiewever,
with an increase of approximately one to two days in the number of hail danaggettie results
are similar to those of the analysis of hail-related WTs. This indicates that tiedjpgty and
temporal variability of the four chosen hail-related WTs is probably a getithate for the actual
occurrence of hail damage days.
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Figure 6.4: Predictive distributions of the number of hail damage daysedefiom CCLM-
ERAA40 for the time period from 1986 to 2000 (black) and CCLM-KL for @9800 (top), 2001-
2048 (middle, left), 2001-2015 (middle, right), 2016-2030 (bottom, left) 2031-2045 (bottom,
right). A bias correction is applied to all RCM realizations during the controesr(top, right).



/. Summary and conclusion

In this thesis the long-term variability of weather patterns which are fretyjuaocompanied by
damage causing hailstorms is analyzed. In order to accomplish this, thésfirsd 80 examine the
applicability of the weather type classification method (0WLK) of Deutschetaitienst (DWD)
to different climate model data. The second step is to verify whether the climatelsrare able
to reproduce weather types (WTs) properly. These steps are ekteatialyze the variability of
WTs over the longest possible time period.

To clarify these questions, reanalysis data of the ECMWF (ERA40 and-EBRAIM) and dy-
namically downscaled data of the regional climate model (RCM) CCLM-ERA4@he control
period C20 (1971 to 2000) were available. The CCLM-ERA40 data weverdby initial and
boundary conditions of ERA40. Furthermore, data of eight differealizations of the regional
climate model COSMO-CLM were used. They were available for C20 andrdiit future pro-
jection periods (2001-2048/2050 and 2011-2050). The RCM realizatiiffer by the version of
COSMO-CLM (3.1 and 4.8), the driving global climate model (ECHAM5-MRIQCCCmag3),
the initialization time and initial conditions of the global climate model (Run 1 to 3) andrttis-
sion scenarios (A1B and B1). The oWLK are applied to all of these dédda@ethe investigation
area of Germany (£ to 16E and 45N and 57E) and WTs are derived.

Using categorical verification allowed to link loss data from the SV Spaekaé&ssicherung AG,
which include claims of hail damage on buildings in Baden-Wurttemberg, aneedeNTs. In
doing so, it is possible to differentiate between weather patterns thaegueefitly accompanied
by damaging hailstorms (hail-related WTs) and those that are only rarebyngemied by hail
(hail-unrelated WTSs), which are the basis for the analysis of variability.

The applicability of the classification method is examined by comparing the distiilsutiothe
absolute frequency of WTs derived from ERA40, ERA-Interim and.WEERA40 for C20. The
deviations between the distributions are only minor, indicating that the applicztibie oWLK
to similar data sets (all contain observations) leads to similar results. Herfeeenifmodel res-
olutions of ERA40 & 125 km), ERA-Interim £& 80 km) and CCLM-ERA404 50 km) do not
have much influence on the resulting WTs. However, the main reason feretiites in the WT
distributions is the flow direction (< 8%) as shown by comparing the distributibtie individual
parameters in the oWLK (flow direction, relative vorticity and humidity). Fumiere it is found
that the classification method is found to reach its limits when classifiying indiffeveather
conditions, e.g., an accumulated relative vorticity that is close to zero. Theserent WTs
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might also impact the results of the oWLK, but are probably equally distridntaimodels and,
hence, the effects are relatively small.

According to the evaluation, the WTs derived from CCLM-ERA40 wenesidered as reference
to categorize into hail-related and hail-unrelated WTs. Using the Heidke SkileSHSS) al-
lowed to define four WTs that have a high probability to be accompaniedrbggiag hailstorms
and five WTs where hailstorms are very rare. Interestingly, three ofdhaediated WTs turned
out to be referable to the same meteorological process: warm and moisivasted from the
Atlantic and Mediterranean leading to a frequent occurrence of thstmiers as the advected
air mass stores a lot of energy ("Spanish plume"). The fact that threedafT be related to the
same proccess indicates that the oWLK cannot differ between differeteorological processes.
But it clarifies that the WTs that favor the development of damaging hailstetermined from
the HSS are realistic. These findings are in agreement to the analysessbili Bisal. (2007),
who found a relationship between three of the detected WTs and the eccerof tornadoes in
Germany.

