Institute of Meteorology and Climate Research

New Paper

17.02.2021: Recently published

Fluck, E., Kunz, M., Geissbuehler, P., Ritz, S. P. (2021): Radar-based assessment of hail frequency in Europe, Nat. Hazards Earth Syst. Sci., 21, 683–701, doi:10.5194/nhess-21-683-2021.


In this study we present a unique 10 year climatology of severe convective storm tracks for a large European area covering Germany, France, Belgium and Luxembourg. For the period 2005–2014, a high-resolution hail potential composite of 1×1 km2 is produced from two-dimensional radar reflectivity and lightning data. Individual hailstorm tracks as well as their physical properties, such as radar reflectivity along the tracks, were reconstructed for the entire time period using the Convective Cell Tracking Algorithm (CCTA2D).

A sea-to-continent gradient in the number of hail days per year is found to be present over the whole domain. In addition, the highest number of severe storms is found on the leeward side of low mountain ranges such as the Massif Central in France and the Swabian Jura in southwest Germany. A latitude shift in the hail peak month is observed between the northern part of Germany, where hail occurs most frequently in August, and southern France, where the maximum amount of hail is 2 months earlier. The longest footprints with high reflectivity values occurred on 9 June 2014 and on 28 July 2013 with lengths reaching up to 500 km. Both events were associated with hailstones measuring up to 10 cm diameter, which caused damage in excess of EUR 2 billion.From 10 to 12 June 2019, severe thunderstorms affected large parts of Germany. Hail larger than golf ball size caused considerable damage, especially in the Munich area where losses amount to EUR 1 billion. This event thus ranks among the ten most expensive hail events in Europe in the last 40 years. Atmospheric blocking in combination with a moist, unstably stratified air mass provided an excellent setting for the development of severe, hail‐producing thunderstorms across the country.