To examine whether the annual variability of hail-related WTs is indeperdéme model and the
model resolution, the absolute frequency of hail-related WTs derivedeRA-40, ERA-Interim,
CCLM-ERA40 and WTs derived by the DWD is compared. Deviations of tireual frequency
of WTs for C20 in general remain smak %) except for a few particular years. Deviations for
hail-unrelated WTs are slightly larget:(0%). This indicates that the model resolution also has
a minor influence on the variabiliy of hail-related WTs.

As the applicability of the classification method to different data sets is confjrthednethod is
applied to the mini-ensemble of climate model realizations. Since the RCMs areivest dy
observations, they cannot be compared for the temporal successtos ©fnoptic fields. Thus,
only the statistical distribution of WTs over an adequate long time-period ofQhg&rs in the
C20 is compared with WTs derived from CCLM-ERA40. The overall distitns of WTs de-
rived from climate models are approximately identical to those of the refemandel. Deviations
are mainly due to the classification of the flow direction and the cyclonality in $@0 Which is
sensitive for indifferent WTs as discussed above. However, it isdstierg that mainly the cyclon-
ality in 500 hPa causes differences as it is not as influenced by the l@uadary conditions as
the cyclonality in 1000 hPa and would, thus, be assumed to be less ersomuvever, the good
correspondence between climate models and reanalysis emphasizes that #és applicable
to a various type of data sets. This indicates that the oWLK is a good basisefanalysis of the
natural variability of the hailstorm occurrence and allows to consider long pieneds that are
not available for hail observations.

Linear trends in the time-series of hail-related WTs are examined by usirdyriratrices where
both the start and end year of the series are successively variedsigrtigcance (80% signifi-
cance level) of linear trends is tested using Mann-Kendall test statisticufiSagt positive trends
for C20 of approximately 9 days are found in the hail-related WTs defived CKLA1BR1 and
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CKLB1R1, while trends are not significant for the remaining model realimati¢-or the future
projections three of the eight model realizations show significant posiénes$rof approximately
11 days (2001-2048/50) and 8 days for CE5A1BR1 (2011-205@thErmore, the periodic be-
havior of hail-related WTs is determined by the application of a Fast Fourarsiformation to
those time series with an adequate length (not CCLM-ECHAMbS). Nearly dirdlated WTs
derived from the model realizations show a periodic behavior of 12At62a5 years. This in-
dicates that the potential for hail follows a certain harmonic behavior. Eneetl trends are
highly dependent on the initialization time and the initial conditions of the driving/GG@hich
caused the largest differences of the WTs. Second largest difiesseme due to the forcing GCM
(ECHAMS5 and CCCma3). The RCM model versions (3.1 and 4.8) and emisserarios (A1B
and B1) are just of minor importance. The differences between these neadiehtions indicate
a large uncertainty of the climate scenarios. Furthermore, it explains wtaigheclimate pro-
jections should not be considered as climate prediction, but more as an esifrtteepotential
development of the climate with regard to hail-related WTSs.

To summarize the potential development of hail-related WTs and to accawspi&iemic uncer-
tainty, the time series of hail-related WTs derived from the different mo@dizegions are com-
bined to one ensemble with mean and standard deviation. The trend matriaghahshort-term
trends are mostly not statistically significant, due to large inter-annual Viéyiadd hail-related
WTs. However, significant long-term trends are found in the past andld. A significant in-
crease of 12 days (from 35 to 47 days) is observed between 197208@dand an increase of
9 days (39 to 46 days) for the years 2011-2048. These could partigilgie the increase of
damage days observed by the SV insurance comparib(days). This would indicate that the
results are representable, even though thunderstorms cannot lvedeso

However, the detected changes should be interpreted with care asetmylyaderived from one
RCM. Due to the lack of three-dimensional data from different RCMs tlegls cannot be
traced back to natural variability. Additionally, different initialization times f&ZlQ-CCCma3
and scenarios for CCLM-CCCma3 and CCLM-ECHAMS5 would increasentimaber of ensem-
ble members and, thus, would make the analysis of linear trends more stablkg agshift in the
initialization time.

To verify the results, the number of hail damage days is computed with a statistialglity
model based on the WTs from the climate models. This is the first time that hail dadagg are
derived from time series of WTs using such a model. The comparison ofatigtisally derived
number of hail damage days on basis of WTs derived from CCLM-ERA&RA40 and ERA-
Interim conformed very well with the empirical derived number of day®stiog to the SV loss
data. An approximate number of 15 hail damage days was found within thedgesio 1986
to 2000, while the distributions allow to quantify that there is a probability of maxa 80% to
have between 13 and 17 hail damage days. The application of the probatutitgi to different
RCM realizations allows to make statements of significant changes in the nufiitsr damage
days in the future. To reduce epistemic uncertainty in the RCM simulations, thberwof hail
damage days is corrected for bias. The future projections show that@age in the number of
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hail damage days can be expected. For three of the model realizaziomsstlagprobability of

90% that at least 15 hail damage days per summer-half year occur be2@8&-2045 and for
three others that at least 14 hail damage days occur. Surprisingly,cfdhreemodel realizations
indicate a shift in the probabiliy distribution of the hail damage days betwe86-2000 and

2001-2015 towards a decreasing number of days, even if the datéaaredorected. This can
be related to peaks in the time series that significantly influence the trendwultdse further

analyzed if these deviations are caused by a certain periodicity or jusb gheaks.

The analyses shows that it is possible to apply the oWLK to different degard that the RCM
realizations reproduce the overall number of hail-related WTs surplysgupd. Applying dif-
ferent statistical methods makes it possible to investigate likely future chafhdasaging hail-
storms. Hence, the methods could be applied to study WTs that are in somelatay to other
meteorological phenomena, e.g. tornadoes (Bissolli et al., 2007) oiritpdBlardossy and Filiz,
2005). This would allow to estimate the probability of such extreme events irefdegades.
However, the analysis also shows that nearly all statements are afflictedhiglthuncertainty.
Hence, further investigations should include a larger ensemble of RCMsltwe the epistemic
uncertainty. This assures that natural variability is analyzed and notlealynodel physics. An
ensemble should preferably include a large number of RCMs that aendsiy different global
climate models, as most uncertainties were found to originate from those.



A. Weather types

Table A.1: List of Hess-Brezowksy Major types (GWT) and types (G\Wess and Brezowsky,
1952; Gerstengarbe and Werner, 2005)

Major type (GWT) Abbrev. Type (GWL) Abbrev.
A. Zonal circulation
West W West cyclonic wz
West anticyclonic WA
West angular ww
Southern West WS
B. Mixed circulation
Central Europe high HM Central European high HM
Central European ridge BM
Central European low ™ Central European low ™
Southwest SW Southwest anticyclonic SWA
Southwest cyclonic SwWz
Northwest NW Northwest anticyclonic NWA
Northwest cyclonic Nwz
C. Meridional circulation
East E Fennoscadian high anticyclone HFA
Norwegian Sea/Fennoscadian high anticyclone ~ HNFA
Fennoscadian high cyclonic HFZ
Norwegian Sea/Fennoscadian high cyclonic HNFZ
South S South anticyclone SA
South cyclonic Sz
British Isles low B
Western Europe trough TRW
Southeast SE Southeast anticyclone NA
Southeast cyclonic SEZ
North N North anticyclone NA
North cyclonic Nz
North, Iceland high, anticyclonic HNA
North, Iceland high, cyclonic HNZ
British Isles high HB
Central European trough TRM
Northeast NE Northeast anticyclone NEA
Northeast cyclone NEZ
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Appendix A. Weather types

Table A.2: List of objective weather types by the DWD

Abbrev. Advection Cylonality  Cylonality  Humidity
in925hPa  in 500 hPa
NEAAD Northeast anticyclonic anticyclonic dry
NEAAW  Northeast  anticyclonic anticyclonic wet
NEACD Northeast anticyclonic cyclonic dry
NEACW  Northeast  anticyclonic cyclonic wet
NECAD  Northeast  cyclonic anticyclonic  dry
NECAW  Northeast  cyclonic anticyclonic  wet
NECCD  Northeast  cyclonic cyclonic dry
NECCW  Northeast  cyclonic cyclonic wet
SEAAD Southeast  anticyclonic anticyclonic  dry
SEAAW  Southeast  anticyclonic anticyclonic wet
SEACD Southeast  anticyclonic  cyclonic dry
SEACW  Southeast  anticyclonic cyclonic wet
SECAD Southeast  cyclonic anticyclonic  dry
SECAW  Southeast  cyclonic anticyclonic  wet
SECCD Southeast  cyclonic cyclonic dry
SECCW  Southeast  cyclonic cyclonic wet
SWAAD  Southwest anticyclonic anticyclonic dry
SWAAW  Southwest anticyclonic anticyclonic wet
SWACD  Southwest anticyclonic cyclonic dry
SWACW  Southwest anticyclonic cyclonic wet
SWCAD  Southwest cyclonic anticyclonic  dry
SWCAW  Southwest  cyclonic anticyclonic  wet
SWCCD  Southwest cyclonic cyclonic dry
SWCCW  Southwest  cyclonic cyclonic wet
NWAAD Northwest anticyclonic anticyclonic dry
NWAAW  Northwest anticyclonic anticyclonic wet
NWACD  Northwest anticyclonic cyclonic dry
NWACW  Northwest anticyclonic cyclonic wet
NWCAD Northwest cyclonic anticyclonic  dry
NWCAW Northwest  cyclonic anticyclonic  wet
NWCCD Northwest  cyclonic cyclonic dry
NWCCW  Northwest  cyclonic cyclonic wet
XXAAD notdefined anticyclonic anticyclonic dry
XXAAW  notdefined anticyclonic anticyclonic wet
XXACD notdefined anticyclonic cyclonic dry
XXACW notdefined anticyclonic cyclonic wet
XXCAD notdefined cyclonic anticyclonic  dry
XXCAW  not defined cyclonic anticyclonic  wet
XXCCD notdefined cyclonic cyclonic dry
XXCCW notdefined cyclonic cyclonic wet
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Table A.3: List of objective weather types by the modified weather typeifitzgon

Abbrev.  Cylonality  Cylonality Humid. Stability Equivalen t potential temp.
in 925 hPa  in 500 hPa
AADSH anticyclonic anticyclonic  dry stable high EPT (largeale lifting)
AADSL  anticyclonic anticyclonic  dry stable low EPT (no lifg)
AADLH anticyclonic anticyclonic  dry instable  high EPT
AADLL anticyclonic anticyclonic  dry instable  low EPT
AAWSH anticyclonic anticyclonic  wet stable high EPT
AAWSL anticyclonic anticyclonic  wet stable low EPT
AAWLH anticyclonic anticyclonic. wet instable  high EPT
AAWLL anticyclonic anticyclonic — wet instable  low EPT
ACDSH anticyclonic cyclonic dry stable high EPT
ACDSL anticyclonic  cyclonic dry stable low EPT
ACDLH anticyclonic  cyclonic dry instable  high EPT
ACDLL  anticyclonic cyclonic dry instable  low EPT
ACWSH anticyclonic cyclonic wet stable high EPT
ACWSL anticyclonic cyclonic wet stable low EPT
ACWLH anticyclonic cyclonic wet instable  high EPT
ACWLL anticyclonic cyclonic wet instable  low EPT
CCDSH  cyclonic cyclonic dry stable high EPT
CCDSL  cyclonic cyclonic dry stable low EPT
CCDLH  cyclonic cyclonic dry instable  high EPT
CCDLL  cyclonic cyclonic dry instable  low EPT
CCWSH cyclonic cyclonic wet stable high EPT
CCWSL cyclonic cyclonic wet stable low EPT
CCWLH cyclonic cyclonic wet instable  high EPT
CCWLL cyclonic cyclonic wet instable  low EPT
CADSH  cyclonic anticyclonic  dry stable high EPT
CADSL  cyclonic anticyclonic  dry stable low EPT
CADLH  cyclonic anticyclonic  dry instable  high EPT
CADLL  cyclonic anticyclonic  dry instable  low EPT
CAWSH  cyclonic anticyclonic  wet stable high EPT
CAWSL  cyclonic anticyclonic  wet stable low EPT
CAWLH cyclonic anticyclonic  wet instable  high EPT
CAWLL cyclonic anticyclonic  wet instable  low EPT







B. Skill Scores

Hit Rate

The hit rate counts all correct forecasts and is defined as

g-ttd (B.1)
n

The best possible hit rate is one, while the worst is zero. It considecsraéct "Yes" and "No"
forecasts but is not an adequate measure when observational esanteoly rarely (see Wilks,
1995).

Threat Score

The threat score (TS), also called critical success index (CSI), ivadegnt to the number of
correct "Yes" forecasts divided by the occasions on which the evasnforecast and/or observed
(Wilks, 1995):
a
TS =CSI = ———. B.2
a+b+c (B.2)
It can be interpreted as the quantity being forecast after removingctdNe" forecasts. It is

used particularly when an event occurs less frequently than the nomeoce.

Probability of detection

To include information about the likelihood, that the event would be fotedalative to its
occurrence, the probability of detection (POD) can be used as agaunedasure:

a

POD = .
a—+c

(B.3)

For a perfect forecast its value achieves one and for the viRgpdd = 0.

False Alarm Rate

The false-alarm rate (FAR) is the number of "Yes" forecasts of thetékianfail and it is calcu-
lated as )
FAR=——. B.4
a+b (B4)

In contrast to the other measures the best possible FAR is zero and ttasnae.
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Bias

The bias (B) is not an accuracy measure but indicates whether anweasrfbrecasted more
frequently than it was observed. The B is the ratio of the number of "Yesthsts to the number
of "Yes" observations:
p-th (B.5)
a—+c
If B is equal to one, the event was forecast the same number of times thaam dhgerved. If it

is greater than one, the event was forecast more often than obsewegtb(ecast), while it was

underforecast when B is less than zero.



C. Modified weather type classification

Table C.1: Skill scores of hail-related and hail-unrelated WTs derivad fft CLM-ERA40 with
MoWLK.

| Weather typel POD | FAR | CSI | HSS | a| b | ¢ | d

Hailstorm- CAWLH 0.257| 0.601| 0.185| 0.266 | 57 | 86 | 165 | 2437
related AAWLH 0.207| 0.681| 0.144| 0.2 | 46| 98 | 176 | 2425
CCWLH 0.041| 0.625| 0.038| 0.058 | 9 | 15 | 213 | 2508
CCWSH 0.054| 0.844| 0.042| 0.04 | 12| 65 | 210 | 2458
Hailstorm- AAWSL 0.018| 0.983| 0.009| -0.073| 4 | 235| 218 | 2288
unrelated AADSL 0.036| 0.981| 0.012| -0.092| 8 | 423 | 214 | 2100
ACDSL 0.045| 0.979| 0.015| -0.092| 10 | 464 | 212 | 2059
CCDSL 0.009| 0.987| 0.005| -0.06 | 2 | 152 | 220 | 2371
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D. Analysis of halil-related weather
types
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D.2 Hail-unrelated weather types
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Figure D.6: Same as Fig. 5.2 but for CKLC20R1/CKLB1R1 (top) and CKQR2/CKLB1R2
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Figure D.8: Same as Fig. 5.15 but from CKLC20R2/CKLB1R2.



E. Prediction of hail damage days
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Figure E.1: Same as Fig. 6.4 but for the CCLM-ECHAMS5 model runs and fanlthe control
period 1986 to 2000 without (left) and with (right) bias correction.
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Figure E.2: Same as Fig. 6.4 but for the CCLM-ECHAM5 model runs anthifuture projec-
tions 2011-2048 (top), due to the lag of data between 2001 and 2010.
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